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Abstract

Early-life adversity (ELA) in the form of stress, inflammation, or malnutrition, can

increase the risk of developing psychopathology or cognitive problems in adulthood.

The neurobiological substrates underlying this process remain unclear. While neuronal

dysfunction and microglial contribution have been studied in this context, only recently

the role of astrocytes in early-life programming of the brain has been appreciated.

Astrocytes serve many basic roles for brain functioning (e.g., synaptogenesis, glutamate

recycling), and are unique in their capacity of sensing and integrating environmental sig-

nals, as they are the first cells to encounter signals from the blood, including hormonal

changes (e.g., glucocorticoids), immune signals, and nutritional information. Integration

of these signals is especially important during early development, and therefore we pro-

pose that astrocytes contribute to ELA induced changes in the brain by sensing and

integrating environmental signals and by modulating neuronal development and func-

tion. Studies in rodents have already shown that ELA can impact astrocytes on the short

and long term, however, a critical review of these results is currently lacking. Here, we

will discuss the developmental trajectory of astrocytes, their ability to integrate stress,

immune, and nutritional signals from the early environment, and we will review how dif-

ferent types of early adversity impact astrocytes.
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1 | INTRODUCTION

Early life is a critical developmental period in which the brain is

shaped for life. Early-life adversity (ELA), in the form of trauma, severe

abuse or neglect, prolonged hospitalization, infection, or malnutrition

(de Rooij, Wouters, Yonker, Painter, & Roseboom, 2010; Kessler et al.,

2010; Loman & Gunnar, 2010; Mandelli, Petrelli, & Serretti, 2015;

Nemeroff, 2016), has been associated with cognitive decline and

increased risk of developing psychopathology in adulthood. For exam-

ple, social deprivation in early institutionalized children results in

lower cognitive ability (Chugani et al., 2001; Nelson et al., 2007),

childhood trauma caused by neglect or emotional abuse is associated

with impaired cognitive functioning and adult depression (Mandelli

et al., 2015; Saleh et al., 2017), and prenatal undernutrition leads to

impaired cognition in adulthood (de Rooij et al., 2010) and increased

vulnerability to develop schizophrenia (Brown & Susser, 2008). During

Abbreviations: ELA, early-life adversity; CNS, central nervous system; BBB, blood–brain

barrier; GFAP, glial fibrillary acidic protein; GR, glucocorticoid receptor; CORT,
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lipopolysaccharides; HFD, high-fat diet; MDD, major depressive disorder; SCZ, schizophrenia.
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early-life, the brain needs to integrate and adapt to many different

environmental factors for proper development. There is increasing

attention for the synergistic and coordinated action of multiple early-

life environmental factors, that is, stress hormones, nutritional input,

and immune activation, in programming of the brain (Cirulli, 2017;

Hoeijmakers, Korosi, & Lucassen, 2015; K. L. Lindsay, Buss,

Wadhwa, & Entringer, 2017; Lucassen et al., 2013; Marques, 2013;

Marques, Bjørke-Monsen, Teixeira, & Silverman, 2015; Yam, Naninck,

Schmidt, Lucassen, & Korosi, 2015), but the exact mechanisms under-

lying this process, and in particular what neurobiological substrates

and central nervous system (CNS) cell types are involved, remains to

be elucidated.

The hippocampus has been extensively studied in this context,

because of its key role in cognitive functioning and its high degree of

neuronal and synaptic plasticity (Akhondzadeh, 1999; Lledo, Alonso, &

Grubb, 2006; Malenka, 1994). There is now ample evidence that ELA

in the form of stress or malnutrition leads to impaired cognitive func-

tioning associated with disrupted hippocampal neurogenesis (Abbink,

Naninck, Lucassen, & Korosi, 2017; Lemaire, Koehl, Le Moal, &

Abrous, 2000; Loi, Koricka, Lucassen, & Joels, 2014; Matos, Orozco-

Solís, de Souza, Manhães-de-Castro, & Bolaños-Jiménez, 2011;

Naninck et al., 2015; Pérez-García, Guzmán-Quevedo, Da Silva

Aragão, & Bolaños-Jiménez, 2016) and altered synaptic plasticity (Aisa

et al., 2009; Austin, Bronzino, & Morgane, 1986; Danielewicz, Trenk, &

Hess, 2017; Derks, Krugers, Hoogenraad, Joels, & Sarabdjitsingh,

2016; for review see Georgieff, Brunette, & Tran, 2015; J. Yang et al.,

2007). In addition, the involvement of microglia has received some

attention (De Luca et al., 2016; Diz-Chaves, Pernía, Carrero, & Garcia-

Segura, 2012; Hoeijmakers et al., 2017). Although changes in astro-

cytes have been described in the context of several ELA-associated

psychopathologies like depression and schizophrenia (see Box 1)

(Cobb et al., 2016; Webster et al., 2001), the role of astrocytes in ELA

programming received only marginal attention.

Astrocytes are able to sense and integrate a multitude of signals

from the endogenous and exogenous environment and use this infor-

mation to modulate neuronal function. They are involved in many dif-

ferent processes crucial for brain and cognitive functioning (Santello,

Toni, & Volterra, 2019) including glutamate recycling (Sonnewald,

Westergaard, & Schousboe, 1997), myelination (Camargo et al., 2017;

Kıray, Lindsay, Hosseinzadeh, & Barnett, 2016), energy metabolism

(Bélanger, Allaman, & Magistretti, 2011), and synaptic development

and functioning (Allen, 2014; Allen & Eroglu, 2017). It has been known

that astrocytes promote synaptogenesis during development (Allen,

2013), and emerging evidence shows that astrocytes also control den-

dritic maturation and synaptic integration of adult newborn neurons

in the hippocampus (Kempermann, 2015; Sultan et al., 2015). This

suggests a possible role for astrocytes in regulating the ELA-induced

alterations in adult neurogenesis (Abbink et al., 2017; Korosi et al.,

2012; Naninck et al., 2015). Next to that, astrocytes are important

integrative cells that can process information on spatial and temporal

scales distinct from those of neurons. Astrocytes release glio-

transmitters and interact with both presynaptic and postsynaptic neu-

rons, together forming the tripartite synapse (Araque et al., 2014;

Araque, Parpura, Sanzgiri, & Haydon, 1999). Estimations indicate that

one single astrocyte can cover and influence up to 140,000 synapses

in the hippocampus (Bushong, Martone, Jones, & Ellisman, 2002), all-

owing the synchronization of neuronal firing and coordination of

BOX 1 Implication of astrocytes in human diseases

associated with ELA

In humans, ELA has been associated with neurological and

mental problems later in life, such as major depressive disor-

der (MDD) and schizophrenia (SCZ). Interestingly, in line

with findings in rodent models, many studies in human

MDD and SCZ patients point to aberrant astrocyte func-

tions. In MDD patients, especially in the younger subjects,

astrocyte pathology is more prominent than neuronal dys-

function, pointing to a role for astrocytes already at early

stages of the disease course (Miguel-Hidalgo et al., 2000).

