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Abstract The COVID-19 pandemic has elicited a rapid

response from the scientific community with significant

advances in understanding the causative pathogen (SARS-

CoV-2). Mechanisms of viral transmission and pathogen-

esis, as well as structural and genomic details, have been

reported, which are essential in guiding containment,

treatment, and vaccine development efforts. Here, we

present a concise review of the recent research in these

domains and an exhaustive analysis of the genomic origins

of SARS-CoV-2. Particular emphasis has been placed on

the pathology and disease progression of COVID-19 as

documented by recent clinical studies, in addition to the

characteristic immune responses involved therein. Fur-

thermore, we explore the potential of nanomaterials and

nanotechnology to develop diagnostic tools, drug delivery

systems, and personal protective equipment design within

the ongoing pandemic context. We present this as a ready

resource for researchers to gain succinct, up-to-date

insights on SARS-CoV-2.
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Introduction

The recent COVID-19 outbreak has generated considerable

interest in medical and research circles around the world.

This highly contagious disease poses severe challenges in

clinical settings, with respiratory distress and immune dys-

regulation serving as chief hallmarks. The novel virus,

identified as Severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), presents many interesting similarities

with viruses that were associated with earlier outbreaks such

as the MERS-CoV and SARS-CoV. Notable attempts to

develop vaccine candidates and therapeutic solutions have

been initiated, and pioneering efforts have helped produce a

wealth of knowledge on the virus in question [83]. However,

the rapid pace of development has also resulted in an over-

whelming spread of inaccurate information about the viral

origin and infectivity. Thus, we aim to provide comprehen-

sive coverage of the SARS-CoV-2 virology, transmission

modes, associated clinical pathogenesis—in particular,

cytokine storm responses and acute respiratory distress

syndrome (ARDS).Besides, we also discussed the promising

potential of nanotechnology-based tools to combat the dis-

ease. A concise, schematic summary of viral pathogenesis

and transmission has been provided in Fig. 1.

Origin and evolution of SARS-CoV-2

An outbreak of a novel coronavirus, originating from

Wuhan, China, was declared in December 2019. Phyloge-

netic analysis of viral genome isolated from the infected

patients and the market environment suggested that the

virus could be clustered with a group that includes the

SARS/SARS-like coronavirus, belonging to the genus Be-

tacoronavirus and was thus named as SARS-CoV-2
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[65, 109]. Whole-genome comparison of SARS-CoV-2

with other related coronaviruses indicated 79%, 50%,

87.23%, and 87.99% similarity to SARS-CoV, MERS-

CoV, bat-SL-CoVZXC21, and bat-SL-CoVZC45, respec-

tively [32, 56]. Interestingly, a remarkable sequence simi-

larity of 96.2% was found between the bat CoV RaTG13

(Rhinolophus affinis) and SARS-CoV-2 [119]. Further

understanding of host selection revealed that the bat CoV

RaTG13 forms an inner joint neighbor with bat-SL-

CoVZXC21 and bat-SL-CoVZC45 as the closest relatives.

However, the bat HKU9 coronaviruses form an immediate

outgroup sharing a common ancestor with the SARS-CoV-

2 group (Fig. 2). Since most of the outer and inner joint

neighbors of SARS-CoV-2 have bats as their natural host,

these observations are suggestive that bats would be the

convenient native hosts of SARS-CoV-2 [77, 109, 119].

It is interesting to note that the seafood market in

question also sold non-aquatic animals such as wild

mammals, frogs, and snakes; however, bats were neither on

sale nor found in the market during the outbreak [102].

Despite high sequence similarity, SARS-CoV-2 and bat

SARS-like RaTG13 differ in several key genomic features.

