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Very preterm birth (gestational age b33 weeks) is associated with alterations in cortical thickness and with
neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born
individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age
20 years), aswell as longitudinal changes between the two time points. Using univariate approaches, we showed
both increases and decreases in cortical thickness in very preterm born individuals compared to controls.
Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially
in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood;
(2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in
parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to
study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The
spatially distributed regions inwhich cortical thickness best discriminated between the groups (top 5%) included
temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%),
longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior
parietal lobe were significantly associated with scores on language-based tests of executive function. These
results describe alterations in cortical thickness development in preterm-born individuals in their second decade
of life, with implications for high-order cognitive processing.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Developmental patterns of cortical maturation following very pre-
term birth (VPT, b32 weeks of gestation) have not been systematically
investigated. Results of cross-sectional studies demonstrated alter-
ations in cortical thickness in VPT samples from childhood to adulthood,
with the majority of studies conducted during adolescence. Overall,
compared to controls, VPT individuals tend to show developmental
delay of cortical thinning in parietal, temporal, and frontal cortices
(Martinussen et al., 2005; Frye et al., 2010; Nagy et al., 2011; Skranes
et al., 2012; Bjuland et al., 2013; Murner-Lavanchy et al., 2014). These
cortical alterations are spatially located in brain areas displaying typical
patterns of cortical thinning in healthy controls from early childhood to
Studies, Institute of Psychiatry,
n, SE5 8AF, United Kingdom.

. This is an open access article under
adolescence, which vary in their maturational trajectories according to
layers and cortical regions (Shaw et al., 2008).

Cortical thickness, defined as the distance, at a given point, between
the inner and outer boundaries of the cortex (MacDonald et al., 2000), is
used as a proxy for neuronal density, although cortical thickness in brain
areas with different cytoarchitectonical properties is differentially asso-
ciated with its underlying neuronal structures (la Fougere et al., 2011).
The cellular basis for reduction in cortical thickness from childhood to
adolescence is not fully understood, but a possible explanation is greater
organization of the brain through synaptic pruning, reflecting the re-
finement of neural circuits involved in cognitive processing and regional
specialization of function (Knudsen, 2004; Raznahan et al., 2011).
Cortical thickness is therefore used as an index of neurodevelopment
(Shaw et al., 2008), and has been associated with cognitive functions
(Sowell et al., 2004).

Being sensitive to both genetic and environmental influences
(Lenroot andGiedd, 2008), deviations from typical cortical development
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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have been observed in developmental and psychiatric disorders includ-
ing autism (Ecker et al., 2013) and schizophrenia (Greenstein et al.,
2006), but also in individuals experiencing subclinical symptoms includ-
ing autistic and antisocial traits (Wallace et al., 2012). In VPT samples
cortical alterations have been associated with IQ, performance on tasks
involving executive function, working memory, perceptual skills, and
with internalizing and externalizing behaviour (Martinussen et al.,
2005; Lohaugen et al., 2009; Skranes et al., 2012; Zubiaurre-Elorza
et al., 2012; Bjuland et al., 2013).

The studies conducted to date have been cross sectional in design,
thus excluding mapping of cortical thickness development with age,
which enables the investigation of changes within individuals. An
increased understanding of whether cortical trajectories can be used
to predict neurodevelopmental outcomes represents a challenge with
important clinical relevance.

As cortical development continues beyond adolescence (Gogtay
et al., 2004; Kochunov et al., 2011; Lebel and Beaulieu, 2011; Petanjek
et al., 2011) we studied longitudinal changes in cortical thickness in
preterm born individuals and controls, during the time spanning from
mid-adolescence to the beginning of adulthood in order to identify
within- andbetween-group developmental patterns.We then identified
spatially discriminating features between the groups at early adulthood
based on spatially distributed differences in cortical thickness at mid-
adolescence, using a pattern classification approach. Finallywe explored
the association between cortical thickness changes within the spatially
distributed regions in which cortical measurements best discriminated
between the groups and cognitive outcome at early adulthood.

Based on results of the studiesmentioned earlier (Martinussen et al.,
2005; Frye et al., 2010; Nagy et al., 2011; Skranes et al., 2012; Bjuland
et al., 2013), we hypothesized that preterm-born individuals would dis-
play differential longitudinal cortical thickness changes from controls
during the late part of adolescence, especially in parietal, temporal and
frontal cortices. We further hypothesized that cortical thickness chang-
es in regions vulnerable to long-term alterations following VPT birth
would have implications for cognitive outcome, with the potential to
represent a biomarker of important changes in cortical development,
potentially influencing brain functioning and cognitive outcomes.

Materials and methods

Study population

We studied two cohorts of participants born before 33 weeks of
gestation and admitted consecutively to the Neonatal Unit of University
College London Hospital (UCLH) (Nosarti et al., 2008). The first cohort
drew on all individuals born in 1979–82 who were enrolled for long-
term follow-up (Nosarti et al., 2004). The second cohort included a se-
lected group of individuals born in 1983–84 (Allin et al., 2007). This
selection was necessitated by an expansion in capacity of UCLH in
1983, which prevented inclusion of the entire consecutive series due
to limited research resources. The selection criteria were: all individuals
born at 28 or less weeks of gestation, as well as a random sample of
one in four of those born from 29 to 33 weeks of gestation. A hundred
and sixty VPT participants were studied at a mean age of 15 years
(i.e., mid-adolescence) and 67 at a mean age 20 years (i.e., early adult-
hood, 51 of whom were also studied at mid-adolescence). Eighty-
eight controls were studied at mid-adolescence and 42 at early adult-
hood (21 of whom were also studied at mid-adolescence). Inclusion
criteria were full-term birth (38–42 weeks) and birth weight
N2500 grams. Exclusions criteria were a history of neurological condi-
tions including meningitis, head injury and cerebral infections.

