S International Journal of

7
Molecular Sciences m\D\Py

Review

Vascular and Neuronal Protection in the Developing
Retina: Potential Therapeutic Targets for Retinopathy
of Prematurity

Jessica K. W. Tsang, Jin Liu and Amy C. Y. Lo *

Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong,
Hong Kong, China
* Correspondence: amylo@hku.hk; Tel.: +852-2831-5363

check for
Received: 12 July 2019; Accepted: 29 August 2019; Published: 3 September 2019 updates

Abstract: Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong
the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine
environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological
events occur when babies return to room air, leading to ROP with neuronal degeneration and
vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no
longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore,
increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness
worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently
destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for
effective and safe therapies in these developing infants. Therefore, it is essential to identify potential
therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions.
This review gives an overview of various agents in their efficacy in reducing retinal damages in cell
culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective
pathways in the developing retina are also reviewed.

Keywords: oxygen-induced retinopathy; neovascularization; vascular protection; vascular endothelial
growth factor; animal models; supplementary oxygen therapy; neuron; eye

1. Introduction

Retinopathy of prematurity (ROP) is a vasoproliferative retinal disease in the preterm babies.
It was initially described and named as retrolental fibroplasia in 1942 [1]. In the normal human fetus
with a gestational period of 40 weeks, retinal vascular development starts at gestational week 16,
proceeding from the center toward the peripheral retina. In the full-term babies, the retina, including
the vessels and neuronal cells, is well-developed at birth, but not in preterm infants. As the preterm
infant has an immature cardiopulmonary system, it needs to be placed in high supplemental oxygen.
This places the development of the retina at risk and results in ROP.

With the advances in neonatal intensive care, it is no longer uncommon for the increased survival
of very-low-birth-weight preterm infants, therefore, increasing the incidence of ROP. Indeed, ROP is
now a major cause of preventable childhood blindness in developed and developing countries. Latest
estimates from the National Eye Institute showed that 1100-1500 infants (~5% infants <1.25 kg at
birth, <31 weeks of gestation) develop severe ROP that requires treatment. As these infants grow
up, they have a higher incidence of astigmatism, high myopia, and retinal detachment and should
be followed routinely afterwards. Unfortunately, recent estimates from the National Eye Institute
showed that 400600 infants (~2% infants weighing <1.25 kg at birth, 40% severe ROP infants) become
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legally blind from ROP despite treatment, translating to losing 30,000 life years of vision. The resulting
long-term disability, and severely affected quality of life, in ROP patients poses an intense burden on the
pediatrics, adolescent and adult healthcare system worldwide. As the population ages, high societal
cost over many years is anticipated—making ROP a major public health issue and justifying a need for
adequate management.

Current proven treatment for ROP is limited. Invasive retinal ablation is the most commonly used
treatment, but it is inherently destructive to the retina. The lack of pharmacological treatment for ROP
creates a great need for effective and safe therapies in these developing infants.

Neuroprotection in ROP is one way that may protect not only the retinal neurons, but also the
vasculature. In the past years, many therapeutic targets have been developed, and they are targeted to
vascular protection in ROP. In this review, we discussed the pathology and animal models of ROP,
as well as the recent vascular protective and potential neuroprotective targets in ROP.

2. Vasculature in the Retina

2.1. Normal Development of the Retinal Vasculature

The survival and appropriate functioning of retinal cells depend on sufficient oxygen supply.
Lack of oxygen may lead to vision loss. In the retina, normal visual process demands high energy, most
of which are derived from oxidative metabolism coupled to adenosine triphosphate (ATP) synthesis.
In the central nervous system, the brain receives 15% of the cardiac output and consumes around
20% of the total body oxygen, although it only represents 2% of the bodyweight [2]. Meanwhile,
the consumption of oxygen in each gram of tissue in the retina has been described higher than that of
the brain [3], making retina one of the highest oxygen-consuming tissues in the body [4]. Therefore,
a well-organized vascular system providing adequate blood supply is important for the retina to
maintain its normal function.

The blood supply of the retina is provided by two vascular systems: The retinal vessels for the
inner two-thirds of the retina, and the choroidal system for outer one-third of the retina [5]. During
development, the inner retinal vascular system undergoes significant changes and reorganizations.
At the very beginning, tissues in the inner part of the eye are nourished by the hyaloid vasculature,
which is a vitreous arterial network. In this hyaloid vascular system, blood enters through the central
hyaloid artery initiating from the optic nerve, runs in hyaloid vessels and then exits through an annular
collection vessel in the anterior part of the eye. The hyaloid vasculature is gradually replaced by the
retinal vasculature as the development paces on [5,6]. The regression of hyaloid vasculature in humans
occurs around mid-gestation, and in mouse occurs around birth [7]. At almost the same time as hyaloid
vascular system regresses, retinal vasculature begins to emerge from the optic nerve head. This newly
formed vascular plexus expands in the nerve fiber layer across the inner surface of the retina. Unlike
the hyaloid vasculature, this plexus has both arteries and veins which go in and out of the optic nerve.
Later, the primary vascular plexus gives rise to two other networks. Three of these vascular plexuses
are parallel and inter-connected, which locates in the nerve fiber layer, inner plexiform layer and outer
plexiform layer, respectively. In human beings, the normal retinal vascular development begins at
around 16 weeks of gestation and accomplishes around birth. In mouse retina, the primary plexus
reaches the periphery of the retina on about postnatal (P) day 8, and the three retinal vascular plexuses
establish on about P21. The direction of vascular formation is from the center to the periphery; thus,
vessels at the growing edge are less mature than those in the central areas. It is, therefore, possible to
observe different stages of vascular differentiation in a peripheral to the central gradient.

2.2. Pathogenesis of Retinopathy of Prematurity

A major cause of blindness in children is ROP, a condition commonly found in preterm babies that
are related to abnormal development of retinal blood vessels. Clinically, preterm infants are placed
in high supplemental oxygen to facilitate breathing due to their immature cardiopulmonary system.
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The exposure to high oxygen (hyperoxia) during the first ischemic phase inhibits the production and
secretion of pro-angiogenic factors, e.g., vascular endothelial growth factor (VEGF) and insulin-like
growth factor-1 (IGF-1), while stimulating the formation of reactive oxygen species (ROS) [8,9].
As a result, apoptosis of vascular endothelial cells causes cessation of normal vessel growth and
pruning of the existing immature vasculature, which, in turn, leads to retinal avascularity. The retinal
response during this phase may also be mediated by hyperoxia-induced free radicals, although their
roles remain unclear. Later, when the prematurely born infant acquires adequate cardiopulmonary
functions, oxygen supplementation is discontinued, and the infant is returned to stay in normal room
air. Now, relative retinal hypoxia occurs due to high oxygen demand from the maturing neural
components. During this second vaso-proliferative phase, a compensatory release of pro-angiogenic
factors is triggered. The expressions of VEGF, IGF-1 and erythropoietin (Epo) are increased, while
hypoxia also facilitates the accumulation of hypoxia-inducible factor (HIF) [9]. There are now
upregulated vessel growth and neovascularization (Table 1). These fragile neovascular tufts will, in
turn, lead to intravitreal hemorrhages, retinal detachment and subsequent vision loss. Although poorly
studied, the fluctuations in oxygen tension also predispose retinal neurons to degeneration (Figure 1).
In fact, retinal dysfunction has been reported in infants and children with a history of ROP.

The etiology of ROP appears to be multifactorial. The severity of ROP is inversely proportional
to gestational age, which is the greatest risk factor. A multi-centered national study, Supplemental
Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity (STOP-ROP) found that oxygen
(96-99% saturation) does not cause additional progression of pre-threshold ROP [10]. However,
there was absolutely no data to suggest that high oxygen level is safe for the early immature eye in
the preterm infants that have not yet established ROP. On the other hand, it has been shown that
the progression of ROP is closely related to the supplementary oxygen therapy that provided for the
preterm babies after birth [11-13]. The lower oxygen concentration in the therapy has a beneficial effect
on ROP development and can lower the severity of ROP [14]. However, if the preterm infant requires
supplemental oxygen due to cardio-pulmonary reasons, withholding oxygen for fear of causing ROP
is not recommended. Therefore, an understanding of tissue hyperoxia/hypoxia swing, as well as free
radical and pro-angiogenic factor productions is integral to the prevention and treatment for ROP.