One of them is the single insertion of a polybasic cleavage

site (Pro-Arg-Arg-Ala) at the S1/S2 junction of the SARS-

Fig. 1 Transmission and Pathogenesis of SARS-CoV-2. The SARS-

CoV-2 is an enveloped, single-stranded RNA virus. The primary hosts

are conjectured to be bats, from which the virus may have transmitted

to a human host via intermediate carriers. An infected human host

may readily transmit the pathogen to other individuals following

zoonosis. Green boxes indicate the major events of SARS-CoV-2

infection including respiratory discomfort, renin-angiotensin system

(RAS) dysfunction, and dysregulation of the immune system. Unless

contained by proper medical intervention, these may culminate in

potentially lethal conditions like ARDS and cytokine storm responses,

as denoted by the red boxes
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CoV-2’s spike (S) glycoprotein, which was speculated to

increase the infectivity of the virus [17, 113, 116]. The

phylogenetic analysis also showed a long branch in

between SARS-CoV-2 and the close relatives bat-SL-

CoVZXC21 and bat-SL-CoVZC45 with sequence similar-

ity less than 90%, suggesting that bat-SL-CoVZXC21 and

bat-SL-CoVZC45 may not be the direct ancestors of

SARS-CoV-2 (Fig. 2). This raises the possibility that

another mammal may have served as an intermediate host

from which the insertion was acquired, following which the

spill-over event to infect humans may have occurred

[32, 56]. A similar occurrence was also noted in the case of

related MERS-CoV and SARS-CoV, with dromedary

camels and palm civet being the intermediate hosts,

respectively [2, 31].

Prior to the onset of the epidemic, in late October 2019,

a SARS-CoV-like coronavirus was detected in the rescued

dead Malayan pangolins’ lung samples (Manis javanica)

from Guangdong province [53]. The whole-genome

sequence alignment suggested Pangolin CoV to be the

second closest relative of SARS-CoV-2 (91.02% similar-

ity) after batCoV RaTG13 (90.55% similarity). A similar

result was found from the amino acid phylogenetic analysis

of S1 protein. However, unlike SARS-CoV-2, Pangolin-

CoV does not have the furin polybasic cleavage site at S1/

S2 junction [114]. Both sequence and structural compar-

isons of the S protein’s receptor-binding domain (RBD)

suggests that similar to the RBD of SARS-CoV; the SARS-

CoV-2’s RBD is also suitable for binding to the human

Angiotensin-Converting Enzyme—2 (ACE-2) receptor

[51, 56, 100]. Virus infectivity study in HeLa cells proved

that the ACE2 receptor is required explicitly for SARS-

CoV-2’s cellular entry, unlike that of other coronavirus

receptors (dipeptidyl peptidase 4 or aminopeptidase N)

[119]. The computational analysis suggests that five critical

amino acid residues in RBD—necessary for binding to the

ACE2 receptor—are conserved between Pangolin-CoV and

SARS-CoV-2; whereas, the bat CoV RaTG13 contains four

Fig. 2 Structure, Genome organization, and Phylogenetic analysis of

SARS-CoV-2. The upper panel figures depict the schematic structure

of SARS-COV-2 virion and its genomic organization. The phyloge-

netic tree in the lower panel describes the evolutionary history of

SARS-CoV-2 by the Neighbor-joining method [79]. Whole-genome

sequence alignment was done by ClustalW (MEGA 7) with default

settings [47], and an optimal tree with the sum of branch length =

2.24553015 is shown here. The alphacoronavirus HCoV-NL63 and

HCoV-229E sequence were considered as the outgroup. The evolu-

tionary distances were calculated using the Maximum Composite

Likelihood method [88]. The tree is constructed to scale with units in

the number of base substitutions per site. The analysis involved 14

nucleotide sequences. All positions containing gaps and missing data

were eliminated. There were a total of 24,863 positions in the final

dataset
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amino acid mutations in the RBD. These results suggest the

possibility of similar entry profiles of both Pangolin-CoV

and SARS-CoV-2, with a higher probability of crossing the

host barriers to infect humans [53, 114].

