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Abstract

Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which
cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of
steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of
any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can
be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data
for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on
GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to
determine previously unobtainable information about the nature and position of cofactor action in any process displaying
first-order Hill plot kinetics are now available.
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Introduction

Ligand-regulated gene induction is a productive experimental

system for examining the mechanisms of gene expression. Steroid-

regulated gene induction is an extensively studied paradigm with

numerous well-defined events. The initially formed, intracellular

receptor-steroid complex binds to specific enhancer-like DNA

elements (called hormone response elements, or HREs) to

eventually modify the rates of transcription of target genes. Other

steps include recruitment of chromatin remodeling factors and

cofactors that increase or decrease the rates of transcription [1–3].

One approach to defining steroid receptor actions at the

molecular level has been to pair ChIP assays with genome-wide

sequencing to identify all DNA binding sites of selected cofactors

in the cellular genome [4]. Nonetheless, limitations to this

approach remain. Not all factor binding sites are functionally

active [5,6]. The HREs may not regulate the closest gene [7],

which is the default assignment. Methods to identify new cofactors

are not generally available and the kinetic mechanism of most

factors and cofactors is unknown. Because virtually all possible

responses to steroid hormones have been observed with endoge-

nous genes [8], no general mode of action exists. Finally, one can

determine the temporal ordering of cofactor binding to DNA but

no method exists to elucidate the temporal ordering of biological

function. Cofactor binding to DNA is not equivalent to cofactor

action. For example, paused RNA polymerase II is often present

50 bp downstream of the start of transcription but is not engaged

in transcription [9–11]. Thus there is an unmet need for methods

that can discern the precise nature (e.g., activator, non-competitive

inhibitor) and temporal order of cofactor function.

Here we describe a method that establishes the functional

mechanism and order of action of any active factor/cofactor

relative to what we call a ‘‘concentration limiting step’’ (CLS). The

method is derived from a recently developed theory of gene

expression that is applicable to receptor-mediated transcriptional

events that display a first-order Hill plot dose-response curve

(FHDC) [12] for the gene product in experiments that reach

equilibrium or steady state. The CLS is analogous to the rate-

limiting step for a closed system and provides a reference point for

the actions of all other cofactors. The method is based on

analyzing graphs constructed from the maximal activity (Amax) and

potency (EC50) of the FHDC. Importantly, two cofactors can be

assayed simultaneously and the graphical method determines the

functional nature and order of both cofactors relative to each other

and the CLS. This approach is amenable to screening cofactors

because prior knowledge about their action is not required.

Results

Application of the theory to analyzing the actions of
cofactors

The graphical method is derived from our steroid-mediated

gene induction theory, which can generate a parametric model

(i.e. formula) for the dose-response curve of the final protein
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product with respect to the steroid concentration in the presence of

an arbitrary number of cofactors [12] (see Text S1 for the

derivation). The theory considers a sequence of reaction steps,

each with the form
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where Yi is the reaction product of step i, Xi is an activating

cofactor or activator, and Ii is an inhibiting cofactor or inhibitor.

The labels on the reactions represent association constants for

reversible reactions and reaction rates for nonreversible reactions.

As in enzyme kinetics, we denote the case of a~0 to be competitive

inhibition, c~0 to be uncompetitive inhibition, a~c to be

noncompetitive inhibition, and a and c both nonzero to be mixed

inhibition. The case of b~0 is called linear inhibition, and bw0 is

called partial inhibition. In general, computing the dose-response

curve for such a reaction sequence would be analytically

intractable. However, imposing the experimentally observed

constraint that the dose-response curve has a Hill-coefficient of

one yields a closed-form expression for the dose-response curve in

terms of the parameters of all the reactions.

The theory identifies a CLS, which is a step in the reaction

sequence in which products of the reactions following it (post-CLS

steps) are so small that the amounts of cofactor bound are

negligible compared to their free concentrations [12]. A cofactor

can act before, at, or after the CLS. It can be an activator or one of

the four types of inhibitor and each inhibitor can be linear or

partial. Although there are eight possible types of inhibitor (e.g.

partial uncompetitive, linear noncompetitive, etc.), some combi-

nations are not possible (e.g. a competitor cannot be partial).

Inhibitors refer to their action in their particular reaction and not

to the final product. For example, a partial inhibitor can give a

higher response if it diverts the output to a higher yielding

pathway. In fact, the action of a partial uncompetitive inhibitor is

similar to an activator acting in a post-CLS step. For two cofactors,

there are at most 285 possible cases accounting for where they act

with respect to each other and the CLS, with each cofactor being

either an activator or one of eight possible types of inhibitors. It

should be noted that not all types of inhibitors are physically viable

or can act in all locations. For example, among all types of

inhibition, only competitive inhibition occurs after the CLS and

partial competitive inhibition cannot exist. Each viable case is

represented by an explicit parametric model that can be compared

to the data (see Text S1).