Neuropsychological assessment

All study participants were assessed at Time 2 with the following
well-validated measures: 1) the Wechsler Abbreviated Scale of
Intelligence (WASI) was used to provide estimates of full-scale IQ
(Wechsler, 1999); 2) the Visual Reproduction test of the Wechsler
Memory Scale-Revised (WMS-R) assessed memory functions, i.e. im-
mediate and delayed recall of non-verbal material (Wechsler, 1987);
the California Verbal Learning Test (CVLT) examined verbal memory,
and specifically short term memory (Recall, list A), interference of
prior learning on new learning andmemory (Recall, list B) and recogni-
tion (Recognition hits) (Dellis et al., 1987); (3) executive function (EF)
was assessed with two language based tests: the Controlled Oral Word
Association Test (COWAT) (Benton and Hamsher, 1976), which mea-
sures phonemic fluency, mental flexibility and the ability to use differ-
ent cognitive strategies, such as clustering (Spreen and Strauss, 1991);
and the Hayling Sentence Completion Test (HSCT), which measures
response initiation and inhibition (Burgess and Shallice, 1997). ‘Global
EF’ and ‘Global memory’ scores were then calculated as the sum of
domain-specific Z scores; for VPT participants these were obtained
using means and SDs from controls, which by default were set to 0
and 1. Only variables where VPT individuals showed significant differ-
ences from controls were used, therefore ‘Global EF’ was made up of
HSCT (Scaled) and COWAT scores and ‘Global memory’ was made up
of CVLT (Recognition hits) and WMS (Immediate and Delayed) scores.

Magnetic resonance imaging

Atmid-adolescence assessment,MRIwas performed at two sites. For
the 1979–82 cohort and controls a 1.5 Tesla GE Signa Horizon machine
(General Electric Medical Systems, Milwaukee, WI, USA) was used at
the Institute of Neurology, London. The 1983–84 cohort and controls
were scanned using a 1.5 Tesla GE Signa N/Vi system at the Maudsley
Hospital, London. At both sites, three-dimensional T1-weightedMR im-
ages were acquired in coronal plane, with the spoiled gradient recalled
pulse sequence (flip angle 35°, field of view 240 mm, echo time 5 ms,
repetition time 35 ms). Each image contained 124 slices with a matrix
size of 256 × 256, slice thickness of 1.5 mm and slice gap of 0 mm.

At early adulthood assessment, all participants were scanned at
the Maudsley Hospital with the same scanning protocol used at
mid-adolescence.

Quality control was carried out using previously described criteria to
ensure adequate quality of the T1-weighted volume images, such as
avoidance ofwraparound artefacts andminimal levels of subjectmotion
(Simmons et al., 2011).

Cortical surface extraction

The cortical surfaces were extracted from the T1-weighted MR
images using the CIVET pipeline (version 1.1.9) (Ad-Dab'bagh et al.,
2006; Zijdenbos et al., 2002), according to the following steps: 1) T1-
weighted MR images were linearly registered to MNI-Talairach stereo-
taxic space using the ICBM152 volumetric template as the registration
target (Collins et al., 1994). 2) Imageswere corrected for signal intensity
non-uniformity (Sled et al., 1998) and 3) a brain mask was calculated
from each input image (Smith, 2002). 4) Then, images were segmented
into grey matter, white matter, cerebrospinal fluid (CSF) and back-
ground (Zijdenbos et al., 1998) and 5) partial volumes in each voxel
was estimated (Tohka et al., 2004). 6) A non-linear transformation was
calculated from the images in stereotaxic space to the ICBM152 tem-
plate, andmajor structures were identified (Collins et al., 1995). 7) Cor-
tices were extracted using a fully automated method, known as
Constrained Laplacian Anatomic Segmentation using Proximity
(CLASP) algorithm. Cortical extraction was performed in three steps in
stereotaxic space aligned with the ICBM152 template (Kim et al.,
2005). First, white matter surface was established by deforming a
spherical polygon model to the border between grey and white matter.
Then, a Laplacian field was formed between the white matter surface
and the inner boundary of the CSF. Lastly, greymatter surface was initi-
ated by forming itself on thewhitematter surface and expanded, guided
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by the Laplacian field serving as a path for expansion, until reaching the
inner boundary of the CSF. Each surface (i.e. grey orwhitematter) was a
triangular mesh composed of 81,924 vertices (i.e. cortical points) with
the first half being in the left hemisphere and second half in the right.
8) The cortical surfaces were transformed back into native space, in
which cortical thickness was calculated. Each vertex on the grey surface
was linked with a corresponding vertex on the white surface, and the
distance between each pair was defined as cortical thickness at a
given vertex (Kim et al., 2005). 9) Cortical thickness values were
smoothed using a 20 mm full width at half maximum kernel
(Chung and Taylor, 2004). 10) Finally, the cortical surfaces of all
brains were non-linearly registered to the ICBM152 surface tem-
plate. This achieved correspondence of vertices across subjects
(Robbins, 2003).
Statistical analyses

We first compared cortical thickness atmid-adolescence assessment
and at early adulthood assessment between VPT individuals and con-
trols. Within group longitudinal changes in cortical thickness between
the two time points were also explored. Subsequently, multivariate pat-
tern classification methods were used to study spatially discriminating
features between the two groups at early adulthood based on spatially
distributed differences in cortical thickness at mid-adolescence. In
order to investigate the functional significance of cortical thicknessmat-
urational processes, cortical thickness changes between the two time
points in those areas highlighted by multivariate pattern classification
analysis were correlated with cognitive scores at early adulthood.
Fig. 1.Mean differences in cortical thickness between preterm-born i
Cross-sectional and longitudinal analyses (univariate measure)
All available brain images were analysed using the SurfStat toolbox