Normoxia Vaso-obliteration = Neovascularization Regression

Figure 1. Schematic diagram of mouse oxygen-induced retinopathy (OIR) model [15]. The nursing
mother and their pups were exposed to a 75% hyperoxia environment, which simulates the
supplementary oxygen therapy in human. It results in vessel loss and presents features similar
to those in phase 1 of human retinopathy of prematurity (ROP) development. Pups return to room air
after P12. Hypoxia-induced neovascularization starts from P14 and maximizes at P17. Neovascular
formation after hyperoxia in the mouse OIR model mimics phase 2 of human ROP development.
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Table 1. Vascular protective agents in the role of ROP development.
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Relevant Vascular

Pathogenic Phase 1in ROP  Phase 2in ROP  Protective Agents in . . . .
Agents in ROP  Development Development ROP Development Intervention Animal Model Beneficial Effect Adverse Effect Reference
(Phase of ROP)
e  Prevention of apoptosis of
VEGF ! 1 VEGF (Phase 1) Intraocular Rat OIR model vascular endothelial cells / [16]
Injection e Reduction in avascular area
e Reduced systemic VEGF level
Bevacizumab Intravitreal . after injection
(Phase 2) injection (Clinical study) . Influenced the [17-23]
e Reduction of the avascular area long-term neurodevelopment
and continuing vessels growth
Ranibizumab Intravitreal L.
(Phase 2) injection (Clinical study) / [19,24,25]
. Intravitreal Mouse OIR
Aflibercept (Phase 2) injection model / [26]
4 e Reduced VEGF expression
\;}ilGFAZShRNA .St%bre.tmal RatOIRmodel ~®  Inhibited neovascularizationin [27]
(Phase 2) Injection short- and long-term studies
Anti-KDR (Phase2) ~ ursical Dog OIRmodel ®  Suppressed neovascularization [28]
implantation
SRPIN340 (Phase2) ~ Lniraccular RatOIRmodel ~ ®  Reduced VEGF expression / [29]
injection
Rapamycin (Phase 2) .Sl}bcgtaneous Mouse OIR e Reduced neovascularization / [30]
injection model
) e Higher score in
IGF-1 ) 1 rhIGF-1 (Phase 1) Intraperitoneal M"(‘f‘f OIR maturation assessments / [31]
injection mode e Reduced neovascularization
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Table 1. Cont.
Relevant Vascular
Pathogenic Phase 1in ROP  Phase 2in ROP  Protective Agents in . . . .
Agents in ROP  Development Development ROP Development Intervention Animal Model Beneficial Effect Adverse Effect Reference
(Phase of ROP)
Reduced neuronal
IGFBP3 Knockout Mouse OIR cell apoptosis / 132,33]
(Phase 1 and 2) mouse model Larger retinal avascular area
Subcutaneous Mouse OIR Less neovascular
Jb3 (Phase 2) injection model tufts formation / (341
Epo ! ) / / / / / /
Intraperitoneal ~ Mouse OIR
HIF-1 ! T DMOG (Phase 1) injection model Prevented vessel loss and / 351
vessel tufts formation
PHD2 (Phase 1 and 2) ﬁi‘;ﬁout Xg(‘;:f OIR / [36]
Induced transcription of HIF-1
RTP801 Knockout Mouse OIR in phase 2 -
(Phase 1 and 2) mouse model Reduced neovascular tuftsand  / 1371
lower apoptosis
NO ! 1 1-NA (Phase 2) i;‘jtersggﬂmneal Rat OIR model / [38]
- Reduced avascular zone and
L-NNA (Phase 2) ilgjjczsgggtoneal ng:f OIR neovascular tufts / [39]
Intravitreal Mouse OIR /
AG (Phase2) injection model / (401
Adenosine l T / / / / /
N T Sobcmeons Now O et mvscaiton. B
Propranolol (Phase 2) j educed neovascularization
P .
Topical Mouse OIR Reduced VEGF expression / 2]
42

administration model
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Relevant Vascular

Pathogenic Phase 1in ROP  Phase 2in ROP  Protective Agents in . . . .
Agentsin ROP  Development Development ROP Development Intervention Animal Model Beneficial Effect Adverse Effect Reference
(Phase of ROP)
Atenolol (Phase 2) /
1CI 118,551 (Phase 2 'Su.bcgtaneous Mouse OIR e  Reduced avascular zone and [43]
551 (Phase 2) injection model neovascular tufts /
SR59230A (Phase 2) /
g:hie(f enic 5 1 Dexamethasone Subcutaneous Mouse OIR [44]
8108 : (Phase 2) injection model e Suppressed e  Steroid has a higher risk of
agents .
neovascular formation severe ROP and fungal
Anecortave acetate .In.tra\.lltreal Rat OIR model sepsis development [45]
(Phase 2) injection
. Intravitreal Mouse OIR )
Degulin (Phase 2) injection model / [46]
YC-1 (Phase 2) .In.tra\./itreal Mouse OIR e Regulated HIF-1ot suppression  / [47]
injection model
Intravitreal Mouse OIR
B-lapachone (Phase 2) injection model / [48]
Intravitreal Mouse OIR )
16K HPRL (Phase 2) injection model e Mediated endothelial / 491
: cell proliferation
12-LOX (Phase 2) .In‘tra[.)erltoneal Mouse OIR / [50]
injection model
TMP (Phase 2) 1n?raPer1toneal Mouse OIR / [51]
injection model
K5 (Phase 2) Intravitreal RatORmodel ~°*  Lrevented . / [52]
injection neovascular formation
MEF2C Knockout Mouse OIR / [53]
(Phase 1 and 2) mouse model g

Abbreviations: Short hairpin RNA linked VEGF (VEGFA shRNA), kinase insert domain-containing receptors (KDR), recombinant human IGF-1 (thIGF-1), IGF binding protein (IGFBP),
dimethyloxalylglycine (DMOG), prolyl hydroxylase (PHD), nitric oxide (NO), N-nitro-l-arginine (L-NA), N G-nitro-l-arginine (L-NNA), aminoguanidine (AG), N-terminal fragment of human
prolactin (16K HPRL), 12-lipoxygenase (12-LOX), tetramethylpyrazine (TMP), plasminogen kringle (K5), myocyte enhancer factor 2 C (MEF2C). T = upregulated; | = downregulated; ? = unknown.
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2.2.1. Vascular Endothelial Growth Factor (VEGF)

VEGEF plays for a key role in vascular development and angiogenesis [54,55]. There are three
predominant VEGF isoforms in human (VEGF121, VEGF165 and VEGF189). There are two receptors
common for all isoforms, which include fms-related tyrosine kinase 1 (FLT-1, also called VEGFR-1),
and kinase insert domain-containing receptors (KDR, also known as FLK-1 or VEGFR-2). Meanwhile,
heparin sulphate proteoglyvans (HSPGs), neurophilin 1 (NRP-1) and neurophilin 2 (NRP-2) are
the receptors that only recognize the VEGF165 isoform [56]. Under hypoxia, the expression of
flt-1 gene is upregulated that leads to a higher binding efficiency between HIF-1x and VEGF
promotor [57,58]. Unlike FLT-1, KDR is not induced by hypoxia, but it is important for normal
early vascular development [59-62]. The main function of KDR is cell proliferation, differentiation,
migration and maturation. There are several known VEGF sources in the human retina, including
retinal pigmented epithelial cells, endothelial cells, astrocytes, Miiller cells and other ocular tissues [63].
The retinal angiogenic changes under hypoxia are stimulated by the astrocytes release VEGF for
vascular development toward the periphery [64], while the Miiller cells release VEGF for vessel growth
in the deep vascular plexus [65,66]. VEGF is one of the most important elements for ROP progression
when it is under hypoxia condition.