Postmortem studies in MDD patients showed decreased

astrocyte numbers and abnormal astrocyte morphology in

the frontolimbic system. Decreased GFAP expression and

reduced numbers of GFAP+ and S100β+ astrocytes are

found in the prefrontal cortex (Nagy et al., 2015), anterior

cingulate cortex (Gittins & Harrison, 2011), and the hippo-

campus (Cobb et al., 2016) of MDD patients, brain regions

that are specifically involved in mood disorders (Torres-

Platas, Nagy, Wakid, Turecki, & Mechawar, 2016). In SCZ,

less consistent changes in astrocytes have been found, while

some studies indicated increased (Feresten, Barakauskas,

Ypsilanti, Barr, & Beasley, 2013), others found decreased

astrocyte numbers in postmortem tissue of SCZ patients

(Steffek, McCullumsmith, Haroutunian, & Meador-Wood-

ruff, 2008). However, in line with the hypothesis that SCZ is

related to NMDA dysfunction, and that astrocytes induce

release of gliotransmitters, agents that enhance NMDA

function such as increasing levels of receptor co-agonist

D-serine, showed beneficial effects (Heresco-Levy et al.,

2005). Moreover, mutations in Disc1, which protein stabi-

lizes the D-serine synthesizing enzyme serine racemase,

resulted in SCZ-like behavior in mice (Ma et al., 2013). Anti-

depressant agents in MDD, resulted in recovered astrocyte

phenotypes in both rodent models and human patients, and

therefore have been argued that the functional improve-

ment of astrocytes should be strategic in the treatment of

MDD (Czéh & Di Benedetto, 2013). As many studies sup-

port the hypothesis that changes in astrocyte function could

contribute to pathophysiology of mood disorders, better

understanding of the underlying pathomechanisms involving

astrocytes could potentially provide new targets for thera-

peutics. Additionally, this knowledge could lead to a better

understanding of programming of astrocytes by ELA in the

context of disease.
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synaptic networks (Halassa, Fellin, Takano, Dong, & Haydon, 2007).

Astrocytes regulate synapse development (Christopherson et al., 2005;

Diniz et al., 2012; Kucukdereli et al., 2011) and modulate synaptic

transmission within a seconds to minutes timescale (Araque et al.,

2014; Parpura et al., 1994; Pascual et al., 2005; Yang et al., 2003). Fur-

thermore, astrocytes modulate the efficiency of excitatory (gluta-

matergic) synapses by clearing glutamate from the synaptic cleft via two

high-affinity glutamate transporters: The GLT-1 and GLAST transporters

(EAAT2 and EAAT1, respectively) thereby preventing excitotoxicity

(damaging of neurons by excessive stimulation of neurotransmitters;

Choi, Maulucci-Gedde, & Kriegstein, 1987; Huang & Bergles, 2004).

Finally, astrocytes are sensitive to changes in the environmental state

and can respond by regulating extracellular factors, like metabolite con-

centration, neurotransmitters, and ions (Bazargani & Attwell, 2016;

Vernadakis, 1996; Walz, 1989). Astrocytes receive this homeostatic

information from different sources and are capable of responding to

more “slow” homeostatic processes, including hormonal changes,

immune signals, and nutritional input.

Thus astrocytes are in the unique position to sense, integrate, and

coordinate the large variety of signals from the complex early-life

environment. Therefore, we propose that ELA might impact on astro-

cytes and thereby contribute to lasting effects of ELA on brain devel-

opment, structure, and function. Here, we will describe the timing and

origin of astrocyte development, highlight the sensing and integrative

nature of astrocyte functions, and review the existing literature on the

effects of ELA, for example, stress, inflammation, and malnutrition, on

the astrocyte population.

2 | ASTROCYTE DEVELOPMENT

Astrocytes play a crucial role in normal brain development (Reemst,

Noctor, Lucassen, & Hol, 2016), and knowledge on the timing of

astrocyte development and maturation is crucial to comprehend how

ELA might influence astrocytes and program their function for life. In

rodents, astrocytes are derived from three sources: (a) neural progeni-

tor cells, (b) directly from radial glia (Kriegstein & Alvarez-Buylla,

2009; Marshall, Suzuki, & Goldman, 2003), or (c) in later stages, via

local proliferation of differentiated astrocytes (Ge, Miyawaki, Gage,

Jan, & Jan, 2012). Astrocytes begin to develop in the final weeks of

embryonic development and increase rapidly in number in the first

month of life. In the hippocampus, most astrocytes are being gener-

ated during the second postnatal week (Catalani, Sabbatini, Consoli, &

Cinque, 2002; Nixdorf-Bergweiler, Albrecht, & Heinemann, 1994). In

the first postnatal week, astrocytes start to grow filopodial processes

that form a meshy network with physical overlap of astrocytic

processes and no clear-bordered astrocytic domains (Bushong,

Martone, & Ellisman, 2004). At the end of the first week, astrocytes in

the hippocampal formation start to ramify and gain increased cyto-

skeletal complexity, which extends into adulthood (Bushong et al.,

2004; Catalani et al., 2002; Setkowicz, Pawli�nski, & Ziaja, 1999). The

distinction of spatial astrocytic domains becomes more clear in the

second week of development and is profoundly present at the end of

the third week (Bushong et al., 2004). After the peak of astrogenesis

in the first two postnatal weeks, proliferative capacity drops radically,

though a moderate increase in astrocyte number still occurs until

1 month of age (Catalani et al., 2002; Setkowicz et al., 1999). During

week 3 and 4 of postnatal development, astrocytes appear to have a

more mature phenotype (Bushong et al., 2004). In humans, the peak

of astrogenesis is believed to already start during the last phase of

gestation (Menassa & Gomez-Nicola, 2018; Mottahedin et al., 2017;

N. Patro, Naik, & Patro, 2015; Semple, Blomgren, Gimlin, Ferriero, &

Noble-Haeusslein, 2013) and to last throughout the postnatal period,

when the number of GFAP+ cells continues to increase in every part

of the CNS (Roessmann & Gambetti, 1986). Thus, in both human and

rodents, astrogenesis coincides with early sensitive periods rendering

astrocytes particularly sensitive to ELA. Therefore, it is important to

consider the impacts of ELA on astrocytes and how these might con-

tribute to ELA-induced brain dysfunction.