(http://www.stat.uchicago.edu/faculty/InMemoriam/worsley/
research/surfstat/) underMATLAB (version R2012b). Univariate general
linear models were fit with Y as a dependent variable which represent-
ed cortical thickness at each vertex. Fixed effects models were fit for the
cross-sectional analysis (Y= β1X1+ β2X2+ β3X3+ c, where X1 repre-
sents the participant's age at scan, X2 is a nominal variable, indicating
whether or not each participant was born very preterm, and X3 repre-
sents the sex of the participant, the β terms are unknown parameter es-
timates for the corresponding X terms and c is a constant term). Mixed
effects models were fit for the within-group longitudinal analysis (Y =
γZ+ β1X1+ β2X2+ c,where Z is a designmatrix representing the ran-
dom effect of each subject, X1 represents the time point at which each
subject was scanned (15 or 20 years), X2 represents the sex of the par-
ticipant, γ is an unknown vector of parameter estimates for the random
variable Z, the β terms are unknown parameter estimates for the corre-
sponding fixed variables X and c is a constant term). Finally, Time point-
by-group interaction was modelled (Y = γZ + β1X1 + β2X2 +
β3X3+β4 (X1 * X2)+ c.where Z is a designmatrix representing the ran-
domeffect of each subject, X1 represents the timepoint (15 or 20 years),
X2 is a nominal variable, indicating group (control or preterm), X3 rep-
resents the sex of the participant, γ is an unknown vector of parameter
estimates for the random variable Z, the β1, β2 and β3 terms are un-
known parameter estimates for the corresponding fixed variables X1,
X2 and X3, β4 is the unknown parameter estimate for the interaction
term (X1 * X2) and c is a constant term).

In all analyses, white noise and participant's sex were used as nui-
sance variables. In cross-sectional analyses only, participant's age at
ndividuals and controls at mid-adolescence and early adulthood.

http://www.stat.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/
http://www.stat.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/


Fig. 2. Regions where cortical thickness significantly decreased from mid-adolescence to early adulthood in control (a) and VPT (b) groups.
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scanwas also used as a nuisance variable. For longitudinal analyses only,
subject was also included as a random-effect variable (variable γZ), in
order to account for within-subject correlation inherent in repeated
measures (Bland and Altman, 1995).

A one-tailed vertex-wise T test was carried out for each contrast
within each variable of interest. This produced a T statistic value
for each vertex. These were corrected for multiple comparisons
based on random field theory (Worsley et al., 1999), which took
into account the regional smoothness across neighbouring vertices.
Clusters and vertices showing statistically significant differences
were identified in different ways. Clusters were first defined with
random field theory, and a subset of clusters was identified that
Fig. 3. Prediction of regional cortical thickness alterations at early adulthood based
had corrected cluster p b 0.05, calculated using Cao (1999)'s method.
Vertex threshold (corrected vertex p b 0.05) was calculated with
random field theory and Bonferroni corrections, and the smaller
(i.e., more lenient threshold) of the two was chosen. These signifi-
cant vertices were termed “cluster peaks” in Figs. 1 and 2 because
they represented the top vertices in a cluster.

For the cross-sectional analysis only, effect sizes represented as
Cohen's d (= {Preterm mean − Control mean} / SD) were calculated
for each area where significant group differences were observed.

A previous study with the same dataset did not detect a significant
effect of MRI acquisition site on data analyses (Nosarti et al., 2008),
therefore scan site was not modelled in the current analyses.
on SVM weight vectors acquired from group classification at mid-adolescence.

Image of Fig. 2
Image of Fig. 3
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Longitudinal analysis (multivariate measure)
A multivariate measure, support vector machine (SVM) (Vapnik,

1995), was used to study spatially discriminating features between
the two groups (preterm individuals and controls) at early adulthood
based on spatially distributed differences in cortical thickness at mid-
adolescence. Multivariate measures are advantageous compared to a
univariate measures for a number of reasons. Firstly, theymay be sensi-
tive to different portions of variance within data; Secondly, multivariate
techniques may be more powerful than univariate approaches, as they
can reduce noise from single vertices by integrating information from
multiple noisy vertices (Davis et al., 2014).

Given the longitudinal nature of this work, and the implications of
suboptimal development following VPT birth, we aimed to investigate
specific cortical thickness alterations that conferred a high risk of func-
tional impairments in adulthood using multivariate methods, which
would allow us to make inferences at the individual, rather than the
group level. For SVM analysis, only images for participants who were
scanned at both time points were used. Analysis comprised two phases:
i) the training phase, where a classifierwas trained using group-labelled
data, cortical thickness at mid-adolescence in 21 controls and 51 pre-
term individuals; ii) the testing phase, where unseen data, i.e., cortical
thickness at early adulthood in the same subjects used in the training
phase, were introduced to be classified. A linear kernel was used to rep-
resent the data, reduce computational cost and improve classification
accuracy (i.e., overall rate of correct classification). A recursive feature
test was applied to ensure discrimination accuracy was not due to
overfitting. In order to test the original classification accuracy and to
test if results were independent of the original training data, we carried
out a leave-one-out cross validation loop (Geisser, 1993). The goal of
using our longitudinal data set for both phases of classification (cortical
thickness at mid-adolescence for training and cortical thickness at early
adulthood for testing, from the same participants) was to identify those
areas inwhich spatially discriminating features between the two groups
atmid-adolescence could beused to predict subsequent between-group
spatially discriminating features (at early adulthood). Results (Fig. 3)
show brain areas in which patterns of spatially discriminating features
best distinguished between the two groups, i.e., those with the highest
SVM weights (‘top 5%’, 4009 vertices).