Biophysical assays suggest that the S protein of SARS-

CoV-2 binds at least ten times more strongly to the human

cellular ACE2 receptor compared to its relative SARS-

CoV [100]. This increases the chances of SARS-CoV-2

having passed through more than one intermediate host in

order to acquire such high binding efficiency. The evidence

thus far suggests that in addition to pangolins (Pelodiscus

sinensis), snakes and turtles (Chelonia mydas and Chry-

semys pictabellii) may have been potential intermediate

hosts for the SARS CoV-2, prior to it’s transmission to

humans [45, 53]. Apart from structural aspects, character-

istic patterns of genomic evolution and transformation lend

credibility to a zoonotic origin theory. A well-known cor-

relation exists between the viral CpG dinucleotide con-

centration and the mammalian host selection. The

interferon-mediated mammalian zinc-finger antiviral pro-

tein (ZAP) binds to the CpG dinucleotides and inhibits

viral replication, thereby promoting viral genome degra-

dation [23, 60]. Hence, to ensure its existence, the virus

would preferably evolve with a low CpG deficiency index

(ICpG) in a high ZAP expressing mammalian tissue [105].

Interestingly, BatCoV RaTG13 and SARS-CoV-2 have an

extremely low ICpG compared to other b-CoVs from bat

species, suggesting that their ancestors either have low ICpG
or have evolved with low ICpG values. Studies found that

only genomes from canine coronaviruses (CCoVs) have

similarly low ICpG values as observed in SARS-CoV-2 and

BatCoV RaTG13. Thus, there is also a possibility that

before acquiring the ability to evade human ZAP-mediated

immune responses, the ancestors of these two viruses

infected the canids [105].

Based on the above findings, it appears obvious that

SARS-CoV-2 may have originated in the natural environ-

ment, influenced by various selection pressures exerted by

primary and intermediate hosts. This also discredits con-

jectures about its genesis as a result of manipulation within

laboratory conditions. However, more detailed serological,

metagenomic, and experimental evolution studies need to

be performed to confirm this hypothesis indubitably and

ascertain whether the natural selection in RBD can occur

prior to zoonosis.

Genome organization and structural biology
of the virus

SARS-CoV-2, like other b-coronaviruses, is enveloped,

with a positive single-strand non-fragmented RNA genome

of 29.0–30.2 kb [59] (Fig. 2). The name coronavirus

derives from its corona solis-like appearance (corona in

Latin means crown) in the electron micrographs caused by

the protrusion of spike glycoproteins from the viral enve-

lope. Each virion ranges approximately between 50 and

200 nm in diameter [14]. The novel virus genome has 5’

(265 nt) and 3’ (229 nt) terminal sequences with a gene

order as 5’- replicase gene, spike (S), envelope (E),

membrane (M), and nucleocapsid (N)-3’ [34, 101] (Fig. 2).

Unlike lineage-A b-CoVs, SARS-CoV-2 lacks hemagglu-

tinin esterase, facilitating viral entry into the host-cell

mediated by the S glycoprotein [59]. The replicase gene

contains two large open reading frames (ORFs), orf1ab and

orf1a, encompassing two-thirds of the genome, with orf1ab

as the largest gene. Orf1ab and orf1a encode polyprotein-

1ab (pp1ab) and polyprotein-1a (pp1a), respectively, which

are co-translationally cleaved into 16 non-structural pro-

teins (nsps) required for facilitating the viral replication

[111]. These cleavages are mediated by virally encoded

papain-like proteases or chymotrypsin-like protease

(3CLpro) or main protease (Mpro) at specific recognition

sites within the ORFs [22, 71].

The next ORF encodes monomeric S protein (175 kDa),

a type I fusion glycoprotein that trimerizes and facilitates

the receptor attachment [7, 20, 49]. The S1 domain is

located in the N-terminus of S protein, which contains the

glycosylated NTD (N-terminal domain), an RBD, and an

RBM (receptor-binding motif) that directly interacts with

the host ACE2 receptor for viral attachment. On the other

hand, the S2 domain acts as the fusion machinery con-

taining two heptad repeats (HR1 and HR2) that brings the

membranes of both viruses and host cell together to facil-

itate the membrane fusion [10, 51, 106, 107].

The E protein and the M protein are 8-12 kDa and

25-30 kDa glycoproteins, respectively, located in the viral

envelope. Both E and M are transmembrane proteins

containing a C-terminal endodomain and N-terminal

ectodomain [73]. Relatively scarce E proteins have ion

channel activity and were speculated to promote the viral

pathogenesis; whereas, M proteins are abundant in the

virus and interact with other structural proteins to give the

virion its shape [19, 62].