We previously deduced that Ubc9 was an activator acting after

the CLS by fitting parametric models directly to the data [12].

However, in that case there were only three models to test. For the

more general case with multiple cofactors, directly fitting models

to the data is unwieldy. However, the models have very different

qualitative behaviors for different types of cofactors and their

positions of action. In particular, the EC50 (steroid concentration

required for half-maximal activity) and Amax (maximal activity)

behave very differently with changing cofactor concentration. The

graphical method exploits these differences to predict mechanism

and position from the properties of graphs of functions of EC50 and

Amax versus cofactor concentration. Hence, the cofactor mecha-

nism and position of action is inferred from the qualitative

behavior of how the dose-response curve changes and does not

require making direct estimates of the parameter values.

Graphical analysis of single cofactor actions
We applied our method to two well-known cofactors for

glucocorticoid receptor (GR, also called NR3C1) transactivation:

the coactivator TIF2 and the corepressor SMRT [13,14]. To

obtain easily quantifiable data for graphical analysis, the induction

of a synthetic reporter gene (GREtkLUC) by GRs is followed in

transiently transfected cells with different cofactor concentrations

and triplicate sub-saturating concentrations of the glucocorticoid

dexamethasone (Dex). The Amax and EC50 are abstracted from fits

of the data points to a first order Hill function (Fig. 1A). Graphs of

1/EC50 vs. concentration and Amax/EC50 are then plotted.

Figure 1B shows the plot of 1/EC50 vs. transfected TIF2

plasmid (after correction for frequent non-linear expression of

plasmid-encoded protein [see Text S1 and Fig. S1]) for an

experiment with four TIF2 concentrations. The curve is seen to be

increasing and according to the theory, the only possible

parametric models are a straight line with a positive slope or a

nonlinear rational function. The data are seen to be consistent

with being linear. Although it is true that a nonlinear function is

possible it is far less parsimonious. We thus first assume that the

curves are linear and check for logical consistency with the other

predictions (see Text S1 for full algorithm to determine shape of

the curves). If linearity fails to give a logically consistent prediction

then we can test the hypothesis that the curves are nonlinear.

According to Table 1, linear with positive slope is characteristic of

TIF2 acting in one of three manners. (Note: all below graphs are

for corrected non-linear protein expression.) The interpretation of

the linear plot of Amax/EC50 vs. TIF2 (Fig. 1C) depends upon the

y-axis intercept when the total TIF2 (endogenous plus added)

equals zero. The relative amount of endogenous TIF2 was

determined by Western blotting to be equivalent to 0.97 ng of

transfected TIF2 plasmid (not shown). Experiments with fluores-

cent-tagged proteins indicated that ,50% of the cells are

transfected. Thus, endogenous TIF2 in transfected cells equals

about 0.49 ng TIF2 plasmid. The average x-axis intercept from 4

experiments like Fig. 1C is 25.663.6 (S.D.) ng of TIF2 plasmid.

Therefore the Amax/EC50 plots intersect the x-axis at less than

‘‘true zero’’ (i.e., less than no endogenous TIF2). Consequently the

y-axis intercept is .0. From Table 1A, we now conclude that

TIF2 is an activator after the CLS or the mathematically

indistinguishable case of a partial uncompetitive inhibitor before

the CLS.

The originally described form of SMRT, sSMRT [15], lacks

about 1000 amino-terminal residues [16]. Both sSMRT and full

length SMRTs are corepressors of steroid receptor action.

Graphical analysis of sSMRT as above with a constant, low

amount of exogenous TIF2 (to increase the starting signal), yields a

decreasing curve for 1/EC50 vs. sSMRT (Fig. 1D). The only

allowable form of this curve by the theory is a decreasing nonlinear

first-order decay plot. The plot of Amax/EC50 is also first-order

decay (Fig. 1E). The important characteristic of decaying curves is

whether they decay to zero or a positive value asymptotically. This

can be determined graphically by plotting the reciprocal function

(EC50/Amax) and seeing if it is linear, which is confirmed in Fig. 1F.

The only interpretation in Table 1 compatible with Figs. 1D–F is

that sSMRT is a competitive inhibitor before or at the CLS.