3 | ASTROCYTES INTEGRATE SIGNALS
FROM THE ENVIRONMENT

As introduced earlier, astrocytes integrate a multitude of signals to

adapt to the early environment. These signals are partly local

(e.g., neurotransmitters (Araque et al., 2014), and largely systemic

(e.g., nutrients, hormonal changes (Garcia-Segura & McCarthy, 2004)

related to metabolism (Chowen et al., 2016; Marina et al., 2017;Welcome,

2018), inflammation (Farina, Aloisi, & Meinl, 2007), and stress (Carter,

Hamilton, & Thompson, 2013; Paukert et al., 2014). These signals are fun-

damental during development and need to be integrated for an informed

modulation of neuronal development and function throughout life.Wewill

discuss here how astrocytes are capable of sensing and integrating nutri-

tional, immune- and stress-related signals.

3.1 | Astrocytes sense nutrients and provide them to
neurons

During development, the brain is the fastest developing organ with an

incredibly high demand for energy and nutrients. A deficit in nutrient

availability during early development has lasting consequences for

brain function later in life (Crawford, Hassam, & Stevens, 1981; de

Rooij et al., 2010; Roseboom, de Rooij, & Painter, 2006). Astrocytes

can sense and take up nutrients from the periphery thanks to their

strategic anatomical location. Blood vessels in the CNS are

ensheathed by astrocyte endfeet that regulate blood–brain barrier

(BBB) permeability and coordinate the entrance of nutrients into the

brain (Abbott, Rönnbäck, & Hansson, 2006; Alvarez, Katayama, & Prat,

2013; García-Cáceres, Fuente-Martín, Argente, & Chowen, 2012). We

will highlight the involvement of perivascular astrocytes in glucose

and lipid sensing, the most extensively studied nutrients up to date.

Glucose is one of the most important energy sources of the brain.

Astrocytes sense systemic glucose levels and take up glucose from

the blood via the glucose transporter 1 (GLUT1), present in the

endfeet of perivascular astrocytes. Once glucose has passed the BBB,
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perivascular astrocytes take up glucose and store it as glycogen

(Kacem, Lacombe, Seylaz, & Bonvento, 1998; Marina et al., 2017;

Morgello, Uson, Schwartz, & Haber, 1995; Welcome, 2018), which

can be directly mobilized as energy source by various neurotransmit-

ters like noradrenaline (Pellerin, 2013; Sorg & Magistretti, 1991).

Importantly, astrocytes are the only cells in the brain capable of stor-

ing glucose as glycogen. It has been suggested that, under high-energy

demanding conditions, astrocytes can also convert glucose into lactate

as an alternative source of energy for neurons (Matsui et al., 2017;

Pellerin et al., 1998). However, this concept is subject of debate

(Chih & Roberts, 2003; Pellerin & Magistretti, 2003)

Next to being involved in glucose metabolism, astrocytes have

been shown to play an active role in brain lipid metabolism. Lipids are

crucial for brain development and function, and a lack of lipids during

early development has deleterious consequences for later brain struc-

ture and function (Crawford et al., 1981). The CNS is highly enriched

in lipids (Goyal, Iannotti, & Raichle, 2018; Sastry, 1985) which serve as

building blocks of neuronal membranes including neurite membranes,

synaptic membranes, and myelin sheaths. Specifically polyunsaturated

fatty acids (PUFAs, like DHA and AA) have been shown to be crucial

for neurite outgrowth (Calderon & Kim, 2004), synaptic transmission

(Connor, Tenorio, Clandinin, & Sauvé, 2012), and neurogenesis

(Maekawa et al., 2009). In particular, there is evidence that neuro-

genesis is modulated by factors related to astrocyte fatty acid metab-

olism, including fatty acid binding proteins and fatty acid synthase

(Boneva et al., 2011; Knobloch et al., 2013; Young, Heinbockel, &

Gondré-Lewis, 2013). Also, cholesterol, a structural component of

myelin, is an indispensable building block required for normal brain

functioning and synaptogenesis (Orth & Bellosta, 2012), and defective

astrocyte cholesterol metabolism can contribute to neurological prob-

lems (Camargo et al., 2012; Valenza et al., 2015). The uptake of

peripheral lipids by the brain has been subject of debate (Schönfeld &

Reiser, 2013). Certain circulating peripheral lipids (e.g., PUFAs) might

freely enter the brain (Giles et al., 2016; Nguyen et al., 2014), while

others (e.g., cholesterol and phospholipids) are prevented from enter-

ing by the BBB and need to be synthesized within the brain (Edmond,

2001; Jurevics & Morell, 1995). In contrast to neurons which are inef-

ficient in lipid synthesis, astrocytes are highly active in de novo lipid

synthesis (Camargo et al., 2012; Hofmann et al., 2017; Nieweg,

Schaller, & Pfrieger, 2009; Pfrieger & Ungerer, 2011; van Deijk et al.,

2017) and subsequent transport of lipids to neurons (Boyles, Pitas,

Wilson, Mahley, & Taylor, 1985; Mauch et al., 2001; Nieweg et al.,

2009; Pfrieger & Ungerer, 2011). For example, astrocytes produce

cholesterol (Camargo et al., 2012; Goritz, Mauch, & Pfrieger, 2005;

Mauch et al., 2001; van Deijk et al., 2017) and actively elongate and

desaturate fatty acid precursors in order to synthesize and release

PUFAs (Green & Yavin, 1993; Moore, 2001; Moore, Yoder, Murphy,

Dutton, & Spector, 1991). Furthermore, astrocyte lipid uptake via lipo-

protein lipase is crucial for body weight control and the regulation of

energy homeostasis (Gao et al., 2017).