To assess the extent of overfitting due to within-subject correlation,
we trained and tested an additional SVM classifier using participants
whowere included in either training or testing phase only. The training
phase used cortical thickness from randomly selected 42 controls and
42 preterm individuals scanned at mid-adolescence, and the testing
phase involved cortical thickness from newly and randomly selected
42 controls and 42 preterm-born individuals scanned at early adult-
hood. Classification accuracy was calculated using leave-one-out cross
validation. This was repeated 1000 times (randomly selecting the con-
trol and preterm-born individuals on each permutation), calculating
classification accuracy at each permutation. Then, mean classification
accuracy across all permutations was compared with classification ac-
curacy of the original SVM described above. Additionally, the 5% of ver-
tices that contributed most to classification on each permutation were
saved and the spatial overlap between these vertices and the top 5% of
vertices obtained using the original SVM classification was calculated
for each permutation. The average spatial overlap percentage between
the top 5% of vertices from the original SVM and each permuted train-
ing/test data set was computed to assess the robustness of results and
to test generalizability of predictive regions.

Longitudinal changes in cortical thickness and neuropsychological outcome
For every participant, and in each hemisphere, cortical thickness

changewas calculated by performing a vertex-wise subtraction of corti-
cal thickness measured at mid-adolescence from cortical thickness
measured at early adulthood. This involved only the participants who
were scanned at both time points (i.e., those participants used in the
SVM analysis).
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Subsequently, an inclusive mask of 1% of the brain with the highest
SVM weights was created (‘top 1%’, 803 vertices), in order to confine
the structure-function analyses to those areas displaying the most pro-
nounced between-group differences in patterns of spatially discriminat-
ing features. These areas were regarded as the most promising possible
biomarkers of adult cognitive outcome.Within thewhole ‘top 1%’mask,
vertex-wise Pearson correlations were performed between cortical
thickness change and the cognitive scores that differed statistically be-
tween the groups at early adulthood, in control and preterm partici-
pants separately. Full-scale IQ was significantly associated with global
EF scores (r = 0.47, p b 0.0001), hence it was not independently inves-
tigated in the subsequent analyses. In Results we report clusters con-
taining ≥20 vertices in which cortical thickness change significantly
correlated with our chosen outcome measure.

Results

Participants' neonatal, socio-demographic and neuropsychological
outcome data

Table 1 shows participants' neonatal and socio-demographic details.
The two groups did not differ statistically in sex and socio-economic sta-
tus, but they differed in age, with preterm-born participants being
slightly older than controls. Preterm-born participants who were
assessed only at mid-adolescence did not differ from those assessed at
both time points in gestational age (F(1, 158) = 2.70, p = 0.10) and
birth weight (F(1, 158) = 1.78, p = 0.19), as revealed by univariate anal-
ysis of variance.

Controls performed significantly better than VPT individuals in all
neuropsychological subtests, except the Recall lists A and B of the
CVLT (Table 2). Global EF and global memory scores were also signifi-
cantly higher in controls.

When only those participantswhowere scanned at both time points
were compared, controls scored significantly higher than VPT individ-
uals in IQ and COWAT, as well as in global EF.

Between-group cross-sectional cortical thickness analyses

Between-group cross-sectional analyses showed that at mid-
adolescence, the VPT group had significantly reduced cortical thick-
ness compared to controls in bilateral parahippocampal regions
and left insula (Fig. 1a). At early adulthood, cortical thickness was
still significantly reduced in these regions in the VPT group, with
Table 2
Neuropsychological outcome in very preterm-born individuals and controls.

All assessed at early adulthood

Mean (SD) A

Control (n = 42) Preterm (n = 67)

Full scale IQ
WASI 105.5 (13.9) 96.4 (13.9) F

Global memorya −2.6 (5.1) F
CVLT (Recall (list A)) 56.3 (8.8) 53.5 (9.8) F
CVLT (Recall (list B)) 6.5 (1.9) 6.2 (2.1) F
CVLT (Recognition hits) 15.2 (0.8) 14.7 (1.6) F
WMS (Immediate visual memory) 11.4 (2.1) 9.8 (3.3) F
WMS (Delayed visual memory) 10.6 (2.9) 8.5 (3.4) F

Global executive functiona −0.9 (1.8) F
HSCT (Scaled) 5.9 (1.5) 5.1 (2.0) F
COWAT 40.5 (10.6) 36.2 (9.7) F

COWAT=ControlledOralWordAssociation Test; CVLT=California Verbal Learning Test; HSCT
WMS= Wechsler Memory Scale.
Univariate analysis variance was carried out to compare scores between controls and preterm
⁎ p b 0.05.
a Global scores are the sumof domain-specific Z scores; for VPT participants thesewere obtain

where VPT individuals showed significant differences from controls were used; ‘Global EF’:
(Immediate and Delayed) scores.
the addition of areas centred in right temporo-parietal junction and
the posterior part of the right inferior frontal sulcus (Fig. 1c).

Cortical thickness was significantly greater in widespread areas in
the VPT group at mid-adolescence, and especially in prefrontal areas,
occipital and temporal cortices and insula (Fig. 1b). At early adulthood,
only cortical thickness in left temporal pole and a smaller right ventro-
medial prefrontal cortical area (centred on themedial orbitofrontal cor-
tex) were significantly greater in the VPT group (Fig. 1d). All the areas
displaying significant between-group differences inmean cortical thick-
ness at mid-adolescence and early adulthood are shown in Table 3. All
between group differences show medium to large effect sizes.