The N proteins are heavily phosphorylated proteins

present in the helical nucleocapsid of the virus that protects

the viral genome. It is an abundant viral protein in infected

cells, featuring a C-terminal domain (CTD) and N-terminal

domain (NTD) that can bind to RNA molecules of both

host and viral origin [13]. The N protein interacts with the

transcription regulatory sites (TSGs), present at the

beginning of every structural and accessory gene for tran-

scriptional control. Its CTD contains the genomic pack-

aging signal required to pack the viral genome into a

ribonucleoprotein complex called the capsid

[13, 48, 61, 85]. The N protein subsequently interacts with
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the M protein and nsp3, a component of the replicase

complex, to produce viral particles by facilitating the

tethering of encapsulated viral genome to the replicase-

transcriptase complex [39, 86].

Transmission of SARS-CoV-2

SARS-CoV-2, similar to the MERS-CoV and SARS-CoV,

spreads mainly from an infected individual through respi-

ratory droplets released while coughing. These droplets

are[ 5–10 lm in diameter and can remain suspended in a

closed, static environment for as long as 8–14 min or

undergo airborne transmission from an infected person to a

healthy individual [12, 70, 84, 91, 103, 104] (Fig. 1). The

virus is also known to be transmitted to healthy individuals

directly by kissing or via sexual contact with an infected

person [41, 68]. Several studies have suggested modes of

indirect transmission through fomites and fecal–oral routes

[30, 41, 64, 66]. Once the infected host sheds the virus into

the environment, it may survive with a half-life of 6.8 h on

plastic, 5.6 h on stainless steel, 3.5 h on cardboard, and

1.1 h in aerosols. If a healthy individual touches these

contaminated surfaces and then their eyes, mouth, or nose,

the viral particles may gain entry into the host cells and

initiate infection [93]. It was also demonstrated that the

virus could retain viability on the skin surface for up to 9 h,

a property that could accelerate the pandemic by increasing

the possibility of contact transmission [35].

The third trimester of pregnancy presents an immuno-

compromised situation, as well. Studies were conducted to

evaluate the possible potential for vertical-transmission of

the virus from the infected mother to neonates. However, it

remains unclear whether viral transmission could occur

during normal delivery since cesarean section-assisted

deliveries conducted during the pandemic and neonates

were found to be negative for SARS-CoV-2. The only

exception to this so far was reported by Alzamora et al.

[3, 15, 57]. On the other hand, children present a similar

risk of infection to that of the general population. Never-

theless, children were less likely to develop severe symp-

toms due to the lower viral load, milder immunological

responses, and less immune damage compared to severely

affected adults [8, 58].

Based on this understanding of the modes of viral

transmission, the appropriate use of personal protective

equipment with N95 respirator without expiration valves

for frontline healthcare workers was recommended. Addi-

tionally, preventive measures like environmental disinfec-

tion, social distancing, and use of face masks, protected

contact, and frequent handwashing practices have been

emphasized for the general population [11, 16, 97, 98].

However, the overall outcomes of these measures may be

limited by the extent of public adherence to these guide-

lines and lack of effective implementation.

Pathogenesis of SARS-CoV-2

The highly pathogenic HCoVs, including SARS-CoV-2,

MERS-CoV, and SARS-CoV, infects the lower respiratory

tract, lungs, kidneys, cardio vasculature, skin tissues, and

small intestine [21]. This infection leads to severe pneu-

monia, ARDS, and organ failures [4, 6, 25, 46].

The novel CoV-2 utilizes the host ACE2 receptor

(especially in alveolar cells of lungs, goblet cells of the

nasal mucosa, and absorptive enterocytes in the gut) in

concert with the host’s serine protease TMPRSS2 to infil-

trate the host cells [36, 119, 122]. The priming of viral S

glycoprotein triggers the cleavage of S protein by host

furin-like proteases at the S1/S2 cleavage site and brings

the membranes of both viruses and host cell close to

facilitate the membrane fusion [1, 17, 94, 114]. Subse-

quently, the viral genome is released into the host cells and

follows replication, translation, and packaging into pro-

geny viral particles. The active replication and release of

viral particles induce the infected cells to undergo an

inflammatory form of programmed cell death known as

pyroptosis [24, 117]. Upon cell entry by binding to the host

ACE2 receptor, the virus downregulates the expression of

ACE2, required for angiotensin-II (Ang II) cleavage to

produce angiotensin-1-7 [Ang (1-7)]. Being the key

effector of the renin-angiotensin system (RAS), a high

concentration of Ang II deregulates the RAS signaling and

results in multi-system inflammation and severe lung injury

[38].