Considering the high nutrient and energy demand for brain

development, impacts of ELA on astrocyte capacity to provide build-

ing blocks to neurons during this critical period could contribute to

the lasting effects of ELA on brain structure and function. Currently,

we lack the knowledge of whether these functions of astrocytes are

affected by ELA, and this calls for further investigation on these

aspects.

3.2 | Astrocytes sense and generate inflammatory
signals

ELA leads to alterations in the neuroimmune profile and early-life

infection is an important form of ELA that causes lasting alterations in

the brain (Bilbo, 2009; Bilbo & Schwarz, 2012; Ganguly & Brenhouse,

2015). Astrocytes act synergistically with microglia in regulating brain

immunity and thereby modulate neuronal and synaptic function.

Like microglia, astrocytes are capable of producing cytokines and

chemokines, and might even act as antigen presenting cells (reviewed

in Y. Dong & Benveniste, 2001). Microglia are thought to be the initial

responders to immune signals in the brain and release an array of

cytokines upon activation (reviewed in [Hanisch, 2002]). Accordingly,

the microglia-induced cascade can modulate astrocytic cell properties

by inhibiting gap junctions (Même et al., 2006), stimulating prolifera-

tion (Giulian, Li, Leara, & Keenen, 1994), and inducing a reactive state

(Balasingam, Dickson, Brade, & Yong, 1996). This reactive phenotype

of astrocytes consists of cellular hypertrophy via intracellular glial

fibrillary acidic protein (GFAP) upregulation (Hol & Pekny, 2015;

Pekny & Pekna, 2014). This process known as reactive gliosis or

astrogliosis can, in severe situations, lead to increased proliferation

and glial scar formation, that is, creation of a boundary between the

affected and the healthy tissue (Sofroniew, 2009). Furthermore, under

pathological conditions, reactive astrocytes can start to produce gluta-

mate and GABA which can cause perturbations in synaptic plasticity,

with possible consequences for cognitive functioning (S. Jo et al.,

2014). Recent evidence classifies two types of reactive astrocytes: A

neurotoxic subtype (A1) triggered by the microglia released cytokines

interleukin 1α (IL-1α), TNF, and complement component 1q (C1q), and

a protective subtype (A2). The protective A2 astrocytes upregulate

neurotrophic factors and promote neuronal survival, while the

destructive A1 astrocytes upregulate classical complement cascade

genes destructive to synapses and release a neurotoxin that rapidly

kills neurons and oligodendrocytes (Liddelow et al., 2017; Zamanian

et al., 2012). Importantly, next to instructive functions of microglia

towards astrocytes, astrocytes can direct microglial functioning as

well. Astrocyte-derived factors regulate microglial activation (M. Jo

et al., 2017; Norden, Fenn, Dugan, & Godbout, 2014; Rocha,

Cristovão, Campos, Fonseca, & Baltazar, 2012), phagocytosis (Jeon

et al., 2012), and promote microglial synapse engulfment (Vainchtein

et al., 2018). Astrocytes also actively phagocytose synapses them-

selves (Chung et al., 2013). Thus, microglia and astrocytes act syner-

gistically in regulating brain immunity. There is initial evidence that

astrocyte function is altered after exposure to activated microglia,

indicating that an early-life inflammatory event might program astro-

cyte function (Henn, Kirner, & Leist, 2011). However, how ELA affects

astrocyte–microglia communication and brain immunity is still in its

infancy.
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3.3 | Astrocytes sense stress-related signals

Stress-hormone modulation is a central aspect to almost any form of

ELA. As stress hormones enter the brain via the BBB, astrocytes are

the first brain cells to encounter glucocorticoids (Pretorius & Marx,

2004) and bind to them via the glucocorticoid receptor (GR; Bohn,

Howard, Vielkind, & Krozowski, 1991). Multiple effects of glucocorti-

coids on astrocytes have been described, including alterations in mor-

phology and glucose and glutamate metabolism. Administration of

stress-hormone corticosterone (CORT) to adult rodents has been

shown to lead to a global decrease in GFAP expression (O'Callaghan,

Brinton, & McEwen, 1989; Zhao & Wang, 2015) while lowering

of CORT via adrenalectomy resulted in increased GFAP levels

(O'Callaghan et al., 1989). Furthermore, in vitro studies demonstrated

that CORT inhibits astrocyte proliferation (Crossin, Tai, Krushel,

Mauro, & Edelman, 1997). At the metabolic level, glucocorticoids

inhibit glucose transport and decrease glycogen content in cultured

astrocytes (Tombaugh, Yang, Swanson, & Sapolsky, 1992; Virgin et al.,

1991) indicating alterations in energy metabolism that may result in

problems of energy supply to neurons. Under stressful conditions, glu-

tamate levels are elevated, which in turn could affect synaptic trans-

mission (Lowy, Wittenberg, & Yamamoto, 1995; Musazzi et al., 2010;

Popoli, Yan, McEwen, & Sanacora, 2011; Raudensky & Yamamoto,

2007; Reagan et al., 2004; Venero & Borrell, 1999). This data shows

that stress hormones can affect many crucial functions of astrocytes

required for normal brain functioning. Although several effects of glu-

cocorticoids on astrocytes have been described during adulthood, the

ELA-induced impact on astrocytes and the role of glucocorticoids in

this still need consideration.

4 | ELA INDUCED ALTERATIONS IN
ASTROCYTES

In the context of ELA, which is often a synergistic action of several

environmental signals, it is important to consider that the above-

discussed nutrient, immune, and stress-related signals are not acting

solo, but that their effect on astrocytes is most likely determined by

their interaction. Astrocytes are in the unique strategic position to

integrate this multitude of signals from the complex early-life (micro-)

environment, which might be crucial in programming of the brain by

early-life stress and nutrition. Therefore, it is of importance to unravel

if and how the early-life environment shapes astrocytes and whether

this contributes to the ELA-induced risk to develop brain disorders.