Graphical analysis of dual cofactor actions (TIF2 vs.
sSMRT)

Our method can simultaneously analyze two cofactors and

determine the site of each cofactor’s action relative to the CLS,
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and usually relative to each other (see Table S1). Four plots (1/

EC50 and Amax/EC50 for each cofactor), plus information on

plasmid expression efficiency, are needed for maximal informa-

tion, often with quantitation of endogenous cofactor. More than

one classification of each plot may appear possible. However, by

eliminating incompatible mechanistic consequences, one almost

always reaches a single, internally logically consistent mechanistic

description. Favorable conditions are with two cofactors of

opposite activities, thereby yielding the greatest changes. As

TIF2 and sSMRT fit these criteria, we analyzed their actions using

four concentrations of each cofactor in all combinations, plus a

control of no added cofactors.

Figure 2A shows that plots of Amax/EC50 vs. TIF2 plasmid for

increasing sSMRT consists of lines with progressively lower

positive slopes. Western blots indicated that endogenous TIF2 in

these experiments equaled 4.1 ng of TIF2 plasmid (data not

shown). Entries 23,25, 28, and 29 of Table S1 are consistent with

these graphs. Deciding between these entries for Fig. 2A depends

upon the x- and y-axis coordinates of the intersection point of the

lines. The x-axis value was determined, from what we call an ‘‘a

vs. b plot’’ (Fig. 2B; see Methods), to be more negative

(Ave. = 28.661.4, S.D., n = 4) than the endogenous TIF2

(24.1), while the y-axis value was 2.362.2. This restricts the

possible graphical interpretations to entries 25 and 29. Coupled

Figure 1. Analysis of actions of excess TIF2 or sSMRT. (A) Determination of Amax and EC50 by exact fit of gene induction response. Luciferase
activity in transiently transfected U2OS cells (100 ng GREtkLUC reporter, 0.5 ng of GR, and the indicated amounts of TIF2 plasmid) is plotted against
Dex concentration. The Amax and EC50 were determined from the best-fit curve to a first order Hill plot as described in Materials and Methods. Plots of
1/EC50 (B) and Amax/EC50 (C) vs. TIF2, corrected for non-linear protein expression as described in the Text S1. The dashed line is the extrapolation of
the linear best-fit of the data. The dotted line equals the position of the y-axis at ‘‘true zero’’ of no TIF2 in cells. Plots of 1/EC50 (D) and Amax/EC50 (E) vs.
sSMRT, corrected for non-linear protein expression. The Amax and EC50 for Dex induction of Luciferase activity in transiently transfected U2OS cells
(100 ng GREtkLUC reporter, 0.5 ng of GR, 3 ng of TIF2 and the indicated amounts of sSMRT plasmid) was determined as in A. (F) Amax/EC50 vs.
corrected sSMRT approaches zero at infinite sSMRT. A linear plot of Amax/EC50 vs. corrected sSMRT is diagnostic of an asymptote value equal to zero
at infinite sSMRT. A positive asymptote value would give a non-linear, downward curving plot that can be linearized by subtracting the estimated
asymptote from each of the values for Amax/EC50 in panel E and then plotting the reciprocal (1/[(Amax/EC50) – asymptote]). The combined results from
this one representative experiment were seen in three other independent experiments.
doi:10.1371/journal.pone.0030225.g001
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with the unique assignment of entry 7 to 1/EC50 vs. TIF2 plots

(Fig. 2C; x-axis intercept = 28.963.0)), the possible behavior of

TIF2 and sSMRT reduces to: TIF2 is an activator acting after the

CLS, sSMRT is a competitive inhibitor acting at the CLS and

before TIF2. The other plots of 1/EC50 vs. sSMRT (Fig. 2D),

Amax/EC50 vs. sSMRT (Fig. 2E), and EC50/Amax vs. sSMRT

(Fig. 2F) can each be described by entries 18, 32, and 37

respectively with the same unique mechanistic interpretation as

above.

Graphical analysis of TIF2 and NCoR competition
NCoR is another well-documented corepressor that is thought

to act like sSMRT [13,14]. We investigated the actions of NCoR

competing with TIF2 under the conditions of Fig. 2. Western blots

were used to correct for non-linear expression and to determine

relative endogenous TIF2 (4.1 ng TIF2 plasmid) and NCoR

(8.3 ng NCoR plasmid) levels. Given these values, only entries 26

or 27 can describe the graph of Amax/EC50 vs. NCoR (Fig. 3A),

with calculated x- and y-intersection points of 230.0626.7 and

1.261.0 (S.D., n = 6) respectively. Thus NCoR is an activator

acting after the CLS and TIF2 is an activator acting after the CLS.