As a consequence of Ang II upregulation, the infected

alveolar cells secrete NLRP3 specific inflammatory medi-

ators, promoting the secretion of IL-18, IL-1b, and dam-

age-associated molecular patterns (DAMPs). The release of

these inflammatory cytokines and DAMPs results in cell

death by pyroptosis. These molecules are also recognized

by alveolar macrophages and nearby alveolar cells, which

promote local inflammatory responses by secreting specific

pro-inflammatory cytokines and chemokines. These

include IFN-c, IL-6, IP-10, and MCP1, which attract the T

lymphocytes, macrophages, and monocytes to the site of

injury from the bloodstream [26, 37, 76, 89, 108, 115]. The

infiltration of immune cells into the airways thus promotes

further inflammation and establishes a pro-inflammatory

feedback loop, triggering a cytokine storm [37]. The

resulting cytokine storm not only damages the lungs but

also shows a ripple effect across several other organs,

causing septic shock and multiple organ failure

[78, 87, 120]. In addition to the direct damages associated

with a viral infection, the inflammatory cell infiltration
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causes hyaline membrane formation, desquamation of

alveolar cells, and pulmonary edema leading to ARDS

[89, 108].

To mount antiviral immunity, the alveolar macrophages

engulf the viruses, process them, and present antigenic

epitopes on their surface via the MHC molecules—espe-

cially epitopes from the spike glycoproteins. These pro-

cessed antigens are recognized by specific Cytotoxic

T-lymphocytes (CTLs) and initiate adaptive immune

responses mediated by virus-specific B cells and T cells

[52]. Upon infection, the levels of virus-specific IgG and

IgM antibody titers were elevated, as suggested by clinical

studies on 285 patients. All patients achieved seroconver-

sion of IgM and IgG, either sequentially or simultaneously

within 20 days after clinical manifestations [55]. Similar to

SARS-CoV’s infection, the virus-specific IgM antibody

titer starts declining three weeks post-symptom onset;

however, the elevated IgG antibody levels last for a more

extended period, suggesting an increased protective role

offered by IgG against viruses [50, 55]. Apart from

humoral responses, both SARS-CoV and SARS-CoV-2

patients suffer from lymphocytopenia, where the numbers

of cellular immune CD8? and CD4? T cells are signifi-

cantly reduced in the blood [33, 108, 118]. Follow-up

studies in SARS-CoV patients indicate that the memory

CD8? and CD4? T cells specific to SARS-CoV were

persistent for a more extended period [69, 110]. Thus, it is

clear that CoV-specific T-cells are essential in eliminating

viruses and controlling disease progression. However, it

remains uncertain whether T cell responses alone can stem

the progress of infection. Intriguingly, recent evidence

suggests the possibility that reinfection with SARS-CoV-2

may present more severe clinical symptoms as compared to

the initial infection, bringing into question the ability of

pre-existing immune responses to protect during the second

exposure. Furthermore, variations were observed between

viral isolates from the primary infection and reinfection

scenarios. This observation raises concerns over whether a

single vaccine can confer both individual and herd immu-

nity [18, 90]. Further studies along these lines may help

better inform the rational design of vaccines against SARS-

CoV-2.

Nanotechnology as a potential tool to fight SARS-
CoV-2

Recently, Weiss et al. (2020) argued that nanotechnology

could be used to tackle the problem generated by SARS-

CoV-2 and other future viral infections by various means

such as (1) the nanomaterials can be used for the targeted

delivery of drugs and vaccines into the lungs; (2) rapid,

sensitive, precise detection of pathogen or detection of

immunity (serological tests); (3) application of superior

filters for face masks or filtering of blood; (4) developing

nano-based surface coatings to inactivate the virus; (5)

enhancement of tools for contact tracing [96] (Fig. 3).