Because studying the underlying mechanisms of ELA-induced effects

on the brain remains challenging in humans (see Box 2), rodent models

of early-life stress have been instrumental. ELA models include maternal

deprivation (MD) or maternal separation (MS) models, malnutrition in

the form of an unhealthy diet or nutrient restriction, and early systemic

immune challenges. Finally, other models of ELA have occasionally been

used to study early-life stress (e.g., dexamethasone, noise). Here we will

review and discuss how different ELA models affect astrocytes. Most

studies on the role of astrocytes in ELA have used GFAP expression as a

marker for astrocytes. For the interpretation of these studies, it is impor-

tant to note that GFAP does not label all astrocytes present in the brain

and that changes in the number of GFAP+-astrocytes might not reflect

an actual change in general astrocyte number, but rather astrocytes

altering their expression profile and thereby downregulating or up-

regulating their GFAP expression (Tynan et al., 2013).

BOX 2 Human-based iPSC models to study

astrocytes in the context of ELA

ELA increases the risk of later life psychopathology, but also

genetic vulnerability for neuropsychiatric disorders should

be taken into account. Neuropsychiatric disorders are asso-

ciated with a polygenic risk, which challenges the develop-

ment of representative models in rodents, and indicates the

need for human-based model systems. Genome-wide asso-

ciation studies (GWAS) for SCZ and MDD have indicated a

role for hundreds of genes in the disorders (D. M. Howard

et al., 2018; Schizophrenia Working Group of the Psychiat-

ric Genomics Consortium, 2014). In recent years, the discov-

ery of induced pluripotent stem cell (iPSC) technology has

provided new opportunities to generate genetically complex

and human-specific models. iPSC models contain the entire

genetic background of the patient donor cells, thereby all-

owing co-interactive studies between genetic and environ-

mental changes. This provides relevant options to study

how interaction of the genetic background and environmen-

tal adversity could lead to pathology.

Many studies in recent years proved the power of iPSC

technology. IPSC-based models identified a number of cell-

autonomous deficits underlying SCZ including astrocyte

involvement (Gonzalez, Gregory, & Brennand, 2017;

Windrem et al., 2017). Taking into account recent GWAS

studies for MDD, iPSC-based studies for MDD will soon fol-

low. However, considering recent insights in increased

astrocyte heterogeneity, including expression profile, struc-

ture, and function (Schitine, Nogaroli, Costa, & Hedin-

Pereira, 2015), we need more insight into astrocyte sub-

types involved in disease, to recapitulate findings in vivo. In

summary, astrocyte dysfunction is apparent in neuropsychi-

atric diseases such as MDD and SCZ and these disorders

have been associated with ELA. Increased knowledge of

basic astrocyte biology and their response to environmental

factors could contribute to understanding early-life program-

ming of astrocytes in the context of disease. iPSC models

could provide an opportunity to gain more knowledge on

basal astrocyte functioning and their response to environmen-

tal factors, while also taking into account the genetic informa-

tion. Eventually, this could lead to a better understanding of

how astrocytes might be programmed by ELA.
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4.1 | Maternal deprivation or separation effects on
astrocytes

MD and MS are among the most frequently used models to study

early-life stress-induced alterations. The models discussed here con-

sist of either MD: A single deprivation episode of 4 or 24 hr, or MS:

Daily 3- or 4-hr separation for 1–2weeks.

In male rats, MS and MD resulted in decreased GFAP reactivity

and reduced cytoskeletal complexity in the hippocampus (Roque,

Ochoa-Zarzosa, & Torner, 2016; Saavedra, Fenton Navarro, & Torner,

2018) and cortex (Musholt et al., 2009) within 24 hr after MS or

MD. Similarly, in Octodon degus, MD resulted in decreased density of

GFAP+ astrocytes in the cortex, associated with reduced length and

ramification of astrocytic processes (Braun, Antemano, Helmeke,

Büchner, & Poeggel, 2009). Interestingly, this was accompanied by an

increased number of S100β+ cells (Braun et al., 2009), indicating a dif-

ferential effect of stress on the expression of different astrocyte

markers. In contrast to the reduced GFAP signal measured within

24 hr after the stressor, when GFAP expression was measured a few

days or weeks after the end of the deprivation or separation period,

an increase in the number of GFAP+ cells or GFAP expression was

found in the hippocampus (Llorente et al., 2009; Réus et al., 2018),

cerebellum (Llorente et al., 2009), and prefrontal cortex (Kwak et al.,

2009). Together these results show that MD/MS leads to an acute

reduction in GFAP, followed by an increase of GFAP when a longer

period between stress and measurement was applied. This shift might

be explained by the dynamics of the ELA-induced CORT response and

the fact that MD/MS takes place during the peak period of

astrogenesis. As mentioned earlier, CORT has been shown to reduce

levels of GFAP acutely in adult rodents (Crossin et al., 1997; O'Calla-

ghan et al., 1989; Zhao & Wang, 2015), thus the MD/MS-induced rise

in CORT might lead to the observed acute decrease in GFAP. When

the early-life stress-induced rise in CORT is normalized, GFAP expres-

sion might no longer be suppressed, resulting in the observed catch-

up in GFAP expression, which could be a compensatory response or

even a developmental shift in astrogenesis.

When studying the long-term effects of MD/MS on astrocytes, no

changes in astrocyte density, morphology, or GFAP mRNA were

reported up to 2 months following ELA (Burke et al., 2013; Gosselin

et al., 2010; Lewis, Darius, Wang, & Allard, 2016), with only one study

reporting a slight reduction in GFAP+ astrocyte density in 12-month-

old MD-exposed rats (Leventopoulos et al., 2007). This supports the

idea that GFAP levels return back to baseline after an initial response

to ELA, with a possible interaction of ELA and aging, which remains to

be investigated.

Next to measuring GFAP, a few studies have looked at astrocyte-

specific glutamate transporters and describe that daily MS perma-

nently increases GLAST and GLT-1 expression in hippocampal

astrocytes of 10-week and 18-month-old rats (Martisova et al., 2012).

However, a different ELA model in the form of limited nesting and

bedding material has been shown to actually decrease GLAST expres-

sion and impair astrocytic glutamate uptake in the hypothalamus,

which was associated with dysfunctional glutamatergic transmission

(Gunn et al., 2013). This suggests that in contrast to GFAP expression,

astrocyte-specific glutamate transporters do seem to be persistently

altered, although the direction of the effect might be brain-region and

ELA-model dependent. As to the possible mechanisms leading to the

altered transporter expression, it is interesting to consider the role of

glucocorticoids. Both acute and chronic stress in adulthood lead to

increases in glutamate (Mayhew, Beart, & Walker, 2015; Popoli et al.,

2011) and in vivo and in vitro work have demonstrated that glucocor-

ticoid exposure leads to acute elevations of GLT-1 expression and

increased glutamate uptake by astrocytes. We can speculate that the

observed MS/MD-induced upregulation of astrocytic glutamate trans-

porters may be a response to clear possible excessive glutamate.