Each of the other graphs has more than one potential classification

due to insufficient precision in the graphical intersection points:

Amax/EC50 vs. TIF2 (Fig. 3B; entries 24 and 27), 1/EC50 vs.

NCoR (Fig. 3C; 6, 7, and 11), and 1/EC50 vs. TIF2 (Fig. 3D;

entries 5–7 and 11). However, most graphical options are

incompatible with both factors being activators after the CLS

and can be eliminated to yield: NCoR is an activator acting after

the CLS, TIF2 is an activator after the CLS, and TIF2 and NCoR

do not act at the same step. While these data are not yet able to

determine whether TIF2 is an activator after or before NCoR, the

conclusion that TIF2 is an activator after the CLS is identical to

the above results with TIF2 vs. sSMRT.

Graphical analysis of sSMRT and NCoR competition
To confirm the above different actions of sSMRT and NCoR,

we directly competed the activities of both cofactors under

conditions of Fig. 2. Here the key graphs again involve Amax/

EC50. For NCoR (Fig. 4A), the calculated x-axis intersection of

274631 is clearly less than the 28.3 of endogenous NCoR while

the y-axis intersection is 20.0460.4 (S.D., n = 3). These properties

are uniquely defined by entry 25. Deciding whether Amax/EC50

vs. sSMRT (Fig. 4B) is described by entry 32 or 33 is resolved by

the linear plots of EC50/Amax (Fig. 4C). This characteristic of

entry 37 is obtained only when nonlinear decreasing Amax/EC50

plots approach zero with infinite F2. At this point, we can

conclude that: NCoR is an activator after the CLS, sSMRT is a

competitive inhibitor before or at the CLS, and NCoR acts after

sSMRT. The 1/EC50 graphs with either factor are consistent with

several interpretations (entries 8–10 and 12 for NCoR and 18 and

19 for sSMRT; Fig. S2), one of which is, for each factor, the same

as that derived from the other graphs. It is not possible with these

data, though, to determine whether sSMRT acts before or at the

CLS.

Graphical analysis of TIF2 and sSMRT competition for
induction of an endogenous gene

The relevance of the above competition of TIF2 and sSMRT,

and the applicability of the graphical analysis to normal cellular

biology, was next examined in the context of the GR-inducible

IGFBP1 gene in U2OS cells [17–19]. qRT-PCR quantitation of

IGFBP1 mRNA induction employed SyberGreen, which gives

relative total activities. Therefore, the Amax in these experiments is

actually the closely related fold-induction above basal level. 1/

EC50 vs. TIF2 graphs (Fig. 5A) are exclusively described by entry

9 because the ‘‘a vs. b plots’’ give an x-axis intersection point

(23.560.6, S.D., n = 4) that is much more negative than the

endogenous TIF2 in these experiments of 20.49. The non-linear

Amax/EC50 (Fig. 5B), with the linear EC50/Amax (Fig. 5C),

graphs vs. sSMRT implicate entries 32 and 37 respectively, which

define the factors as: TIF2 is an activator after the CLS, sSMRT is

a competitive inhibitor at the CLS, and TIF2 acts after sSMRT.

The predictions from the other graphs (Amax/EC50 vs. TIF2 and

1/EC50 vs sSMRT; Fig. S3) are entirely consistent with this

interpretation. Gratifyingly, this conclusion is the same as seen

above for these factors with an exogenous reporter gene.

Discussion

This report describes how a new mathematical theory of

steroid-induced gene transcription [12] gives previously unobtain-

able mechanistic information about GR- (NR3C1-) regulated gene

induction. This information could be obtained from direct curve

fitting of predictions from our theory but it would be extremely

computationally intensive. Instead, we carefully examined the

underlying equations of the theory. This analysis unexpectedly

revealed that plots used in enzyme kinetics can be adapted to

analyze the role of cofactors in GR-mediated gene transactivation.

Table 1. Algorithms for single factor plots for factor F.