Nanotechnology offers a new approach called ‘Nan-

otheranostics,’ which deals with diagnosis and drug

delivery [27, 99]. The benefits of combined application of

detection and therapeutics of nanomaterials have been

extensively used in cancer research in the past; however,

their potential has not been realized in tackling infectious

diseases caused by viruses, bacteria, and fungi. There exist

great potential in dealing with new and emerging diseases

like COVID-19 [80] with the help of nanomaterials.

Theranostic nanoparticles render a pivotal role in diag-

nosing and drug delivery of siRNA, mRNA, drugs, vacci-

nes, biomolecules, and peptides at the infection site

(Fig. 3). In viral diseases, intranasal delivery based on

nanoparticles was proposed by researchers to deliver

antiviral agents for the treatment of lung infections. This

kind of nasal delivery ensures the required concentration of

drugs compared to other means of delivery without harm-

ing the normal cells [43].

Two types of nanomaterials-organic and inorganic, can

be used for drug delivery. Organic nanoparticles are usu-

ally biodegradable, while inorganic nanoparticles are not

degradable. The nanoparticles of silver, gold, silver sulfide,

titanium oxide, zirconium, grapheme, and polymeric

compounds can be used as a carrier for vaccines, which

have a tremendous capacity as compared to traditional

antigen-based vaccines. However, further toxicity studies

are required in order to the safe delivery of drugs [63]. The

metal nanoparticles are not biodegradable, and their toxi-

city should be evaluated. The basic advantage of

biodegradable nanomaterials such as polymers, liposomes,

dendrimers, and other small molecules is the controlled

release of cargo materials at a specific site while main-

taining the integrity of nanoparticles at off-targets [96]

(Fig. 4). In addition, nanoparticles are used for the detec-

tion of SARS-CoV-2, enhancing the sensitivity for the

detection by colorimetry. This technique is low-cost, sim-

ple, and fast. For example, gold nanoparticles are employed

for the immunochromatographic strip test to detect SARS-

CoV-2 (Fig. 3).

The nanomaterials can also be used in electrochemical

devices for detecting SARS-CoV-2 (Fig. 3). More recently,

Qiu et al. (2020) developed a new promising tool for the

detection of COVID-19 [72]. The authors used a dual-

functional plasmonic biosensor blending with the localized

surface plasmon resonance and plasmonic photothermal

effect. Gold nanoislands of two-dimensional nature were

functionalized with DNA, which can detect the sequences

of SARS-CoV-2. This method is accurate, rapid, and cost-

effective and has demonstrated greater sensitivity. More

6 A. K. Sahu et al.
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recently, the potential applications of nanomaterials in

combating COVID-19 have been discussed in diagnosis,

drug delivery, and treatment [74]. In this context, a

nanoparticle-based lateral flow biosensor assay was

recently developed for the diagnosis of COVID-19 [121].

Furthermore, the size of viruses and nanoparticles are at

comparable scales, which further bolsters the suitability of

nanotechnology for vaccine delivery applications. For

instance, the mRNA vaccine produced by Moderna is

based on lipid nanoparticles [67]. There are other examples

of vaccine delivery using nano platform such as emulsions,

dendrimers, polysaccharide-based nanoparticles

[9, 40, 67, 81, 112].

In addition to the use of nanoparticles in diagnosis and

drug delivery, they can be coated on Personal Protection

Equipment (PPE) to inactivate viral particles present on

surfaces like door handles, tables, beds, light switches,

basins, and toilets. Surface contamination poses a severe

problem and places frontline healthcare workers such as

doctors and nurses at risk despite proper personal protec-

tion by using protective masks, lab-coats, etc. because the

indoor environment of the hospital is contaminated with

SARS-CoV-2. Sportelli et al. suggested that nanometals

can be used for developing antiviral and antibacterial tex-

tiles, antimicrobial surfaces, AC filters, and packaging

solutions, among other diverse applications [82] (Fig. 3).