Within- and between-group longitudinal cortical thickness analyses

Within-group longitudinal cortical thickness analyses showed that,
in both groups, cortical thickness significantly decreased from mid-
adolescence to early adulthood, after controlling for sex. In controls,
cortical thickness decrease occurred predominantly in posterior (bilat-
eral) and medial (left) aspects of frontal cortex, parietal areas and ven-
tral aspects of temporal lobes bilaterally (Fig. 2a). In the VPT group, a
more pronounced decrease occurred in similar, but much more wide-
spread regions (Fig. 2b).

Between-group longitudinal cortical thickness analyses using a
group-by-time point interaction design (univariate approach), adjus-
ting for sex, were non-significant. That is, overall cortical thickness
change from mid-adolescence to early adulthood did not significantly
differ between controls and preterm born individuals at any individual
cortical vertex.

Longitudinal prediction of cortical thickness alterations using SVM

Results of SVM analyses (multivariate approach) demonstrated
86.5%mean classification accuracy. The ‘top 5%’ regions (i.e., 5% of verti-
ces with the highest SVM weights) which spatially discriminated
between the groups included predominantly bilateral temporal poles,
inferior temporal gyri, superior parietal lobes, right occipito-temporal
and lingual gyri, as well as left medial frontal areas (Fig. 3). In most of
these areas, VPT individuals displayed greater relative decrease (or
smaller increase) in cortical thickness than controls, except mainly
around bilateral temporal poles, where cortical thickness decrease was
smaller in the VPT group.

To assess the extent of potential overfitting due to within-subject
correlation, which accompanies longitudinal measures, 1000 additional
Assessed at both time points

NOVA Mean (SD) ANOVA

Control (n = 21) Preterm (n = 51)

(1, 107) = 11.05⁎ 104.2 (14.3) 96.7 (14.5) F(1, 70) = 4.00⁎

(1, 107) = 8.31⁎ -1.9 (5.4) F(1, 70) = 2.13

(1, 107) = 2.25 54.9 (9.0) 54.7 (10.1) F(1, 70) = 0.01
(1, 107) = 0.77 6.4 (2.2) 6.3 (2.2) F(1, 70) = 0.02
(1, 107) = 4.01⁎ 15.4 (0.7) 14.9 (1.5) F(1, 70) = 2.10
(1, 107) = 7.38⁎ 11.0 (2.2) 9.8 (3.3) F(1, 70) = 2.38
(1, 107) = 10.57⁎ 10.1 (2.9) 8.5 (3.4) F(1, 70) = 3.48
(1, 107) = 6.95⁎ −1.0 (2.0) F(1, 70) = 4.15⁎

(1, 107) = 4.90⁎ 5.7 (1.6) 4.9 (2.1) F(1, 70) = 2.05
(1, 107) = 4.67⁎ 40.9 (9.3) 35.8 (9.8) F(1, 70) = 4.10⁎

=Hayling Sentence Completion Test;WASI=Wechsler Abbreviated Scale of Intelligence;

born individuals.

ed usingmeans and SDs fromcontrols, whichbydefaultwere set to 0 and 1. Only variables
HSCT (Scaled) and COWAT scores; ‘Global memory’: CVLT (Recognition hits) and WMS



Table 3
Areas displaying significant between-group differences in mean cortical thickness (in millimetres) at mid-adolescence and early adulthood.

Mid-adolescence

Region VPT (n = 160), mean (95% CI) Control (n = 88), mean (95% CI) Cohen's d

Right parahippocampus 2.96 (2.91–3.02) 3.21 (3.14–3.28) −0.68
Left prahippocampus 2.55 (2.51–2.59) 2.76 (2.70–2.82) −0.80
Left insula 4.40 (4.35–4.46) 4.62 (4.53–4.70) −0.57
Left vmPFC/mOFC/Cingulate 3.55 (3.51–3.59) 3.37 (3.33–3.42) 0.75
Right temporal pole 3.86 (3.81–3.91) 3.63 (3.58–3.69) 0.76
Right vmPFC/dmPFC/mOFC 3.81 (3.76–3.85) 3.62 (3.57–3.67) 0.68
Left lingual/fusiform gyri 3.24 (3.20–3.27) 3.12 (3.08–3.15) 0.63
Left temporal pole 3.83 (3.77–3.89) 3.55 (3.48–3.61) 0.78
Left superior frontal gyrus 2.72 (2.68–2.77) 2.58 (2.53–2.63) 0.51
Left anterior insula 4.54 (4.46–4.63) 4.24 (4.15–4.34) 0.59
Right central sulcus 2.87 (2.84–2.91) 2.75 (2.70–2.81) 0.50
Left postcentral gyrus 2.43 (2.38–2.47) 2.29 (2.25–2.33) 0.54
Left central sulcus 2.81 (2.77–2.85) 2.68 (2.63–2.72) 0.50
Right middle frontal gyrus 2.93 (2.88–2.98) 2.79 (2.74–2.85) 0.46
Right occipito-temporal sulcus 3.59 (3.54–3.64) 3.46 (3.41–3.51) 0.47

Early adulthood

Region VPT (n = 67), mean (95% CI) Control (n = 42), mean (95% CI) Cohen's d

Right parahippocampus 2.99 (2.90–3.08) 3.32 (3.22–3.42) −0.94
Left parahippocampus 2.89 (2.81–2.97) 3.21 (3.09–3.33) −0.89
Right temporo-parietal junction 3.2 (3.15–3.25) 3.41 (3.35–3.47) −1.04
Left insula 3.88 (3.80–3.97) 4.16 (4.09–4.22) −0.91
Right inferior frontal sulcus 3.09 (3.04–3.14) 3.32 (3.26–3.38) −1.09
Left temporal pole 3.71 (3.63–3.80) 3.39 (3.29–3.49) 0.95
Right medial orbitofrontal cortex 2.82 (2.73–2.90) 2.57 (2.48–2.66) 0.77

vmPFC/mOFC = ventromedial prefrontal cotex; mOFC = medial orbitofrontal cortex; dmPFC = dorsomedial prefrontal cotex.