2.2.2. Insulin-Like Growth Factor-1 (IGF-1)

IGF-1 is a growth factor that is received maternally through the amniotic fluid and placenta
during fetal development. IGF-1 plays a critical role in both normal retinal development and
pathological ROP progression [67]. Despite a normal VEGF expression, IGF-deficient mice displayed
an abnormal vasculature and slower vascular growth rate, indicating that IGF-1 is a key growth factor
for vascular development in the early stage [67]. In the first stage of ROP, hyperoxia suppresses the
expression of VEGF and IGF-1, whose levels control the survival of endothelial cells by the downstream
Akt signaling [67,68]. Although a normal concentration of VEGF and IGF-1 supports the survival
of endothelial cells, IGF-1 promotes apoptosis under hyperoxia in the first stage of ROP. In turn,
this reduces vessel growth and give rises to an avascular retina.

Under hypoxia, the concentration of IGF-1 is gradually increased. IGF-1 can regulate the level of
VEGF through different signaling pathways (such as p44/42 NARK pathway and P13K/Akt pathway)
and results in neovascularization. Under various oxygen levels, IGF-1 has a different expression level
and in combination with VEGF and HIF-1 can stimulate abnormal neovascular growth. A significantly
high IGF-1 level inhibits the apoptosis of endothelial cells and promotes neovascularization by
accumulating VEGF in the vitreous [68], resulting in ROP.

2.2.3. Erythropoietin (Epo)

Epo is secreted from the fetal liver and adult kidney. This glycoprotein binds to the homodimer
Epo receptors (EpoR) for inducing erythropoiesis, or binds to the heterodimer receptor, which consists
of EpoR and common {3 receptor (C3-R), for another function. Epo has a beneficial effect on the
experimental models of stroke and light-induced retinal degeneration [69]. Meanwhile, it also works
as a mitogenic factor for endothelial cells of brain capillaries. Epo production can be stimulated
by hypoxia, thus, induces angiogenesis. VEGF and Epo have a direct relationship, and both are
stimulated by HIF-1a. Under hypoxia, not only the expression of VEGF is upregulated, but also
Epo [70]. VEGF and Epo have similar functions in vascular proliferation. In the Epo-deficiency animal
model, the vascular loss and neovascularization formation were both reduced in the retina that, in turn,
decreased the disease damage in oxygen-induced retinopathy (OIR) [71]. In addition, the level of Epo
is directly correlated with the level of VEGF and plays a similar role in endothelial cell proliferation in
the second stage of ROP.
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2.2.4. Hypoxia-Inducible Factor-1 (HIF-1)

HIF-1 contains « and (3 subunits. This heterodimer plays a critical part in body regulation under
hypoxia [72]. HIF-1« is a short-lived nuclear protein. Under normal condition, HIF-1« is hydroxylated
and degraded by prolyl hydroxylase (PHD). However, in a low oxygen environment, HIF-1« is not
hydroxylated, and PHD is no longer efficient, thereby stimulating the accumulation of HIF-1« inside
the nucleus. The combination of & and  subunits are then facilitated, which, in turn, binds to the
hypoxia response element (HRE) in the VEGF promotor region. Sufficient accumulation of HIF-1«
under hypoxia induced VEGF production [56,72]. Therefore, there is a direct relationship between
hypoxia, HIF-1« and VEGF expression.

2.2.5. Nitric Oxide (NO)

NO s the core element for the signaling process that is synthesized by NOS (nitric oxide synthetase).
Two isoforms of NOS work in different roles by different manners, which include the constitutive (cNOS)
and inducible (iNOS). The cNOS, such as endothelial (eNOS) and neuronal NOS (nNOS), synthesizes
NO when the secretion of calcium is upregulated. Unlike cNOS, iNOS is a calcium-independent
enzyme and is only found in specific tissues [56]. The regulation of NO depends on the stimulation or
suppression of the specific NOS.

The change in oxygen concentration affects the expression of eNOS, as well as NO concentration.
NO level is lowered when the expression of eNOS is reduced during hyperoxia. It promotes the
inhibition of proliferation and formation of avascular retina [73,74]. Under hypoxia, eNOS expression
is stimulated, which, in turn, increases the NO concentration and induces angiogenesis [75]. The NO
production during the hyperoxia-hypoxia induction is correlated with the severity of ROP.

2.2.6. Adenosine

Adenosine is an endogenous nucleotide and acts as a neuromodulator. In the retina, it is generated
during AMP hydrolysis by 5" nucleotidase (5" N) in the Miiller cells. Adenosine release is mainly caused
by stress, tissue activity, or hypoxia. The level of adenosine is also changed under different oxygen
level as the activity of 5’ N is suppressed under hyperoxia and is induced under hypoxia. Adenosine
regulates different cell functions by activating different adenosine receptors which consist of adenosine
1 receptor (A1R), adenosine 2A receptor (Ap4R), adenosine 2B receptor (AzpR) and adenosine 3 receptor
(A3R) [76]. ApaR s closely related with neurodegeneration [77] and demonstrated a positive effect after
blockage of AyAR in neurodegenerative models, such as Parkinson disease (PD) [78,79], Alzheimer
disease (AD) [80] and ischemia [81]. This receptor interferes with microglial-mediated inflammation
that, in turn, induce neuronal damage by stimulating NO production from the microglia-derived
mediators [82]. Therefore, more adenosines are released and subsequently stimulates neuronal death
and vascular endothelial cells proliferation [83-85] by microglial-mediated inflammatory responses
in the second stage of ROP. Recently, several studies demonstrated the association between early
microglial activation and retinal ganglion cell death in a glaucoma model and indicated that these
two events were initiated simultaneously and contributed to the progression of neurodegenerative
diseases [79,82,86,87]. Therefore, there is a direct relationship between AR stimulation, microglial
activation and apoptosis in retinal ganglion cells in the onset of neurodegenerative diseases.

2.2.7. B-Adrenergic Receptor (3-AR)

Adrenergic receptors (AR) play a role in an internal regulatory manner that is mediated by
adrenaline and noradrenalin. Two types of adrenergic receptors, a-and 3-AR, tend to have a systemic
response after binding with its agonists. «-AR promotes the action of muscle contraction, and
insulin suppression, as well as induces platelet aggregation. Unlike, x-AR, 3-AR has totally opposite
effects, such as muscle relaxation and induction of the secretion of insulin, VEGF and renin [72].
The concentration of 3-AR is higher during aging and hypoxia [88]. Cell proliferation is also induced by
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the stimulation of 3-AR under hypoxia [89]. Recent studies indicated that 3-AR was overexpressed in
the vascular endothelial cells [90] and regulated the neovascular formation. This evidence suggests that
3-AR has a role in abnormal neovascular formation and responses to ischemia and hypoxic condition.

3. Animal Models for ROP—Oxygen-Induced Retinopathy (OIR)

It is an ethical problem for drug testing in human preterm infants; therefore, an animal model
is desirable for studying the mechanism and possible therapy for ROP. OIR is an in vivo method for
mimicking human ROP. The animals that are used in OIR are full-term neonates with an immature
retinal development at birth so that further retinal development under various experimental conditions
can be monitored. Although animal models are one way to investigate ROP, they cannot fully simulate
the situation in human. Human preterm babies usually have complications after birth, such as
bronchopulmonary dysplasia, sepsis and necrotizing enterocolitis, which are seldom observed in the
full-term newborn animals. Among the various animal models for ROP, the duration and oxygen
level provided for inducing avascular zone and neovascularization are different in different animals.
Among these, mouse and rat OIR models are the most common animal models to study ROP.