Indeed, this is supported by (Autry et al., 2006; Reagan et al., 2004;

Zschocke et al., 2005), but see (Virgin et al., 1991). An alternative or

parallel mechanism involved could be a more direct influence of GFAP

levels. In fact loss of GFAP has been linked to increased protein levels

of GLT-1 in the hippocampus, but an inability of the astrocyte to traf-

fic the GLT-1 transporter to the cells surface, leading to impaired glu-

tamate uptake (Hughes, Maguire, McMinn, Scholz, & Sutherland,

2004). Arguably, the ELA-induced CORT and early loss of GFAP could

lead to altered glutamate transporter expression and function,

resulting in persistent alterations in glutamate metabolism possibly in

a brain region-dependent fashion.

Although the results derive from a relatively limited number of

studies, taken together, early-life stress in the form of MD or MS

seems to affect GFAP expression on the short-term, and lastingly alter

the expression of astrocytic glutamate transporters (see Figure 1b).

4.2 | Early-life immune challenge effects
on astrocytes

Immune challenges can form a major stressor in early life and consid-

ering astrocytic involvement in the immune response as discussed

earlier, programming or priming of the astrocyte response to later

immune encounters can have implications for brain health in adult-

hood. One form of an immune stressor is postnatal infection. Rodent

studies of neonatal infections using lipopolysaccharides (LPS),

polyinosinic:polycytidylic acid (Poly I:C), Escherichia coli (E. coli), or IL-6

exposure, reveal astrocytic responses to an early-life inflammatory

challenge. Both LPS and Poly I:C injected at P3, evoked GFAP+ cell

hypertrophy and increased GFAP+ astrocyte numbers in the hippo-

campus until the age of weaning (N. Patro, Singh, & Patro, 2013), and

lasting upregulation of GFAP by LPS was reported at 3 months of age

(Berkiks et al., 2019). These effects were accompanied by microglial

activation. Postnatal E. coli exposure at P4 did not influence astrocytic

proliferation in either the hippocampus or cortical subregions at P33,

either suggesting that early-immune challenges, in general, do not

affect astrocyte proliferation, that the effect is immune challenge-spe-

cific, or that earlier effects were normalized by P33. Indeed, microglial

activation was present at P4 immediately following E. coli exposure,

an effect that was normalized by P33 (Bland et al., 2010). Prenatal

infection induced by IL-6 exposure resulted in increased astrocyte
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density and GFAP mRNA levels in the hippocampus at 24 weeks of

age (Samuelsson, 2005).

Thus, early-life immune challenges generally result in lastingly

increased levels of GFAP (see Figure 1c) accompanied by microglial

activation. As LPS-induced neuroinflammation is not only a model for

early-life stress but also a well-described model for microglia-induced

astrogliosis (Liddelow et al., 2017; Zamanian et al., 2012), it could be

argued that the observed effects of early immune challenges on astro-

cytes work through microglia-induced activation of astrocytes. Early

infection could activate microglia, which in turn recruit astrocytes,

leading to a reactive phenotype of astrocytes. At this stage, more

research is necessary to elucidate the specific order of events. Inter-

estingly, also MD/MS induced alterations on astrocytes were some-

times accompanied by activation of microglia (Réus et al., 2018;

Roque et al., 2016; Saavedra et al., 2018). It is striking that despite the

similar activation of microglia, different effects were described for

GFAP, with lasting upregulation after immune challenges but no per-

sistent changes in GFAP after MD/MS, suggesting alternative

mediators and processes involved. This stresses the complexity of the

integration of external signals early in life and indicates the impor-

tance of the ELA model chosen to study astrocytes.

It is possible that alterations in astrocytes caused by ELA, either

through MD/MS or an inflammatory result, are not always detectable

under baseline conditions and only become apparent when exposure

to another stressful event occurs, a so-called “second hit.” Evidence

for this is provided by studies showing that MS or prenatal restraint

stress-exposed offspring exhibit greater vulnerability of astrocytes to

an immune challenge later in life (Diz-Chaves et al., 2012; Saavedra

et al., 2018). This data suggests that astrocytes are sensitized or

“primed” by ELA, possibly underlying greater susceptibility to later dis-

ease states. ELA might indeed induce a general proinflammatory state

of glial cells that may result in an exaggerated reaction to later life

infection. Such a stress-induced sensitized state to later inflammatory

challenge has been reported for microglia (Frank, Baratta, Sprunger,

Watkins, & Maier, 2007; Frank, Thompson, Watkins, & Maier, 2012;

Hoeijmakers et al., 2017). Whether priming of astrocytes is adaptive

(a)

(e) (f)

(b)

(c) (d)

F IGURE 1 The long-term effects of ELA on astrocyte characteristics. This figure summarizes the lasting effects of different forms of ELA on
the expression of GFAP+ astrocytes and glutamate and glucose transporters. In panel a, a healthy astrocyte under basal conditions is depicted.
The remaining panels represent deviations from this following the various forms of ELA. For the conditions where transporter expression was not
studied, transporter expression is not included in the figure. (a) Astrocyte under healthy basal conditions in hippocampus and hypothalamus
express GFAP, glutamate transporters (GLT-1 and GLAST), and glucose transporters (GLUT1). (b) MD and MS increase GFAP on the short-term.
On the long-term, while GFAP returns to basal levels, there is a persistent increase in glutamate transporters. (c) Early-immune challenge
increases GFAP expression. (d) Overnutrition increases GFAP, glutamate transporter, and glucose transporter expression. (e) PMN decreases
GFAP expression. (f) Other undernutrition models increase GFAP expression
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or maladaptive remains up for debate (García-Cáceres et al., 2010). In

any case, altered sensitization of glial cells by ELA might be a key

mechanism in the ELA-induced increase in vulnerability to cognitive

decline and psychopathology development. Finally, it needs to be con-

sidered that effects of ELA, next to stress and inflammatory signals,

may also be modulated by other factors from the early-life environ-

ment, including dietary and metabolic changes. These factors might

interact with one another and contribute to the resulting phenotype.