Plot parameters Plot properties Mechanistic conclusions

1/EC50 vs. F linear with zero slope (i.e. does not change with F) 1) F = A at CLS or 2) F = PN before CLS

linear with positive slope 1) F = A not at CLS; or 2) F = U before or at CLS, or 3) F = PU
before CLS

nonlinear decreasing curve (concave-up) 1) F = C, 2) F = M before or at CLS

nonlinear increasing curve (concave-down) 1) F = LM or PM, before CLS; or 2) F = M at CLS

Amax/EC50 vs. F linear; y-axis intercept = 0 1) F = A before or at CLS

linear; y-axis intercept .0 1) F = A after CLS; or 2) F = PU before or at CLS

nonlinear decreasing curve that approaches zero for large F F = C before or at CLS

nonlinear decreasing curve that approaches positive value for large F 1) F = PM or PN, before or at CLS; or 2) F = C after CLS

nonlinear increasing curve 1) F = PM or PN, before or at CLS

EC50/Amax vs. F linear with positive slope 1) F = C before or at CLS

doi:10.1371/journal.pone.0030225.t001
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These graphical methods give information regarding the specific

cofactor function and also the location in the reaction scheme

where the cofactor is acting relative to a CLS. A major advantage

of these graphical methods is that they are readily employed

without the needs of elaborate and extensive mathematical

calculations. Our method works with a single added cofactor but

is more informative when two cofactors are examined together, in

which case the nature and location of action of both cofactors can

be determined simultaneously. Even if a precise mechanistic

interpretation is not possible, differences in the graphical analyses

can reveal mechanistic non-equivalence of two cofactors that

otherwise may be thought to share a common mode of action.

Several approaches were taken to validate our graphical analysis

using GR-regulated gene induction as the model system. The p160

family member, TIF2, is a well-documented coactivator of steroid

receptors [13,20,21]. In three different systems, TIF2 was always a

activator acting after the CLS. Likewise, the corepressor sSMRT

[13,20,21] was always found to be a competitive inhibitor, acting

at the CLS in two systems and at or before the CLS in the third.

To our knowledge, this is the first identification regarding either

the kinetics of mechanism, or placement of action, of TIF2 or

sSMRT.

A major test of our graphical methods came upon examining

the actions of three cofactors (TIF2, sSMRT, and NCoR) in all

possible pair-wise combinations. The mechanism and site of action

of each cofactor was the same in competition assays with both of

the other two cofactors. This internal logical consistency of

cofactor mechanism and site of action strongly validates our new

method. It also suggests that there is just one CLS, which does not

change with assay conditions. This is important in ascertaining

whether the CLS is invariant and a common marker step when

comparing the actions of different cofactors.

Figure 2. Analysis of combined actions of TIF2 and sSMRT. (A) Graph of Amax/EC50 vs. TIF2. The results of one representative experiment
(n = 4), conducted as in Fig. 1, are shown for the indicated amounts of transfected TIF2 plasmid, corrected for non-linear protein expression. (B).
Determination of intersection coordinates. The coefficients ‘‘a’’ and ‘‘b’’ of the linear plots in A, described by y = a+bx, are graphed. The negative value
of the slope, and y-axis intercept, in this graph give the x- and y-axis the values respectively for intersection point of the lines in A, as described in the
text and Text S1. Data for one representative graph each (n = 4) of 1/EC50 vs. TIF2 (C) or sSMRT (D), of Amax/EC50 vs. sSMRT (E) and of EC50/Amax vs.
sSMRT (F) were acquired as in A and plotted against the indicated amounts of transfected plasmids, each of which have been corrected for non-linear
protein expression.
doi:10.1371/journal.pone.0030225.g002
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Our extended model and associated graphical analysis also

works with endogenous genes. The fact that the mechanisms of

TIF2 and sSMRT in IGFBP1 induction involve identical sites of

action as seen with the transiently transfected GREtkLUC

reporter is further support for both the utility of our method and

for the invariance of the CLS. Also, it has long been assumed

that most steps of GR-regulated gene induction are the same for

exogenous and endogenous genes. We recently demonstrated

that the modulatory activity of TIF2 is very similar with both

types of reporters [22]. The present data suggest that the mode

and site of TIF2 action may also be the same with both classes of

reporters.

The different manners of NCoR and sSMRT action was

unexpected. NCoR and sSMRT are generally thought to act as

corepressors by binding to nearly the same site as coactivators,

thereby excluding coactivator binding [23,24]. Not only does our

graphical analysis indicate different mechanisms of action at

different steps for NCoR and sSMRT but also NCoR, being

kinetically defined as an activator, could be called a coactivator

because it increases the Amax in U2OS cells. However, this

property of NCoR is cell-dependent, with NCoR decreasing the

Amax from GREtkLUC in Cos-7 cells and increasing the Amax in

293 cells (Fig. 6). Such cell-selective differences are not unique

and have been seen not only for sSMRT with estrogen receptors

in HeLa cells [25], and GR in CV-1 vs. 1407.2 cells and

progesterone receptors in 1470.2 cells [26], but also with ZAC1b

[27] and CIA with estrogen receptors [28], and with SRAP

activation of androgen receptors and repression of VP16

transactivation [29]. In a recent report, 19 of 25 cofactors

examined have dual activity and can increase and decrease the

activity of agonist steroids with the androgen receptor in a gene-

dependent manner [30]. It will be interesting to use our graphical

analysis to determine the precise kinetic properties of the context-

dependent activities of these versatile cofactors.