A mouse OIR model was generated in the 1990s by Smith and colleagues for studying the
pathogenesis of ROP [91,92]. This OIR model is one of the commonest models in ROP study. Mouse
neonates and their lactating mother are exposed to high oxygen (75%) environment from P7 to 12,
and then returned to room air to induce OIR. After hyperoxia-hypoxia induction, a large central
avascular zone is seen on P12, and a peak neovascularization is observed on P17 (Figure 1). There are
a number of advantages that the mouse OIR model can offer. Firstly, it is convenient to use a stable
oxygen level for five days. Secondly, it is easy to obtain transgenic mice with OIR for investigating the
mechanism of ROP. However, mouse OIR model does not completely represent all the pathologies seen
in human ROP as mentioned above. Besides the various complications seen in human preterm babies,
newborn mice have higher arterial oxygen after OIR when compared with human infants. In addition,
the avascular zone is induced in the central retina in mice, but a peripheral avascular retina is actually
observed in human [34]. Although there are some limitations in the mouse OIR model, the mouse is an
animal that is easy to handle for further studies the pathogenesis of ROP.

Another OIR model that is commonly used is the rat model. Rat OIR model was designed by
Penn in 1993 [93]. Unlike the mouse OIR model, a hyperoxia-hypoxia cycle by fluctuating oxygen
level is utilized for inducing avascularization and neovascularization in rat. The oxygen-controlled
environment is changed from 50% to 10% oxygen for 14 days after birth (from PO to P14) and is changed
every 24 h. One advantage of this rat model is its closeness to human ROP. Both rat and human have
similar arterial oxygen. In addition, the appearance of OIR induced retinal vascular development is
similar to type 1 severe ROP. As in human, rats have a peripheral avascular retina after OIR. However,
the availability and usage of transgenic rats are limited. The molecular mechanism or pharmacologic
pathway is also more difficult to analyze using the rat OIR model.

4. Vascular Protection in the ROP

Over the past 80 years, many ROP studies have been concentrated on vascular changes.
The measurements of avascular and neovascular areas are the comparative method for identifying the
protective roles of agents. Many therapeutic studies in ROP would conclude a vascular protective effect
when a reduction of avascularization and neovascularization is observed, but there is very limited data
on neuronal responses after treatment.

Many components are responsible for the internal regulation of retinal vessel development under
hyperoxia or hypoxia. Hypoxia-induced oxidative stress is the common product of imbalance between
prooxidants and antioxidants. Some oxygen-sensitive agents, such as VEGEF, IGF, and HIF-1«, have
pathological roles in ROP progression; yet, they might have a beneficial effect on vascular changes if
they are inhibited or induced during ROP development (Figures 2 and 3).
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Figure 2. Schematic diagram representing the mechanism of vascular changes in hyperoxic condition.
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4.1. Growth Factors

4.1.1. Anti-VEGF

VEGEF level plays a pathological role in both phase 1 and 2 of ROP. The therapeutic role of VEGF
was firstly described in 1995 [53]. VEGF was intraocularly injected during hyperoxia, and this prevented
the apoptosis of vascular endothelial cells, resulting in the reduction of avascular area in the rat OIR
model. As vessel regression was indicated when there was increased VEGF concentration during
hyperoxia, anti-VEGF was then suggested as a potential agent for vascular protection. In anti-VEGF
therapy, antibodies attach to VEGF, thus, reducing its own binding to its receptors and the following
angiogenic effects. Currently, bevacizumab (Avastin), ranibizumab (Lucentis) and aflibercept (Eylea)
are three types of anti-VEGF agents for ROP patients [54,55,59-61]. They have different designs for
prolonging the efficiency and eliminating inflammatory responses. Recent animal studies and clinical
trials for these three drugs displayed a beneficial effect on intravitreal injection of anti-VEGF in reducing
neovascular area and continuing vessels growth toward the peripheral retina after treatment [54,61,63].
However, there might be general effects despite a drop in systemic VEGF level after injection [55,56].
As the blood-retinal barrier (BRB) is broken down during hypoxia, the injected anti-VEGF agents can
enter the vascular system, and in turn, bind to the circulating VEGF. The sudden reduction in VEGF
level may indicate a long-term effect of neurodevelopment [59,60]. Although there may be an unknown
lifelong effect resulted from an anti-VEGF injection, it is the only efficient treatment for eliminating
neovascularization growth in the severe ROP infants now.

Besides these three well-established drugs, other VEGF-related inhibitory agents have been
proposed. Short hairpin RNA linked VEGF (VEGFA shRNA), anti-KDR antibody, SRPIN340 and
rapamycin were investigated in the suppression of neovascular development. Gene silencing of VEGF
could significantly reduce VEGF expression in rat OIR model using VEGFA shRNA injection and
also inhibit neovascularization in both short-term and long-term studies [64]. Blockage of the VEGF
receptor is another direct way to suppress VEGF activities. KDR is one of the VEGF receptors in
human. Anti-KDR did not affect normal vascular development, but suppressed neovascularization in
the OIR-treated group [65]. Moreover, SRPIN340 and rapamycin were proposed for indirectly reducing
VEGF expression. SRPIN340 is the inhibitor of serine arginine protein kinase 1 (SRPK1), which plays
a role of phosphorylation of SRSF1 and VEGF165 splicing. The phosphorylated serine-rich splicing
factor-1 (SRSF1) translocates to the nucleus and induces alternative splicing, resulting in upregulation
of VEGE. The injection of SRPIN340 significantly decreased VEGF concentration in OIR-treated rats [66].
Rapamycin has an anti-angiogenic effect by inhibiting the mammalian target of rapamycin (mTOR),
which is the VEGF induced pathway. The neovascular area was reduced after rapamycin-treated in
OIR mice [67]. Through either a direct or an indirect way of VEGF inhibition, the anti-VEGF agents
could successfully eliminate the activity of hypoxia-induced upregulation of VEGF.

4.1.2. IGF-Binding Protein (IGFBP)

Based on the understanding of IGF expression in ROP progression, the therapeutic targets are
either increasing IGF level in phase 1 or reducing IGF concentration in phase 2. IGF concentration was
enhanced by injection of recombinant human IGF-1 (thIGF-1) before hyperoxia [68]. The mouse pups
that received rhIGF-1 were heavier and had a higher score in maturation assessments, including the
appearance of black skin color and eye opening. They also had lower neovascularization comparing
with placebo. For reducing IGF level in the hypoxia phase, IGFBP3 and Jb3 were investigated.
In the normal situation, free IGF-1 tends to bind with the IGF-1 receptor on the cell surface and
induce angiogenesis. If there is more IGFBP3 in the extracellular fluid, IGFBP3 will bind with IGF-1.
The downstream process of IGF-1 will then stop, and this will trigger cell apoptosis. Therefore, a
reduction of neuronal cell apoptosis was indicated in the IGFBP3-injected OIR mice [69], and a larger
retinal avascular zone was observed in the IGFBP3-deficient mice [70]. Jb3 is the inhibitor the of IGF-1
receptor. Similar to the action of IGFBP3, Jb3 bind to IGF-1 receptor and block its binding site of IGF-1.
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Jb3 injection in mouse model affected the vascularization and resulted in fewer neovascular tufts after
hyperoxia-hypoxia induction [71]. Either induced or suppressed IGF level in ROP phase 1 or 2 have a
beneficial effect on vascular development and maturation.

4.2. Transcription Factors

4.2.1. Regulation of HIF-1a Expression

The increased or reduced HIF-1x concentration is one way to attenuate the condition of vessel
loss in phase 1 or neovascularization in phase 2, respectively. Prolyl hydroxylase (PHD) plays a role in
the degradation of HIF-1x and suppression of its activity. The PHD inhibitor, dimethyloxalylglycine
(DMOG), and PHD2-deficient mice demonstrated an accumulation of HIF-1cc and prevention of vessel
loss and vessel tufts in the early and late stage of OIR [72,73]. The suppression of HIF-1ax was also
investigated using RTP801-deficient mice. RTP801 is a novel responsive gene of HIF-1. It is upregulated
under hypoxia and induced the transcription of HIF-1. After OIR, RTP801-deficient mice displayed an
attenuated neovascular tuft and decreased apoptosis [74]. Another method to reduce HIF effects is
the direct inhibition of HIF by topotecan and doxorubicin that suppress the accumulation of HIF-1«
protein [94] and block HIF binding with its hypoxia-response element [95], respectively. Both inhibitors
significantly decreased neovascular tufts in the mouse OIR model, and retinal function was further
protected by topotecan treatment [96]. The use of upregulation or downregulation in HIF-1« has a
significant effect on suppression of ROP development.