There are now commercially available masks that are

impregnated with silver and copper nanoparticles. In a

study, Balagna et al. tested the activity of silver nan-

ocluster/silica composite coating of face mask against

Fig. 3 Potential role of theranostic nanoparticles against SARS-CoV-

2. Graphical representation of the pivotal role of nanoparticles in drug

delivery, diagnosis, and protective coatings. The nanoparticles are

conjugated to the therapeutic agents such as specific siRNA, mRNA,

peptides, or antibodies. The conjugated agents are then prepared as a

solution or an emulsion and are delivered to the patients via nasal

routes, such as using a nasal spray. Nanoparticles are also used to

develop diagnostic tools such as electrochemical devices or

immunochromatographic strip tests. Besides, they are used as

antiviral coatings over PPE, textiles, surfaces, AC filters, among

other applications leading to an efficient blocking of viral

transmission
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COVID-19 and found that it showed strong virucidal

activity [5]. Moreover, previous reports also provide evi-

dence that metal nanoparticles in general and silver

nanoparticles, in particular, are broad-spectrum antimi-

crobials [75] and offer a protective shield against viruses

[28, 75]. In a comparative study, melt-blown filters used in

N95 face masks were compared with nanofiber filters used

in effective mask filters to test their reusability. The authors

evaluated the airflow rate, filtration efficiency, surface, and

morphological characteristics after cleaning them with

75% ethanol and recommended a nanofiber filter for

broader usage in masks [92].

Considering the applications mentioned above, nano-

materials can be used effectively for the diagnosis, drug

delivery, and treatment of the COVID-19 after extensive

experimental trials.

Concluding remarks

The recent SARS CoV-2 pandemic has severely strained

medical infrastructure and facilities. The highly detrimen-

tal socio-economic impacts of this outbreak have placed an

urgent emphasis on accelerated vaccine development, for

which understanding the fundamental biology of SARS

CoV-2 is indispensable. Through this review, we have

summarized the existing knowledge about SARS-CoV-2.

Firstly, SARS-CoV-2 genesis occurred in the natural

environment, with bat CoVs being the most closely related

virus. Before jumping to humans, the SARS-CoV-2 may

have passed through several intermediate hosts to acquire

mutations in the spike proteins in order to bind the human

ACE2 receptor with higher affinity as compared to SARS-

CoV. Secondly, detailed information about the virus

genomic structure has enhanced our understanding of the

viral protein function. The different viral transmission

modes explained thus far have been instrumental in char-

acterizing the immunopathogenesis of SARS-CoV-2 and

immune responses elicited within the host against the virus.

In extreme cases, the infection induces cytokine storms and

causes ARDS and multiple organ failure, which may be

fatal to the infected person. We have also highlighted the

emerging potential of nanomaterials as powerful tools for

the detection, management, and treatment of COVID-19.

Certain target areas remain of chief concern and rele-

vance to both the ongoing pandemic and prospective ones.

Multiple questions regarding the nature of the disease in

children and older adults persist. Exact transmission

dynamics and the molecular mechanisms of viral entry

along with its replication inside the host cell need to be

Fig. 4 Types of nanomaterials

employed in drug delivery.

Schematics of various

nanoparticle-based delivery of

therapeutic agents optimized for

intranasal and pulmonary

administration are depicted here
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characterized in greater detail. There is a possibility that

the infectivity and transmissibility of the virus may be

increasing rapidly among human hosts. This may provide

the basis for the development of therapeutic strategies in

the future. Furthermore, asymptomatic carriers pose a

major threat, as well as a puzzle, since the specific innate

immune mechanisms conferring resistance are yet to be

elucidated. Understanding the acquisition of immunity

against the infection remains a paradox. While certain

studies provided evidence that individuals exposed to the

virus can acquire immunity even without manifesting

clinical symptoms, others have reported the absence of

acquired immunity even after the post-infection recovery

[29, 42, 44, 54, 95]. Thus, it remains inconclusive whether

exposure to the virus may confer immunity, which in turn

raises the possible threat of reinfection and recurrent

outbreaks.
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