Figure 3. Analysis of combined actions of TIF2 and NCoR. Graphs of Amax/EC50 vs. NCoR (A) and TIF2 (B) and of 1/EC50 vs. NCoR (C) and TIF2
(D). The results of one representative experiment (n = 6), conducted as in Fig. 1, are shown for the indicated amounts of transfected TIF2 and NCoR
plasmids, corrected for non-linear protein expression.
doi:10.1371/journal.pone.0030225.g003

Deducing the Temporal Order of Cofactor Function
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Our theory and methods are not without limitations. Any

process not displaying FHDC kinetics of induction or repression

cannot be analyzed. Conversely, our approach is applicable to any

process yielding FHDC kinetics such as hormones in general [31],

G-protein mediated responses [32,33], the developmental-specific

genes of Drosophila embryogenesis [34], and glucocorticoid-

induced apoptosis of thymocytes [35]. While we have yet to

discover a straightforward method to determine the graphical

consequences of every mechanistic combination, the most

common mechanisms listed in Table S1 cover over 74% of the

possible cases. Thus, some graphical patterns may emerge that

have not yet been linked to a specific mechanism. Nonetheless, the

current range of analyzable mechanisms offers a powerful method

for determining two aspects of steroid hormone action for which

no alternative method presently exists: the kinetic actions of

cofactors and the relative ordering of cofactor activity in the

overall pathway. With this last capability, it is now theoretically

possible to construct an ordered sequence based on the biological

function of cofactors, much as in the ordering of pathways by

epistasis analysis, even if the biochemical properties of the

cofactors are not known. As a start, the present experiments in

U2OS cells reveal that TIF2 and NCoR act at different steps after

the CLS and after sSMRT, which acts at the CLS. This type of

information should be useful in identifying downstream steps for

therapeutic intervention, thereby reducing the number of side-

effects that accompany the inhibition of upstream steps in steroid

hormone action.

Materials and Methods

Unless otherwise indicated, all cell growth was at 37uC and all

other operations were performed at r.t.

Figure 4. Analysis of combined actions of NCoR and sSMRT. Graphs of (A) Amax/EC50 vs. NCoR, (B) Amax/EC50 vs. sSMRT, and (C) EC50/Amax vs.
sSMRT. The results of one representative experiment of a total of three independent experiments, conducted as in Fig. 1, are shown for the indicated
amounts of exogenous NCoR and sSMRT plasmids, after correction for non-linear protein expression.
doi:10.1371/journal.pone.0030225.g004

Figure 5. Analysis of combined actions of TIF2 and sSMRT for induction of the endogenous gene, IGFBP1. Plots of (A) 1/EC50 vs. TIF2,
(B) Amax/1006EC50 vs. sSMRT, and (C) EC50/Amax vs. sSMRT. The results of one representative experiment of a total of four independent experiments,
conducted similarly as in Fig. 1, are shown for the indicated amounts of transfected NCoR and sSMRT plasmids, after correction for non-linear protein
expression. The differences are that IGFBP1 mRNA (instead of luciferase) was determined by qRT-PCR and fold-induction is used in place of Amax (see
text).
doi:10.1371/journal.pone.0030225.g005
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Chemicals
Dexamethasone (Dex) was purchased from Sigma (St. Louis,

MO). Dex-21-mesylate (DM) was from Steraloids (Newport, RI).

Anti-TIF2 mouse monoclonal antibody (No. 610984; BD Biosci-

ences, San Jose, CA), anti-b actin monoclonal antibody (Sigma, St.

Louis, MO), and goat anti-mouse horseradish peroxidase (Santa

Cruz Biotechnology, Inc., Santa Cruz, CA) are commercially

available. Rabbit anti-NCoR antibody was a gift from Goeffrey

Rosenfeld (UC San Diego, CA).

Plasmids
The GREtkLUC reporter is a synthetic plasmid with a tandem

repeat of the second glucocorticoid response element (GRE) of the

rat tyrosine aminotransferase gene fused upstream of the

thymidine kinase (tk) promoter driving the firefly luciferase

(LUC) gene [36]. Renilla TS is a gift from Nasreldin M. Ibrahim,

Otto Fröhlich, and S. Russ Price (Emory University School of

Medicine), pSG5/TIF2 is from Heinrich Gronemeyer (IGBMC,

Strasbourg, France), pCMX/sSMRT is from Ronald Evans (Salk

Institute, La Jolla, CA), NCoR/Flag is from Geoff Rosenfeld

(University of California-San Diego, San Diego, CA), and rat GR/

pSG5, pSG5/human serum albumin, pCMX/human serum

albumin, and pBSK have been previously described [37–40].