4.2.2. Inhibitory Effect of NOS Expression

Inhibition of NOS can suppress cell proliferation and neovascular formation. For eliminating
the NOS expression on phase 2 of ROP, the pretreatment of NOS inhibitors was investigated.
N-nitro-l-arginine (L-NA), N G—nitro—L—arginine (L-NNA), aminoguanidine (AG) were injected into the
animal during hyperoxia [75-77]. L-NA and L-NNA are the general NOS inhibitors, and AG is the
specific iNOS inhibitor. Studies demonstrated a reduction of the avascular zone and neovascular tufts
in the NOS and iNOS inhibitor groups. The elimination of NOS expression plays a protective role in
retinal damage.

4.2.3. Blockage of 3-ARs

Vascular changes in ROP progression partially depend on 3-AR concentration in the 2 phases of
ROP. Propranolol is a nonselective 3-AR antagonist. The vascular protective effect in propranolol is
quite controversial. Subcutaneous injection (0.02 to 20 mg/kg/dose) or topical administration (0.5 to
20 mg/kg/dose) of propranolol after hyperoxia resulted in an inhibition of neovasculature and VEGF
expression [78,79]. Similarly, another investigation administrated propranolol (2 to 60 mg/kg/dose)
after hyperoxia by oral, intraperitoneal, or subcutaneous injections [97]. However, these three
propranolol-treated groups showed no significant difference in avascular and neovascular areas,
as well as VEGF level. Moreover, a recent investigation in the use of propranolol in the mouse OIR
model demonstrated an exacerbation of OIR where higher pericyte apoptosis and vascular permeability
were observed [98]. On the other hand, the blockage of three 3-ARs subtypes (f1-, - and P3
-ARs) using their respective specific inhibitor, atenolol, ICI 118,551 and SR59230A showed different
results [80]. The (3,-AR blocker has a remarkable protection in vascular changes and a better retinal
function after OIR. Therefore, the impact of using 3-ARs blockers is still unclear, and more studies are
required in investigating its protective properties after OIR.

4.3. Anti-Angiogenesis

Uncontrolled angiogenesis is a factor of neovascularization in phase 2 ROP. Anti-angiogenic
agents provide a way to disrupt the vasculature formation pathway, thereby inhibiting abnormal
neovasculature formation in ROP.
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4.3.1. Steroid Agents

Dexamethasone and anecortave acetate were identified as anti-angiogenic agents, but it may not
be a suitable drug for ROP therapy. Dexamethasone and anecortave acetate were administrated in the
mouse and rat OIR studies and showed a beneficial effect in neovascular suppression [81,82]. However,
a recent clinical investigation mentioned that postnatal steroid use has a higher risk of severe ROP and
fungal sepsis development [99]. Despite their roles as anti-angiogenic agents, dexamethasone and
anecortave acetate are in fact independent risk factors of ROP severity.

4.3.2. Other Angiogenic Inhibitors

Some other anti-angiogenic agents have been discussed and exhibited the suppression of
neovascular formation in rat or mouse OIR model. They have a common feature of suppression of
VEGF, IGF-1, HIF-1oc and other angiogenic factors. For example, deguelin, YC-1 and (- lapachone are
the components that indirectly regulate the HIF-1x expression [83-85]. Glial water channel aquaporin-4
(AQP4), linagliptin, furin and desmogleins are able to inhibit VEGF expression or its activity from
reducing the effect of OIR [100-103]. N-terminal fragment of human prolactin (16K HPRL) and
12-lipoxygenase (12-LOX) mediate endothelial cell proliferation [86,87]. Tetramethylpyrazine (TMP),
plasminogen kringle 5 (K5), myocyte enhancer factor 2 C (MEF2C), anti-secretogranin III, mini-peptide
ribosomal protein L41 (RPL41) and valproic acid have a protective and preventive effect in vascular
diseases [88-90,104-106].

However, less information and investigations in ROP support was found for these anti-angiogenic
components. More studies will be needed for further evaluating their protective effect on ROP.

5. Neuroprotective Agents in ROP

ROP can also be considered one of the neurodegeneration diseases, and it happens when the infants
received supplementary oxygen therapy. The presence of hyperoxia-hypoxia induction is harmful to
the retinal neurons due to the presence of oxidative stress. Moreover, the hypoxic damage causes the
production of free radicals, inadequate blood supply and other inflammatory actions, as well as the
apoptotic effect in neuronal cells [107]. Many investigations proposed the use of anti-oxidative and
anti-inflammatory agents for possible prevention of neuronal apoptosis, and therefore, as treatments
for ROP (Figure 1).

Moreover, recent evidence showed that neurodegeneration might occur before the vascular
damage in diabetic retinopathy (DR) [108]. Similar to DR, ROP is also a kind of ischemic retinopathies.
Although there is no any direct evidence showed that the progression of neovascularization in DR
and ROP are the same, many researchers have studied retinal neovascularization in the proliferative
DR using OIR model [8,15,109-114]. They may have a similar aspect of vascular changes in DR and
ROP, but very limited studies have examined the association between neurodegeneration and vascular
changes in OIR or ROP. Therefore, we hypothesize that neuroprotective agents may potentially be a
promising therapeutic strategy for ROP.

5.1. Antioxidants

Antioxidants are the agents that have the ability to reduce oxidative stress. They can be divided
into nutritional and systemic antioxidants. The antioxidants that can be obtained from the dietary
sources are classified as nutritional antioxidants. Some food components have the properties of
blocking the oxidative pathway or suppressing free radical production. Therefore, the consumption of
these foods may prevent oxidative stress, and thus, neuronal damage. Another group of antioxidants
is the agents that are present in the body and play a role in the inhibition of oxidative stress, but are
suppressed in hypoxia naturally. Both nutritional and systemic antioxidant are critical components for
suppressing oxidative stress and enhancing the ability of neuroprotection.
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5.1.1. Nutritional Antioxidants

Lutein

Lutein has an anti-oxidative effect on the ischemic and hypoxic models [115-119]. Lutein is a class
of xanthophyll carotenoid and is contained in the dark vegetables and fruits, such as broccoli, kale and
kiwi fruit. It cannot be generated in the body, and must, therefore, be ingested. Lutein is very safe. It is
approved by the Food and Drug Administration (FDA) and considered as GRAS (generally recognized
as safe). In the eye, it is present in the macula and lens, and acts as a photoprotective agent in screening
out the harmful blue light [120,121]. Besides, lutein is an antioxidant and potential preventing agents
for cataract and age-related macular degeneration (AMD) [120]. Photo-oxidative damage leads to
protein oxidation, whose products can precipitate in the lens and results in cataract. Although there is
a smaller amount of lutein concentrated in the lens (compared to the macula), it is possible to block
the high energy blue light and prevent cataract. Similarly, in AMD, the presence of lutein suppresses
the extent of photo-oxidation, and thus, reduces the formation of neovascularization [120,122,123].
In addition, lutein is shown to have anti-inflammatory properties in attenuating the activity of
NF-«B [118,124]. Lutein provides neuroprotective effects in both in vitro and in vivo studies. Higher
cell viability and suppressed inflammatory responses were shown in the lutein-treated retinal ganglion
cells (RGC-5) and rat Miiller cells (rMC-1) after chemical-induced hypoxic damage [124,125]. It also
prevents neuronal damage in mouse ischemia/reperfusion (I/R) injury model [117,118,124], rat retinal
detachment (RD) model [126] and rat N-methyl-d-aspartic acid (NMDA) retinal damage model [127].
When administrated 1 h before and 1 h after reperfusion in the I/R injury model, lutein treatment
yielded a better neurological scoring, less brain damage, such as smaller infarct area and infarct volume,
suppression of oxidative stress by inhibiting NFkB signaling pathway, and inhibition of apoptotic
pathway by increasing phosphorylation of Akt and Bcl-2 expression. Lutein’s retinal protective
effect exhibited in the RD and NMDA models showed fewer TUNEL-positive cells, reduced GFAP
immunoreactivity and inhibited apoptotic effect in RGC. In studies on the effect of lutein in the mouse
OIR model, lutein was daily injected to mice during hypoxia. Interestingly, lutein treatment did not
only reduce avascularization and vascular leakage, but also protected astrocytes and promoted the
formation of endothelial tip cells [128]. Lutein may, therefore, be a potentially beneficial agent for
maintaining vasculature and neuronal cells in human ROP.