4.3 | Early-life nutrition induced programming of
astrocytes

4.3.1 | The effects of high fat/sugar diet on
astrocytes

In recent years, the effects of an unhealthy, over nutritious high-fat

and/or high-sugar diet on brain functioning, and the involvement of

astrocytes has received considerable attention. These studies mostly

focused on hypothalamic astrocytes, as they are key in detecting

alterations in metabolic parameters and hormonal changes (e.g., leptin

and ghrelin) related to the energy status of the brain (Buckman &

Ellacott, 2014; García-Cáceres et al., 2016; Marina et al., 2017), and

have been shown to control food intake (Buckman et al., 2015;

Parsons & Hirasawa, 2010; Yang, Qi, & Yang, 2015). To study the

effects of an early unhealthy diet, a model of maternal high-fat diet

(HFD) is commonly used. HFD is provided to rodent dams 6–8 weeks

before onset of pregnancy and lasts throughout gestation and often

also throughout lactation, meaning that nutrients are transferred to

the pups via the placenta and breast milk. Maternal HFD leads to an

immediate increase in GFAP+ cell density, proliferation, and mRNA

levels in the arcuate and supraoptic hypothalamic nuclei of mouse

neonates (gestational day 17.5 and P0; D. W. Kim, Glendining,

Grattan, & Jasoni, 2016), and results in increased levels of perivascular

GFAP coverage in the arcuate nucleus of P21 rats, suggesting ele-

vated density of astrocytic processes around the blood vessels

(Couvreur et al., 2011). Persistent effects of an early unhealthy diet

on astrocytes have also been reported. Postnatal overnutrition in rats

as induced by small litter size resulted in increased body weight asso-

ciated with increased GFAP+ cell complexity and cell number, and

upregulated protein levels of GFAP (Argente-Arizón et al., 2017;

Fuente-Martín et al., 2013), VIMENTIN, GLAST, GLT-1, and glucose

transporters GLUT-1 and GLUT-2, in the hypothalamus of 3- to

5-month-old male rats (Fuente-Martín et al., 2013). Furthermore, a

maternal HFD unbalanced in ω-6/ω-3 ratio given throughout gesta-

tion and lactation, resulted in long lasting increased complexity of

GFAP+ cells in the hippocampus of 5-month-old male rats (Lépinay

et al., 2015), however, it is unclear whether these changes arise from

a lack of ω-3 or in response to high-fat intake.

In general, early-life HFD or overnutrition seems to acutely

and lastingly enhance GFAP expression, and persistently increase

astrocyte-specific glutamate and glucose transporters in the hypothal-

amus (see Figure 1d). These data suggest possible functional changes

in astrocytes with respect to glutamate clearance and nutrient

sensing. Interestingly, both early-life HFD and early-immune chal-

lenges result in increased GFAP expression. Indeed, HFD has been

clearly marked in the literature to lead to a general inflammatory

response (Buckman et al., 2014) with increased microglial activation

(Kälin et al., 2015) and astrogliosis (Balland & Cowley, 2017; Cano

et al., 2014; Dalvi et al., 2016) in the hypothalamus. While microglia

have been proposed as the driving force behind HFD-induced obesity

(André et al., 2017; Valdearcos et al., 2017, 2014), there was no

change or even a decrease in the microglia coverage in the early over-

nutrition models that we discussed (Argente-Arizón et al., 2017;

Fuente-Martín et al., 2013), suggesting that the observed changes in

astrocyte markers may arise independently from diet-induced effects

on microglia. Moreover, astrocytic changes upon HFD might actually

be beneficial for maintaining metabolic homeostasis. Deletion of

astrocyte-specific leptin receptors increased feeding in response to

fasting or ghrelin administration, and reduced food intake suppression

in response to leptin administration (Kim et al., 2014), indicating the

crucial role of leptin receptor signaling in astrocytes for energy

homeostasis. Next to that, leptin promotes hypothalamic astrogenesis

during development (Rottkamp et al., 2015), which might explain the

upregulation of astrocyte markers in response to maternal HFD.

4.3.2 | Undernutrition

Models of undernutrition can vary from general food restriction to

eliminating specific essential nutrients from the diet. Here we will dis-

cuss the effects of early-life: (a) protein malnourishment (PMN),

(b) restriction of essential nutrients, (c) general food restriction as

induced by limiting amounts of chow, and (d) early-weaning

(a reduction in maternal milk yield triggered by prolactin injections),

on astrocytes. In the PMN models discussed here, protein-restricted

animals received 5–8% of protein versus 20–25% protein in the con-

trol groups. Both short-term (first 2 weeks of gestation) and long-term

(before pregnancy until P60) PMN leads to a decrease in GFAP+ cell

density, delayed astrogenesis, and precocious maturation of astro-

cytes in the hippocampus of P60 offspring (see Figure 1e; Gressens

et al., 1997; Naik, Patro, Seth, & Patro, 2017), while no significant

change in GFAP or S100β seems to be present at the protein level

(Feoli et al., 2008). Interestingly, PMN has been shown to result in

some acute metabolic alterations, including decreased glutamate

uptake, increased glutamate synthetase (GS) activity, and reduced glu-

tathione (a major antioxidant compound metabolized by astrocytes) in

the hippocampus and cortex (Feoli et al., 2006). However, these

effects present in P2 offspring were normalized by the age of P60.

Together these results suggest that PMN influences astrocyte metab-

olism acutely and induces delayed astrogenesis.

Another model of early-life malnutrition entails restriction of

essential nutrients (nutrients that need to be obtained by the diet).

Restriction of ω-3 PUFA levels in male mice from pregnancy onset

until 4 months of age resulted in greater GFAP+ coverage in response

to traumatic brain injury, an effect that was diminished when ω-3

levels were restored (Desai et al., 2016). Treatment of cultured astro-

cytes with DHA was able to prevent a CORT-induced stress response
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as measured by increased glutamate uptake, increased GS levels, and

altered GFAP cytoskeletal morphology (Champeil-Potokar, Hennebelle,

Latour, Vancassel, & Denis, 2016). Similarly, adolescent restriction of

tryptophan, an essential amino acid crucial for protein biosynthesis dur-

ing development, results in astrocyte activation as shown by GFAP cyto-

skeletal hypertrophy in the hippocampus and amygdala immediately

following tryptophan restriction (Zhang, Corona-Morales, Vega-

González, García-Estrada, & Escobar, 2009). While these are just some

initial studies, they exemplify that restriction of essential nutrients during

early-life can impact astrocytes. Furthermore, this data shows a potential

modulatory role for ω-3 in the stress-induced responses in astrocytes

(Hennebelle, Champeil-Potokar, Lavialle, Vancassel, & Denis, 2014).