The Renilla null luciferase reporter is from Promega (Madison,

WI).

Cells and Growth Conditions
U2OS human osteosarcoma cells (from ATTC, #HTB-96)

were grown in high glucose DMEM (Invitrogen, Carlsbad, CA)

with 10% fetal bovine serum as previously described for U2OS

cells with stably transfected GR (17). Cells were split at 3- to 4-day

intervals and used in experiments at approximately 60–90%

confluence. For steroid treatments, Dex and DM solutions were

prepared in 100% ethanol and diluted $1:100 into growth

medium. Growth medium for the cells was then replaced with

ethanol- or steroid-medium for the indicated incubation time.

Transient Transfection and Reporter Analysis
U2OS cells (20,000 cells per well) were seeded 24 h before

transfection in 24-well plates. GREtkLUC reporter plasmid

(100 ng/well) and other plasmids (total DNA adjusted to

300 ng/well with pBluescriptII SK+ [Stratagene, Santa Clara,

CA]) were transiently transfected with Lipofectamine 2000

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions. Cells were treated 24 h post-transfection with steroids

for 16–20 h and assayed for luciferase activity using a dual-

luciferase reporter assay (Promega, Madison, WI) on a Centro XS3

LB 960 luminometer (Berthold Technologies, Oak Ridge, TN).

Luciferase activity was normalized to Renilla TS as an internal

control.

Quantitative Real-Time PCR (qRT-PCR)
U2OS cells (150,000–200,000 cells per well) were seeded 24 h

before transfection in 6-well plates. Plasmids (total DNA =

1500 ng/well) were transiently transfected with Lipofectamine

2000 (Invitrogen) according to the manufacturer’s instructions in

the same ratios as used for 24-well dishes. Cells were treated 24 h

post-transfection with various concentrations of Dex and DM for

20 h. Total RNA was extracted using TriZol reagent (Invitrogen)

and cDNA was synthesized using SuperScript III, First-Strand

Synthesis Kit (Invitrogen) per manufacturer’s recommendations.

The relative expression level of the corresponding cDNA was

quantified using SyberGreen in an ABI 7900HT real-time PCR

system. The quantification was normalized against b-Actin using

the 22DDCT method. For all qRT-PCR reactions, primer

efficiencies were 100% (610%), appropriate no-RT and template

free controls were used, and primer melting curves were assessed

to ensure specificity of the PCR products.

Western Blotting
U2OS cells were transiently transfected with TIF2 expression

plasmid under conditions identical to those above. After 48 h, cells

were lysed using Cytobuster Protein Extraction Reagent (EMD

Chemicals, Gibbstown, NJ) and equal amounts of lysate run on 4–

12% Bis-Tris NuPAGE gels (Invitrogen) per manufacturer’s

instructions. Western blots were prepared, probed with mouse

anti-TIF2 or mouse anti-b actin antibody followed by goat anti-

mouse horseradish peroxidase. Bands were visualized with

enhanced chemiluminescence detection reagents as described by

the manufacturer (GE Healthcare, Piscataway, NJ). The relative

concentration of target proteins was determined by densitometric

analysis of the exposed film.

Data analysis
Statistical significance for Luciferase activity is assessed by the

two-tailed Student’s t test using InStat 2.03 (GraphPad Software,

San Diego, CA). Each average of triplicates is treated as one

value of the n experiments. When the difference between the SDs

of two populations is significantly different, the t test is invalid so

the Mann-Whitney or Alternate Welch t-test is used. A

nonparametric test is used if the distribution of SD values is

non-Gaussian.

The maximum induced activity (Amax) was obtained with

saturating concentrations of agonist steroid, which was the lower

of $100-fold higher than the EC50 or 10 mM. One dose-response

curve yields one value of EC50 via a curve-fitting program

(KaleidaGraph; Synergy Software, Reading, PA) following a first

order Hill plot for increase or decay (R2 almost always $0.95).