Caffeine

Caffeine is commonly found in coffee, cola and tea. It serves as a stimulant in the central nervous
system. Its anti-oxidative characteristic was first described in 1991 [129]. Earlier investigations
mentioned the protective effect in the inhibition of oxidative DNA damage, attenuation of oxidative
stress in rat liver and anti-inflammation by regulating TNF-alpha production [130-133]. In addition,
caffeine (when cotreated with adenosine A2A receptor antagonists) displayed a neuroprotective
effect by acting against 3-amyloid-induced neurotoxicity in an in vitro AD study [134]. Recently,
the neuroprotective effect of caffeine was indicated using a rat hyperoxia injury model where caffeine was
injected intraperitoneally before exposure to 80% oxygen environment [135]. Fewer TUNEL-positive
neuronal cells were observed in the caffeine-treated immature brain samples. Caffeine was then
investigated in the mouse OIR model. The water-soluble caffeine was administered by addition to the
drinking water. This treatment did not affect normal vascular development, but it could eliminate
avascular area and neovascular tufts. The concentration of VEGF was significantly lower than that in
the untreated group with a lower apoptotic response in neuronal cells after treatment [136]. Caffeine,
therefore, has a beneficial effect on the prevention of neuronal damage in OIR. However, the adverse
and long-term effect of caffeine in premature infants are not discussed; this can potentially cause
caffeine addiction after treatment.
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Omega-3 Long-Chain Polyunsaturated Fatty Acids (w-3 PUFAs)

Long-chain eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids are the w-3 PUFAs that
have a beneficial effect of oxidative stress prevention. Omega-3 is enriched in fish oil. The protection of
neuronal cells using w-3 PUFAs has been shown in many neurodegeneration diseases, such as AD and
PD. In the epidemiological studies conducted in France and Chicago, participants who have a higher
consumption of fish or DHA have a lower risk of dementia or AD [137-139]. To further understand
the effect of PUFAs, transgenic mouse model, Tg2576 mouse, was generated for investigation of
neurodegeneration in AD. The DHA-treated mice have a lower apoptotic response and fewer behavioral
deficits in the swimming behavioral test [140]. After that, the protective effect of w-3 PUFAs and
DHA was investigated in the in vitro RGC-5 cells or in vivo mouse OIR model. RGC-5 cells were
protected by DHA under H,O»-induced oxidative stress by inhibition of apoptosis [141]. In the
animal studies, the diet was mixed with w-3 PUFAs and fed to the lactating mother during hyperoxia.
Neovascularization was significantly inhibited after w-3 PUFAs treatment [142-144]. Although the
neuroprotective effect of EPA and DHA was showed in the in vitro RGC cells, it is essential that more
studies are required to support its neuroprotective effect in the in vivo OIR models.

Resveratrol

Resveratrol is a phytoalexin that can be absorbed from the dietary sources, such as grapes,
berries, and peanuts. It is a natural antioxidant by reducing the generation of ROS and maintaining
the concentration of intracellular antioxidants [145-147]. Other than being an antioxidant, it also
contains anti-inflammatory properties [148,149]. It provided a neuroprotective role in animal models
for AD, PD, and stroke [146,150-155]. Decreased apoptosis of neuronal cells and prevention of motor
impairment were observed in the animal models for these neurodegenerative diseases. Resveratrol
also showed a beneficial effect in in vitro and in vivo rat OIR studies. Resveratrol was provided during
hyperoxia in the in vitro OIR primary culture study that resulted in I attenuated eNOS and nNOS
levels after treatment [156]. It was then further investigated in a rat OIR model. Resveratrol injection
was performed either during hyperoxia or after hyperoxia intragastrically. The concentration of eNOS
and nNOS, as well as Bcl-2 expression, were suppressed in the resveratrol-treated groups [156,157].
Resveratrol might have an anti-angiogenic effect in the OIR model by inhibiting the several angiogenic
factors. Despite resveratrol’s potential neuroprotective properties in AD, PD and stroke models, there
is a lack of information for its beneficial effects in OIR models.

Vitamin E

Vitamin E is a well-known fat-soluble antioxidant and is commonly found in vegetable oil,
meat and eggs. It can serve as a supplement for preventing cancer and heart disease, as well as
treating diabetes. The neuroprotection pathway of vitamin E was still unclear, but the suppression of
neurodegeneration has been shown in several studies. Neuronal damage was reduced in the animal
ischemic model [158], and the suppression of AD progression was observed in a clinical trial [159].
More importantly, protective effects were first observed in the OIR model in 1977. Vitamin E was
administrated to the pups by intraperitoneal injection or fed to their mother during hyperoxia [160,161].
The retinal vasculature of the pups had a much smaller avascular area after hyperoxia induction.
In a clinical trial, there was also a reduction of ROP incidence after vitamin E treatment, and no adverse
effects were identified [162-165]. However, there is currently no data to support the neuroprotective
role of vitamin E in OIR, despite its well-established effects in the central nervous system.

5.1.2. Endogenous Antioxidants

Suppression of Aldose Reductase

Aldose reductase is the first enzyme in the polyol pathway which converts glucose to
sorbitol. Upregulation of polyol pathway directly induces oxidative stress under hyperglycemic
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condition [112,166-170]. Inhibition of aldose reductase has a protective effect on diabetic and
ischemic models by reducing oxidative stress and VEGF expression, as well as preventing BRB
breakdown [171-174]. In OIR, inhibition of aldose reductase expression and its association with OIR
has been investigated using aldose reductase-deficient mouse model or administration of an aldose
reductase inhibitor, Fidarestat [175,176]. The absence of aldose reductase in the mice does not affect
normal retinal development, including vasculature, function and morphology. Interestingly, there
was attenuation of avascular and neovascular areas and prevention of vessel leakage in the ganglion
cell layer and outer plexiform layer in the aldose reductase-deficient mice and Fidarestat-treated
retinae after OIR. Lower expression of proinflammatory response protein p-IxB and cell proliferative
signaling molecular, such as VEGF and p-Akt was found with a milder GFAP immunoreactivity and
microglial activation. More importantly, the absence of aldose reductase preserved retinal function
after OIR. This neuroprotective role of aldose reductase deficiency in the OIR model was reflected in
its anti-oxidative and anti-inflammatory events, thereby attenuating glial cell responses and neuronal
cell death.

Superoxide Dismutase (SOD)

SOD is a water-soluble endogenous enzyme with anti-oxidative effect. It is the first line of
oxidation defense by reduction of superoxide radicals. Natural SOD has large molecular weight, a short
life-span, and lower availability in circulation. For prolonged life-span and increased activity, SOD is
usually modified before exhibiting its protective effects, such as nonpeptidyl Mn-based SOD (MnSOD),
liposomal SOD, and copper-zinc SOD (CuZnSOD) [177-180]. Neuroprotection by SOD was shown in
the mouse stroke model of transient occlusion of the middle cerebral artery (MCAO) [177,179,181].
Mice after MCAO have an improvement of neurobehavioral outcome and reduction of infarct volume
after injection of SOD mimetics and MnSOD. Furthermore, there was a reduction of intracellular
superoxide radical concentration, and a increase in neuronal cell viability in in vitro primary culture.
The effect of SOD overexpression was evaluated in mouse OIR model by the transgene of SOD gene
or intraperitoneal injection of liposomal SOD and CuZuSOD [178,180]. These investigations showed
no adverse effect in normal retinal development, but reduced avascular and neovascular areas after
hyperoxia-hypoxia induction. Therefore, the anti-oxidation property of SOD provides prevention
of ROP progression, but its effects on the retinal neurons, and hence, neuroprotection properties
remain unclear.