Maternal food restriction from the last week of pregnancy until

P10 resulted in enhanced astrocytic glycogen content associated with

increased astrocytic GLUT-1 in female rat cortex at P10 (Lizárraga-

Mollinedo et al., 2010). Early malnutrition provoked by early weaning

resulted in elevated levels of GFAP in the hypothalamus of 6-month-

old male rats (Younes-Rapozo et al., 2015). However, it is unclear

whether such an increase results solely from early-malnutrition, as the

prolactin injections induce central obesity, hyperglycemia, hyper-

leptinemia, and increased visceral fat mass in adulthood, meaning that

astrogliosis could be a secondary effect of one of these features. Fur-

thermore, injections could very well induce maternal stress, possibly

resulting in altered maternal care or increased CORT levels in dams

and offspring.

Together these results show that undernutrition lastingly impacts

GFAP expression in astrocytes. Fatty acid restriction, tryptophan depri-

vation, and early weaning all resulted in increased GFAP expression

(Figure 1f), while PMN has been rather shown to reduce GFAP expres-

sion (Figure 1e). This differential effect could be due to the time win-

dow of nutrient restriction. PMN was generally applied already during

gestation, a period in which astrocytes have not fully developed yet,

while the other models were initiated in the postnatal phase. Alterna-

tively, the effect of undernutrition on astrocytes could be nutrient-spe-

cific. Immediate changes induced by undernutrition included increased

GS, a potential adaptive reaction to increase glutamate synthesis in

response to the observed reduced glutamate uptake, and one study

showed elevated GLUT1 expression and astrocytic glycogen content,

suggesting energy preservation mechanisms provoked by undernutri-

tion. Based on the described results, these metabolic alterations within

astrocytes after early-life undernutrition seem to belong to an acute

adaptive response to undernutrition, rather than a persistent change in

astrocyte functioning. However, since relatively little data is available

on the effects of undernutrition on astrocytes, more research is neces-

sary to draw definitive conclusions.

In general, early-life malnutrition in the form of overnutrition or

undernutrition can have a lasting impact on astrocytes. Interestingly,

both overnutrition (maternal HFD, small litter size), which results in

excess energy, and undernutrition (restriction of essential nutrients,

early weaning), which results in lack of energy, present with a very simi-

lar phenotype, namely increased GFAP expression and possibly

increased glucose transporters. It is important to consider that in the

case of HFD, although energy levels remain high, a lack in (essential)

nutrients might still occur. This could suggest that the observed

changes are associated with alterations or shortages in circulating nutri-

ents, changes in the metabolic profile, or just general energy disbalance,

rather than it being a specific effect of either a lack or excess of energy.

4.4 | Effects of other ELA models on astrocytes

Further supporting the sensitivity of astrocytes to ELA, there have been

several reports on the effect of other forms of early stress on the astro-

cytic population, including dexamethasone exposure (Claessens et al.,

2012; Frahm, Handa, & Tobet, 2017; McArthur, Pienaar, Siddiqi, &

Gillies, 2015), early-life exposure to noise (Jauregui-Huerta et al., 2015;

Ruvalcaba-Delgadillo et al., 2015), restraint stress (Barros, Duhalde-

Vega, Caltana, Brusco, & Antonelli, 2006; García-Cáceres et al., 2010),

and limited nesting and bedding material during development (Gunn

et al., 2013). Notably, all these models have been described to have

effect on astrocytes. Due to the limited number of studies using these

models, it is challenging to draw specific conclusions and speculate

about the possible mechanisms involved in their effects. However,

these examples highlight even further the importance of the early

developmental period in determining astrocyte characteristics later in

life. Clearly, at this point is key to consider the translational value and

implication of the findings that we have discussed so far. However, up

to date, there is very little known about how early-life environment

modulates human astrocytes. Because studying astrocyte–environment

interactions during early-life in the context of human disease is nearly

impossible, there has been an emerging field of research on human-

based models to study astrocytes, like iPSC-derived astrocytes, which

enables studying astrocytes in the context of brain diseases for which

ELA is a risk factor (Box 2).

5 | CONCLUSION

In this review, we have provided initial evidence that astrocytes are

acutely and permanently affected by ELA in rodents. Astrocytes

undergo morphological as well as metabolic changes in response to

ELA and seen their crucial role in basic brain functioning, this might

affect neural functioning. Notably, the large majority of studies have

focused on structural rather than functional changes in astrocytes,

with a focus on GFAP expression. Then, how do we interpret changes

in GFAP expression? Although upregulation of GFAP has been

reported to occur in various neuropathologies (Eng, Ghirnikar, & Lee,

2000), and some functional implications of GFAP loss have been

described (Liedtke et al., 1996; McCall et al., 1996; Shibuki et al.,

1996; Tanaka et al., 2001), the functional consequences of alterations

in GFAP expression and ELA-induced changes in GFAP are still

unclear. It is important to note that a functional defect caused by ELA

can take place without a noticeable change in the GFAP astrocyte

marker (Gosselin et al., 2010), indicating that ELA-induced impair-

ments are not always paired with changes in GFAP.

In addition, to what extent the reported alterations are implicated

in ELA-induced altered brain function needs further attention. Since
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astrocytes are key players in integrating a large variety of signals from

the early-life environment, and are known to play an important role in

cognitive impairment and neurological dysfunction (Pekny et al.,

2016; Santello et al., 2019), they might be crucial in exerting ELA-

induced effects and increasing the consequent risk of cognitive prob-

lems in humans. Moreover, human research has recently put more

focus on astrocytes as a therapeutic strategy in for example MDD

(see Box 1). For this reason, it should be a primary goal to unravel the

underlying mechanisms that involve astrocytes in ELA-driven risk of

adult psychopathology. To this end, the emerging field and recent

advances in technology (e.g., iPSC models) might be able to bring the

field forward and help gain understanding of the functional relevance

of these changes and their implication in ELA-associated diseases.
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