70 K.W. Nam et al. / NeuroImage 115 (2015) 64–75
SVM analyses were performed involving 1000 different sets of VPT and
control participants who were included in either the training or testing
phase only. These additional SVM analyses had amean classification ac-
curacy of 86.3% (SD= 3.6%). There was no significant difference in clas-
sification accuracy between the original SVM (using training data at
mid-adolescence and testing data from the same participants at early
adulthood) and the additional SVM analyses using training and testing
data from different sets of participants (confidence level: 95%). There
was an average 95.3% (SD= 8.9%) overlap between the ‘top 5%’ regions
of the additional SVM across all permutations and the ‘top 5%’ regions
obtained by the original SVM.

Longitudinal cortical thickness change and cognitive scores at
early adulthood

Results of the vertex-wise correlations carried out in each group be-
tween cortical thickness change in the ‘top 1%’ regions and global EF
scores at early adulthood identified 3 significant clusters (b20 vertices).

Controls' cortical thickness change in the left temporal pole (Fig. 4a)
was significantly and positively associated with global EF score (r =
0.55, p=0.009), i.e. cortical thinning of the temporal pole was associat-
ed with lower EF scores. The preterm group displayed a non-significant
positive correlation. The correlations did not significantly differ be-
tween groups, although the p valuewas at borderline significance levels
(Fisher's Z = 1.82, p = 0.068). Adjusting for baseline cortical thickness
in left temporal pole did not alter these associations (controls, r = 0.60,
p = 0.006; VPT, r = 0.10, p = 0.48).

The VPT group showed a significant positive correlation between
cortical thickness change in the right occipitotemporal gyrus and global
EF scores (r = 0.33, p = 0.018), i.e. cortical thinning of the right
occipitotemporal gyrus was associated with lower EF scores (Fig. 4b).
In the left superior parietal lobe, a negative correlation was found
(r = −0.32, p = 0.020) (Fig. 4c). In both regions, the control group
showed correlations whichwere non-significant and in the same direc-
tion as the preterm group. Controlling for baseline cortical thickness
region-specific values did not alter these associations: the VPT group
showed a significant positive correlation between global EF score and
CT change in right occipitotemporal gyrus (r = 0.30, p = 0.03), whilst
results were not statistically significant for controls (r = 0.27, p =
0.24); cortical thickness change in left superior parietal lobe was nega-
tively correlated with global EF score in VPT participants (r = −0.28,
p = 0.04); results were non-significant for controls (r = −0.32, p =
0.17).

None of the other cognitive scores which significantly differed be-
tween very preterm-born participants and controls at early adulthood
were significantly associated with cortical thickness change in the ‘top
1%’ regions identified by SVM.

Longitudinal cortical thickness change and gestational age

Results of vertex-wise correlations carried out in the VPT group be-
tween cortical thickness change in the ‘top 1%’ regions and gestational
age identified only one significant cluster. This was centred in the left
superior parietal lobe, where more pronounced cortical thinning from
mid-adolescence to early adulthood was correlated with older gesta-
tional age (r = −0.33; p = 0.02).

Discussion

In this investigation we extend the findings of cross-sectional
studies on cortical thickness following VPT birth by demonstrating
for the first time, with a longitudinal design, that patterns of cortical
development differ between VPT individuals and controls from mid-
adolescence to early adulthood, using well established analytical
methods. We further show that cortical developmental alterations
have important functional implications, as they are associated with
scores on executive function tests.

Cross-sectional and longitudinal cortical thickness measurements

Results of cross-sectional analysis revealed both increases and de-
creases in cortical thickness in VPT individuals compared to controls.
VPT adolescents had greater cortical thickness compared to controls in
several brain regions, including large sections of the frontal cortex,



Fig. 4. Correlation between cortical thickness change (in millimetres) and global executive function scores.

71K.W. Nam et al. / NeuroImage 115 (2015) 64–75
occipital, temporal and insular cortices. By early adulthood, the number
and magnitude of areas showing greater cortical thickness in the VPT
group substantially decreased, although areas of increased cortical
thickness were still present in left temporal pole and right medial
orbitofrontal cortex. These results suggest a delayed cortical matura-
tional trajectory in VPT individuals, as has been observed in other
neurodevelopmental conditions, such as attention deficit hyperactivity
disorder (ADHD) (Shaw et al., 2007). The hypothesis of delayed cortical
maturation is supported by our longitudinal findings, which showed
that although in both groups cortical thickness decreased from mid-
adolescence to the beginning of early adulthood, following develop-
mental patterns observed in normative samples (Shaw et al., 2008;
Tamnes et al., 2010), these changes were much more extensive in VPT
individuals, resulting in fewer areas demonstrating significant between
group differences at early adulthood. These results are consistent with
findings of other studies investigating cortical thickness in similar sam-
ples (Martinussen et al., 2005; Bjuland et al., 2013) and with our previ-
ous findings of decreased cerebellar volume and surface area of the
corpus callosum in the same VPT individuals studied here compared
to controls at mid-adolescence, but not at early adulthood (Allin et al.,
2007; Parker et al., 2008).