Statin

Statin is a lipid-lowering drug that can prevent cardiovascular diseases [182]. It suppresses
HMG-CoA reductase, the enzyme for biosynthesis of cholesterol [183]. Its prevention of neuronal cell
death has been shown in both cell culture and animal studies. However, statin has a dose-dependent
neuroprotective or neurotoxic effect in different studies [184]. Therefore, consideration of statin
concentration becomes a critical part of treatment. Simvastatin, lovastatin, atorvastatin and fluvastatin
are the common statins that are used as drug treatment for hypercholesterolemia [185]. Simvastatin
(50 mg/kg/day) treatment caused an upregulation of Bcl-2 in gene and protein level and promoted an
anti-apoptotic effect in mice and guinea pig AD model [186,187]. Fluvastatin, when administrated to
the mouse intraperitoneally (10 mg/kg/day), suppressed the formation of retinal neovascularization,
expression of VEGF, HIF-1«, inflammatory mediator ICAM-1, and elimination of superoxide
production [188]. These studies showed that statin plays an anti-oxidative, anti-inflammatory and
anti-angiogenic role in the OIR models; however, there is no mention of any protective effects on the
retinal neurons.

Melatonin

Melatonin is a neurohormone derived from the pineal gland and is widely used in clinical
applications. It provides regulation of normal body rhythms as a sleep aid supplement. Melatonin
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also contributes to stroke and some neurological disorders, including AD and PD. Melatonin-treated
rats showed significantly reduced inflammatory responses, BRB permeability, and formation of
cerebral edema after experimental stroke [189-192]. It also has a protective effect in neurodegeneration
diseases by acting as a free radical scavenger. The anti-oxidative activity of melatonin is shown in
the reduction of free radical and upregulation of antioxidant enzyme, including SOD, glutathione
peroxidase and glucose-6-phosphate dehydrogenase [193-195]. Melatonin also provides beneficial
effects in hypoxia-induced rat model and mouse OIR model [196,197]. Melatonin could reduce
neovascularization by suppressing VEGF and HIF-1« secretions. Besides its role as a regulatory
hormone, melatonin also offers neuroprotection in stroke and neurodegeneration. Unfortunately,
its neuroprotective effects in the OIR model have not been investigated.

Apocynin

Apocynin is a NAD(P)H oxidase inhibitor, which was first isolated from Apocynum species.
There is a direct relationship between NAD(P)H oxidase, ROS production, oxidative stress and
progression of neurodegenerative disorders. NAD(P)H oxidase is the major source of ROS production.
The accumulation of ROS leads to oxidative stress and causes neuronal damage, resulting eventually in
neurodegenerative diseases. By inhibiting NAD(P)H oxidase, apocynin suppresses oxidative stress and
prevents neurodegeneration [198]. Apocynin is a powerful blocker for NAD(P)H oxidase. It is easily
oxidized by peroxidases and forms dimer or trimer derivatives [198]. The neuroprotective function of
apocynin was well described in stroke and PD studies by yielding a better neurological outcome and
reduction of oxidative stress and inflammatory responses [199-204]. The administration of apocynin
has been proposed for treating OIR mice [205,206]. When administered by intraperitoneal injection after
hyperoxia, beneficial effects in vascular protection, including suppression of neovascular formation
and VEGF concentration were observed. Apocynin exhibits a protective effect in the OIR model as an
indirect suppressor for oxidative stress, but no information is available on its neuroprotective roles
in OIR.

5.2. Anti-Inflammatory Agents

5.2.1. Prostaglandin Inhibitors

Indomethacin and ibuprofen are nonsteroidal anti-inflammatory agents and prostaglandin
inhibitors. Many studies using these prostaglandin inhibitors are carried out for treating patent ductus
arteriosus (PDA). PDA is a common heart disease in preterm infants, and it increases the risk of
pulmonary hemorrhage, necrotizing enterocolitis (NEC) and intraventricular hemorrhage [207]. These
prostaglandin inhibitors inhibit cyclooxygenase (COX), which can induce inflammatory cells. Other
than the anti-inflammatory effect, they also exhibited the neuroprotective effect in brain injury and PD
diseases by suppressing neuronal apoptosis, lipid peroxidation and superoxide production [208-212].
Specifically, subcutaneous administration of indomethacin and ibuprofen provides vascular protection
in OIR [213,214]. The size of the neovascular area was significantly inhibited in the drug-treated
OIR mice. These prostaglandin inhibitors not only provide a neuroprotective effect on brain injury
and PD, but also play a role in vascular protection in OIR. Unfortunately, whether they can exert
neuroprotective effects in OIR remains unclear.

5.2.2. Granulocyte Colony-Stimulating Factor (G-CSF)

G-CSF is a well-known hematopoietic glycoprotein. It stimulates proliferation, survival and
maturation of cells [215]. Many studies indicated that G-CSF promotes anti-inflammatory, anti-apoptotic
and neuroprotective effects [216-220]. The presence of G-CSF reduces inflammatory responses and
neuronal cell damage in both in vitro and in vivo rodent ischemic models. These beneficial effects were
also shown in the H,O, induced human retinal endothelial cell culture and mouse OIR model [221].
OIR-treated mice, receiving an intravitreal injection of G-CSF after hyperoxia, displayed suppressed
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neovascularization. Although G-CSF could suppress neuronal damage in ischemia models, there is
limited data on its neuroprotection in the OIR model.

5.3. Others

Inhibition of Renin-Angiotensin System (RAS)

RAS regulates angiogenesis. Renin and angiotensin II type-1 receptor (AT1-R) play potential
roles to either induce or suppress cell proliferation path in RAS. Renin is the initiation enzyme of
RAS. Aliskiren, a renin inhibitor to attenuate renin secretion, was injected to the OIR-treated mice
after hyperoxia [222]. Reduced retinal neovascularization and suppressed VEGF mRNA and protein
level were observed in the aliskiren-treated OIR mice. In addition, other investigations suggested that
blockage of AT1-R is another possible therapy for anti-angiogenesis in ROP, as AT1-R can stimulate
cell proliferation, fibrosis, and angiogenesis. Valsartan is an AT1-R inhibitor [223,224]. After valsartan
treatment by intraperitoneal injection in the rat, it prevented the neovascular formation and had a
neuroprotective effect. Treatment with valsartan yielded an extensive glial vascular network and
enhanced astrocytes coverage in the retina after OIR, indicating that blockage of RAS may be a potential
therapy for ROP.

6. Stem Cell Therapy in ROP

Stem cell therapy is now a popular approach to treat a disease. Stem cells (SCs) have the
characteristics of differentiating into specialized cell types with unlimited renewing properties [225].
These properties provide great potentials for therapeutic uses in tissue repair and regeneration.
In the eye, identification of ocular SCs first started in the 1970s. The ocular SCs are region-specific
and are commonly found in the limbus, conjunctiva and trabecular meshwork [226]. Later, a clinical
study investigated SC populations in peripheral blood samples from preterm babies with or without
ROP [227]. Two SC populations were found to be upregulated in preterm babies and babies with
ROP. They are very small embryonic-like stem cells (VSEL-SCs, Lin”"CXCR4*CD45") and endothelial
progenitor cells (EPCs, CD347CD1337CD144"), respectively. VSEL-SCs express the early embryonic
transcription factors and play a role in embryogenesis. Clinical studies indicated that the mobilization
of VSEL-5Cs is activated in some hypoxic-related injuries, such as acute myocardial infarction and
stroke, and accumulated in peripheral blood [228,229]. However, the actual role of VSEL-SCs in
tissue repair is still unknown. On the other hand, EPCs are responsible for tissue repair. EPCs can
differentiate into endothelial cells, and they can be transported from bone marrow to the site of injury
through circulation [227]. The findings that mobilization of systemic EPCs is upregulated during
normal vascular development without ROP and in the proliferative phase of ROP suggested that a
specific SC mobilization is associated with ROP progression.