Alternatively, we can determine Amax and EC50 directly by fitting

the curve

Figure 6. Cell-selective activity of NCoR. Cos-7 or 293 cells were
transiently transfected with the same amount of plasmids for
glucocorticoid receptor (0.5 ng), NCoR (90 ng) or equimolar amount
of control plasmid (51.6 ng of human serum albumin in the pCMX
vector), and GREtkLUC reporter and induced with EtOH 61 mM Dex as
described in Materials and Methods. The total Luciferase activity with
1 mM Dex with each treatment was expressed relative to that with no
added NCoR (6 S.D., n = 3). P values: *#0.021.
doi:10.1371/journal.pone.0030225.g006

Deducing the Temporal Order of Cofactor Function

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e30225



y~
Vx

1zWx

where V = Amax/EC50 and W = 1/EC50.

Graphical analysis
After obtaining Amax/EC50 and 1/EC50 from the dose response

curve, graphs of Amax/EC50 vs. C and 1/EC50 vs. C, where C is

the concentration of a cofactor, were constructed. In experiments

where two cofactors were assayed, graphs of Amax/EC50 vs. C and

1/EC50 vs. C for each cofactor for varying concentrations of the

other cofactor would be made. Thus, if an experiment used n

concentrations for each cofactor, then there would be a total of

four to six graphs, each with n separate curves, that are analyzed as

described in the Text S1 and Fig. S4. The shape of the curves and

how they change with the other cofactor are then compared to

Table 1 for a single cofactor and Table S1 for two cofactors to

determine the mechanism and order of action. Some entries in the

table require knowledge of the endogenous concentration in the

cell because the value at zero total concentration is required. This

can be obtained from Western blots.

Many of the entries in Table S1 require an estimate of the

intersection point of a set of linear regression fits to the graphs. We

used the following method to make this estimate. Consider a

family of lines y~aizbix obtained from the linear regression fits

for each graph labeled by i. The intersection point occurs if there

exists a point (x,y) that simultaneously satisfies this system of

equations. In general, because of noise and measurement error,

the lines will not intersect exactly. Solving the system simulta-

neously for the intersection point is not viable because the system

will generally be singular. However, rearranging the linear system

yields ai~y{xbi and a linear regression on the graph of a vs b,

will give the least squares maximum likelihood estimate for the

intersection points x and y. The a-intercept of the linear regression

fit corresponds to the y value, and the negative slope corresponds

to the x value, of the intersection point. The errors in the a vs b

linear regression give an indication of the likelihood that the lines

do in fact intersect.

Supporting Information

Figure S1 Linearization of transfected plasmid concen-
trations. (A) Plot of normalized OD of Western blots (above

endogenous TIF2) for different amounts of transfected TIF2

plasmid (but same amount of cell lysate protein) vs. OD of

maximum amount of transfected TIF2 (20 ng). (B) Plot of

normalized ODs of transfected TIF2 (above endogenous TIF2)

vs. ‘‘linearized plasmid’’. Amounts (ng) of linearized TIF2 plasmid

were calculated as described in the Supplementary Material and

then plotted against the normalized OD values of Fig. S1A. Error

bars = S.D. (n = 2, each in duplicate).

(EPS)

Figure S2 Plots of 1/EC50 vs. cofactor for experiment of
Fig. 4. (A) 1/EC50 vs. sSMRT plasmid (corrected for non-linear

expression) with different amounts of competing NCoR plasmid.

(B) 1/EC50 vs. NCoR plasmid (corrected for non-linear expres-

sion) with different amounts of competing sSMRT plasmid.

(EPS)

Figure S3 Plots of EC50 and Amax vs. cofactor for
experiment of Fig. 5 with endogenous IGFBP1 gene. (A)

1/EC50 vs. sSMRT plasmid (corrected for non-linear expression)

with different amounts of competing TIF2 plasmid. (B) Amax/EC50

vs. TIF2 plasmid (corrected for non-linear expression) with

different amounts of competing sSMRT plasmid.

(EPS)

Figure S4 Cartoon depicting process of restricting
mechanistic scenarios of the six graphs used in analyz-
ing the competition assays. Each circle represents one type of

graph (labeled on perimeter) and is composed of different

mechanistic scenarios (e.g., Scenario A for 1/EC50 vs. F1) for

that graph (see Table 1). The area of overlap for all graphs

(depicted by the filled space in the cartoon) represents the

common, uniquely identified mechanism for that specific compe-

tition assay. This 4- to 6-fold requirement of ‘‘overlap’’ is a

stringent test for determining the mechanistic explanation of any

given competition assay.

(EPS)

Table S1 Algorithms for two factor plots for factors F1 and F2.

(DOCX)

Text S1 Derivation of the graphical method for analyzing the

competitive action of factors and Correction for non-linear protein

expression from transfected plasmids.

(DOCX)
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