However, results also showed thinner cortex in large portions of
bilateral medial temporal regions, including the parahippocampal, en-
torhinal and perirhinal cortices in right hemisphere, and insula in left
hemisphere at both time points in the VPT group compared to controls.
These results indicate that selective cortical and subcortical areas could
be particularly vulnerable to alterations persisting into early adulthood
in VPT/VLBW samples (Skranes et al., 2012; Bjuland et al., 2013; Nosarti
et al., 2014).

The mechanisms underlying cortical alterations in the VPT group
remain unclear, but could reflect altered neuronal differentiation in
the cortical plate, a transient structure which is present in the third
trimester of gestation, during which extensive afferent fibers mi-
grate from it into the cortex to form their final connections, and
play a fundamental role in the establishment of early neuronal net-
works (Kostovic et al., 2011). Evidence from both animal and
human research in fact suggests that the cortical plate may be vul-
nerable to pre- and perinatal events (Miller and Ferriero, 2009). Al-
ternatively, cortical alterations may be secondary to white matter
injury, which has been associated with cortical reduction and neuro-
nal loss (Andiman et al., 2010). Environmental disturbances of such
critical developmental processes may have subsequent life-long con-
sequences for cortical development, as well as underlie an elevated
risk for cognitive deficits and psychopathology (i.e., represent a
‘pre-symptomatic signature’) (Ben-Ari, 2008).

In terms of regional specificity, cross-sectional results demonstrated
cortical alterations in the VPT group predominantly in temporal cortex,
insula and frontal regions. These results may be interpreted with refer-
ence to differential timing of human prenatal cortical formation (Miller
et al., 2014) and the observation that temporal and frontal cortices
appear to be particularly susceptible even to subtle environmental per-
turbations in utero (Raznahan et al., 2012). Furthermore, frontal and

Image of Fig. 4
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temporal cortices show protractedmaturational changes in comparison
to other brain regions (Shaw et al., 2008; Petanjek et al., 2011), and this
protracted development considerably lengthens the period of neural
vulnerability, as complex dynamic molecular and cellular events in-
crease the risk of damage to numerous targets (Petanjek and Kostovic,
2012).

In terms of functional correlates, frontal and temporal cortices
belong to heteromodal areas of the brain, which are made up by re-
ciprocally interconnected regions responsible for integrating senso-
ry information into high-order cognitive processes (Mesulam,
1998). Cortical maturational delays in heteromodal cortices may
be partly responsible for the cognitive deficits observed in VPT-
born samples (Nosarti et al., 2007; Bless et al., 2013; Heinonen
et al., 2013), as cortical thinning is thought to reflect selective re-
moval of synapses that may contribute to the establishment of neu-
ral circuits supporting cognitive processes (Hensch, 2004; Knudsen,
2004; Shaw et al., 2007; Raznahan et al., 2011). Specifically, cortical
alterations in prefrontal regions may underlie the increased preva-
lence of deficits in high order ‘executive’ functions affecting infor-
mation processing, attentional control, cognitive flexibility and
goal setting that have been described in preterm samples (Nosarti
et al., 2008; Burnett et al., 2013; White et al., 2014). Cortical alter-
ations in temporal regions may further underlie verbal and non-
verbal memory impairments reported in early adulthood in preterm
born individuals (Nosarti et al., 2014; Aanes et al., 2015). Similarly,
cortical maturational delays in insula, which has been described as
critical for emotional awareness (Gu et al., 2013) may explain poor
social competence described in VPT adolescents (Healy et al., 2013).

In addition to their central involvement in high-order cognitive
functions, alterations in fronto-temporal networks have been associ-
ated with an increased vulnerability to develop psychiatric problems
in a variety of clinical and sub-clinical samples, including individuals
with schizophrenia, those at risk of psychosis (Borgwardt et al.,
2007; Benetti et al., 2009) and ADHD (Shaw et al., 2007). Reduction
in grey matter in temporal cortices has further been associated
with early-life psychosocial adversities in individuals without a cur-
rent psychiatric diagnosis (Walsh et al., 2014). As the altered pat-
terns of cortical development following VPT birth observed here
implicate similar brain cortices to those described in psychiatric dis-
orders known to be more prevalent in VPT samples than controls
(Nosarti et al., 2012; Johnson and Wolke, 2013), we speculate that
an increased risk of developing psychiatric disorder following VPT
birth may be underpinned by region-specific altered cortical devel-
opment. Support to the intermediate phenotype hypothesis has
been provided by other studies including one by Shaw et al. (2011)
which observed neurodevelopmental changes in cortical thickness
resembling those found in ADHD in typically developing youth
exhibiting hyperactive/impulsive signs (Shaw et al., 2011).

Prediction of cortical thickness alterations by machine learning

Despite seemingly apparent differences in longitudinal cortical
thickness changes between VPT individuals and controls, conventional
mass-univariate statistical methods did not reveal any statistically sig-
nificant between-group differences. This could be due to the fact that
these methods possess relatively high exploratory power, as they
focus on changes throughout the brain, but provide modest statistical
power by applying stringent multiple comparisons corrections to
avoid Type I errors (Ecker et al., 2010).We therefore used amultivariate
approach, SVM, in order to identify significant spatially discriminating
features between the two groups, which yielded a classification accura-
cy of 86.5%. A further advantage of SVM compared to mass-univariate
statistical methods is that it allows us to make inferences at the indi-
vidual, rather than the group level. The regions highlighted by SVM
analysis (top 5%) included temporal, occipital and frontal cortices.With-
in these regions, we further selected the ‘top 1%’, regarding these as the
most vulnerable to long-term alterations following VPT birth. Cortical
thickness changes in the ‘top 1%’ were significantly associated with
scores on EF tests at early adulthood, which were significantly lower
in VPT individuals compared to controls, in line with previous studies
(Nosarti et al., 2008; Burnett et al., 2013; White et al., 2014). Therefore,
aswe used a predictive analysis approach, our results identified a poten-
tial biomarker of important changes in cortical development influencing
cognitive outcomes.