In fact, different populations of SCs have been shown to promote retinal vascular repair in the
mouse OIR model. Adult mouse bone marrow (BM)-derived lineage negative (Lin™) or CD44M myeloid
progenitor cells are the first SC populations that are investigated in OIR [230]. This study demonstrated
that adult BM derived myeloid progenitor cells could migrate to the avascular zone in the retina
and differentiate into microglia. Moreover, these SCs did not only reduce avascular and neovascular
areas after injection, but also accelerated retinal revascularization. Retinal morphology and function
were also examined for the long-term effect after transplantation. No abnormal retinal structure and
function were observed between injected eyes and control eyes at six months after injection. Another
study of SCs in OIR used two main subtypes of EPC, early EPCs (eEPCs) and outgrowth endothelial
cells (OECs) [231]. Their proliferative potential was investigated in the in vitro culture. The lower
proliferative property was shown in the eEPCs comparing with OECs, although both displayed the
classical EPC phenotypes, such as bound lectin and expressed CD31. Furthermore, OECs have a
higher expression of VEGFR-2 and promote cell monolayer formation with intercellular junctions.
Although both eEPCs and OECs yielded EPC phenotypes, only OECs are closely related to endothelial
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cells by displaying tight junctions and association with retinal vascular formation in the in vitro study.
OECs were then injected intravitreally after hyperoxia for further investigation on the role of OECs
in the OIR model. Injected eyes displayed a significantly reduced avascular area and prevention of
neovascularization. Other than eEPC and OEC, the effect of mesenchymal stem cells (MSCs) and
adipose-derived stem cells (ASCs) were reported recently using the mouse OIR model [232-235].
MSCs or ASCs were injected into the OIR-treated mice at P12 intravitreally. The injection of MSCs did
not only protect the retinal vessels by reducing avascular and neovascular areas, but also inhibited
inflammatory activity. Lower expression of proinflammatory cytokines, such as IL-13 and TNF«, and
increased anti-inflammatory cytokines, including IL-10 and IL-4, was observed. On the other hand,
the ASC-injected pups displayed a positive effect in retinal morphology by increase the retinal vascular
area after OIR. Despite its therapeutic potential in protecting vasculature and inhibiting inflammation
in the OIR model, effects of SCs on retinal neuronal morphology and function are not studied and
reported. Therefore, more investigations are needed for stability, efficacy and side effects of SC therapy
in the developing infant eye.

7. Current Treatments in ROP

Current treatments for ROP aim to control and eliminate the pathological neovascularization;
they include cryotherapy, laser photocoagulation and anti-VEGF therapy [236]. Retinal cryotherapy
and laser coagulation involve ablation of the peripheral avascular retina [237]. Cryotherapy was
first described as a treatment for severe ROP patients in the late 1980s. It is an effective treatment,
yielding more than 40% reduction of unfavorable functional outcomes in the cryotherapy-treated
eye of severe ROP infants in 3-month, 10-year and 15-year follow-up CRYO-ROP studies [238-240].
However, complications appeared with cryotherapy, such as conjunctival laceration, lid edema, apnea,
and vitreous hemorrhage, as well as new retinal detachment [9,226,240]. For the better structural
and functional outcomes, laser therapy emerged with less ocular and systemic side effects [9,226,241].
It has a lower requirement in general anesthesia. However, some complications about laser treatment
are substantial, such as cataract, intraocular hemorrhage, and cornea and lens burn [226]. Ablative
therapy has an effective outcome in ablation of peripheral avascular retina after treatment, but it may
occur with systemic complications or unfavorable structural and functional outcomes.

It has been shown that upregulation of VEGF in the progression of ROP causes retinal
neovascularization. Recently, extensive research has been focused on controlling VEGF concentration
during hypoxia. Intravitreal injection of anti- VEGF antibody has been performed to normalize the
excess VEGFE. Bevacizumab, ranibizumab and aflibercept are the anti-VEGF antibodies that underwent
ROP clinical trials since 2011. Reduced retinal vascular tortuosity, and in turn, regression of vessel
growth toward peripheral retina were observed after injection [54,61]. The side effects that are observed
laser in ablative therapy, such as retinal scarring and cataract are eliminated. However, other clinical
trials reported that the injected anti-VEGF antibodies could enter the systemic circulation through
the damaged BRB, and in turn, reduce the systemic VEGF amount [55,56], which may affect the
development of the infants. Therefore, long-term studies in using anti-VEGF treatment for ROP infants
are essential for preventing neurodevelopment disruption in their childhood.

Combination treatment of laser coagulation and anti-VEGF injection has now become a new
trend of ROP treatment. Previous clinical studies in combination therapy have a positive and effective
outcome for ROP patients [57,58,62,217]. Regression of peripheral retinal vessel, while no signs
of ocular and systemic side effects were observed after bevacizumab injection and laser treatment
during the 8-week, 3-month and 6-month follow-up period [57,58,217]. Another clinical trial using
ranibizumab injection with laser therapy showed regression of ROP without any unfavorable ocular
outcome [62]. In fact, the combined therapy of anti-VEGF injection and laser coagulation may require a
lower anti-VEGF dose, thereby minimizing the systemic drop of VEGF level after therapy with a better
outcome. However, long-term study about the efficacy and adverse effects of therapy are necessary.
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8. Conclusions and Future Perspectives

Since 1942 when ROP was first described, many therapeutic options in inhibiting VEGF actions
have been proposed and provided retinal vascular protective effects. Unfortunately, the protection of
retinal neurons in OIR and ROP attracts little attention. Many antioxidants, anti-inflammatory agents
and other factors could be the targets of neuroprotection. However, despite their availability, there have
been very limited investigations in OIR and ROP that focused on the preservation of neuronal structure
and function using these agents. Future studies should be conducted in deciphering the relationship
between vascular changes and neurodegeneration in ROP and functional and morphological changes
in neuronal cells, as well as glial cells, so as to preserve vision in babies with ROD, a lifelong medical
condition and a major public health issue.
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5 N 5’ nucleotidase

AD Alzheimer’s disease

AMD Age-related macular degeneration
ATI-R Angiotensin II type-1 receptor
B-AR [-adrenergic receptor

BRB Blood-retinal barrier

COX Cyclooxygenase

DHA Docosahexaenoic

DR Diabetic retinopathy

EPA Eicosapentaenoic

eEPC Early endothelial progenitor cells
Epo Erythropoietin

FDA Food and Drug Administration
G-CSF Granulocyte colony-stimulating factor
HIF Hypoxia-inducible factor

HRE Hypoxia response element

HSPG Heparin sulphate proteoglycans
IGF-1 Insulin-like growth factor-1

KDR Kinase insert domain-containing receptor
KLT-1 Kms-related tyrosine kinase 1
mTOR Mammalian target of rapamycin
NOS Nitric oxide synthetase

NRP Neurophilin

w-3 PUFAs Omega-3 long-chain polyunsaturated fatty acids
OIR Oxygen-induced retinopathy
orcC Outgrowth endothelial cells

PD Parkinson’s disease

PHD Prolyl hydroxylase

RAS Renin-angiotensin system

RGC Retinal ganglion cells

ROP Retinopathy of prematurity

ROS Reactive oxygen species

SC Stem cell

SRPK1 Serine arginine protein kinase 1
SRSF1 Serine-rich splicing factor-1

STOP-ROP Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity
VEGF Vascular endothelial growth factor
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