Results showed differential associations between region-specific
cortical thickness longitudinal changes and EF scores in the VPT and
control groups. Overall, cortical thickness changes resembling develop-
mental trajectories in control samples correlated with higher EF scores,
consistent with our previous findings demonstrating that every 25% dif-
ference in regional volume in VPT adolescents compared to controlswas
associated with a significant increased risk of cognitive impairment
(Nosarti et al., 2008). However, both EF tests used in the current study
were language based and assessed specific aspects of EF only, namely
response inhibition (HSCT), mental flexibility and the ability to use dif-
ferent cognitive strategies, such as clustering (Spreen and Strauss,
1991) (COWAT). Therefore, our current results refer to specific EF sub-
categories only and may show specific correlation patterns not true
for other tests tapping into other aspects of EF that were not studied
here.

Furthermore, all the areas where significant associations be-
tween cortical thickness change and EF scores were observed,
form part of networks underpinning the cognitive and behavioural
sequelae of VPT birth (Cheong et al., 2013; Simms et al., 2013;
Wilson-Ching et al., 2013; Fischi-Gomez et al., 2014): the temporal
pole is part of a cortico-striatal-thalamo-cortico network (Fan
et al., 2013) involved in social processing, multimodal sensory inte-
gration, and high-order executive functions (Elliott, 2003; Mills
et al., 2014); the occipitotemporal cortex is implicated in skilled
reading and selective attention (Shaywitz et al., 2004; Nelissen
et al., 2013), and the superior parietal cortex is associated with nu-
merical information processing, executive functions and sentence
comprehension (assessed here with the HSCT) (Meyler et al.,
2008; Otsuka et al., 2008; Rosenberg-Lee et al., 2014). The temporal
pole, occipitotemporal cortex and superior parietal cortex have fur-
ther been implicated in different aspects of language (Ardila et al.,
2015; Brownsett and Wise, 2010), therefore the significant associa-
tion between regional cortical changes and EF scores seen here may
be due to the type of EF tests we used, which were language-based.
Alternatively, significant associations between cortical changes and
outcome, in areas that are not typically involved in executive func-
tions, could be interpreted in the context of an altered development
of the entire brain following VPT birth, which could be characterized
by “different functional structures” (Thomas and Karmiloff-Smith,
2003).

Results of cross-sectional studies have also reported significant asso-
ciations between smaller cortical thickness in parahippocampal region
and lower IQ in VPT/VLBW adolescents (Martinussen et al., 2005) and
smaller cortical thickness in entorhinal cortex in VPT/VLBW adults and
low EF scores (Skranes et al., 2012).

Our analyses further revealed that individuals with the youngest ges-
tational age displayed less parietal cortical thinning in left superior pari-
etal cortex compared to those born nearer term, suggesting region-
specific developmental delays associated with increased neonatal risk.
A recent cross-sectional study reported a significant positive association
between length of gestation and increased local network efficiency, par-
ticularly in bilateral superior parietal cortex (and precuneus) (Kim et al.,
2014), whichwas interpreted by the authors as underlying the impact of
length of gestation on structural hubs that are critical for global neural
communication and integration (Collin et al., 2014).

Participants included in this study were born between 1979 and
1984; since then substantial changes in neonatal care have occurred
(e.g., use of exogenous surfactants, antenatal steroids, mechanical
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ventilation) (Flor-de-Lima et al., 2012). Therefore, the VPT individuals
studied here may not be representative of contemporary cohorts, who
may have improved neurodevelopmental outcomes (Serenius et al.,
2013). However, studies with younger samples have reported alter-
ations in similar cortical areas (Murner-Lavanchy et al., 2014),
supporting the idea of regional vulnerability following VPT birth. A fur-
ther limitation is the inclusion of term-born controls from the general
population, which could differ from our study group in variables that
have not been measured.

Summary and conclusion

The findings of this study show that cortical development frommid-
adolescence to early adulthood is altered in individuals who were born
VPT. Vulnerability of cortical development shows regional specificity,
affecting predominantly frontal, temporal cortices and insula. Neverthe-
less, as cortical development continues beyond adolescence (Gogtay
et al., 2004; Kochunov et al., 2011; Lebel and Beaulieu, 2011; Petanjek
et al., 2011), it remains to be ascertained whether these alterations re-
flect neurodevelopmental delays or long lasting structural alterations
associated with VPT birth.

The findings of this study further suggest that longitudinal alter-
ations in cortical thickness are associated with cognitive outcome. The
study of altered cortical developmental trajectories could be therefore
useful in predictingwhich cognitive functionsmay be better candidates
for focussed training in VPT samples (Pascoe et al., 2013), which could
target the neuroplastic capacity of late maturing cortices involved in
specific high order cognitive functions (Petanjek et al., 2011). Mapping
dynamic cortical changes throughout critical phases of development
following VPT birth could further aid to the identification of individuals
at high-risk for cognitive impairment, who could be prospectively iden-
tified and closely monitored — to decide if, when and what interven-
tions may be appropriate.
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