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Abstract: Identification of proteins involved in milk production is important to understand 
the biology of lactation. Many studies have advanced the understanding of mammary 
function and milk secretion, but the critical molecular mechanisms implicated in milk fat 
secretion is still incomplete. Milk Fat Globules are secreted from the apical surface of the 
mammary cells, surrounded by a thin membrane bilayer, the Milk Fat Globule Membrane 
(MFGM), formed by proteins which have been suggested to be cholesterolemia-lowering 
factors, inhibitors of cancer cell growth, vitamin binders, bactericidal, suppressors of 
multiple sclerosis. Using a proteomic approach, we compared MFGM from milk samples 
of individuals belonging to two different cattle breeds, Chianina and Holstein, 
representative of selection for milk and meat traits, respectively. We were able to isolate 
some of the major MFGM proteins in the examined samples and to identify differences 
between the protein fractions of the two breeds. We detected differences in the amount of 
proteins linked to mammary gland development and lipid droplets formation, as well as 
host defence mechanisms. We have shown that proteomics is a suitable, unbiased method 
for the study of milk fractions proteins and a powerful tool in nutritional genomics. 
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1. Introduction 
 

Bovine milk has a high significance in human nutrition and economy, yet the characterization of its 
minor protein fraction repertoire is not complete [1]. Besides the major milk proteins (i.e., caseins, 
lactalbumin and β-lactoglobulin), bovine milk contains low levels of serum-derived proteins such as 
albumin [2,3], enzymes like plasmin, complement proteins [4] and immunoglobulins [5], growth 
factors such as the IGF (insulin-like growth factors) family [6] and lactoferrin, an iron binding protein 
that has been shown to have antimicrobial properties [7]. Other minor milk proteins are known to be 
present at elevated levels during colostrum secretion and during drying off [8,9]. It has been shown 
that milk protein composition changes throughout the phases of lactation [10]. Proteins associated with 
inflammatory reaction have also been detected in milk during infections [11]. A whole additional range 
of biologically active proteins and peptides have been identified in milk, some of which show 
antimicrobial properties [12]. 

Proteomics is a powerful tool to identify relevant proteins in milk. Identification of proteins 
associated with the various aspects of milk production can provide a baseline for new research relative 
to the biology of lactation. Most of the proteomic studies conducted so far on mammary epithelial 
cells, organelles, membranes, and on the secretion processes, are focused on breast cancer, rodent 
lactation, or both [13-18]. These studies advanced the understanding of mammary function and milk 
secretion. Recently, papers on bovine mammary proteomics have been published, conducting a survey 
of proteins expressed in milk fat globule membranes, and showing development changes during 
lactation phases [19,20]. However, our understanding of the critical molecular mechanisms implicated 
in milk fat secretion is incomplete [22,23].  

Milk-fat globules originate near the basal region of the secretory cells as small droplets of fat. They 
migrate through the cytoplasm, gradually increasing in size, as the synthesis of triacylglycerol 
proceeds. These Milk Fat Globules (MFG) are secreted from the apical surface of the cell, surrounded 
by a membrane thin bilayer, the Milk Fat Globule Membrane (MFGM) [13,24]. MFGM are formed by 
a unique and quantitatively small subcategory of milk proteins (approximately 2–4% of total protein in 
human milk), the content of which is still largely unknown [13,14]. Given the nutraceutical and 
biological importance of these proteins, studies on MFGM have recently been increasing [24-26]. The 
MFGM is a rich source of membrane proteins, and applied proteomic analysis of these membrane 
proteins, has highlighted some of the possible signaling and secretory pathways used by the mammary 
gland [19]. 

MFGM glycoproteins seem to contribute to the prevention of pathogenic organisms infections, 
being able to act as specific bacterial and viral ligands in the stomach of newborns, to prevent the 
attack of the intestinal mucosa [26]. The diversity of the glycans found in MFGM is thought to enable 
the glycoproteins to perform this function in the acidic environment of the stomach [14,23]. It has been 
noted that some forms of gastric diseases such as peptic ulcer, chronic type B gastritis and gastric 
cancer can be attributed to the colonization of gastric mucosa by Helicobacter pylori [28]. Non-
defatted and defatted MFGM preparations, given orally, caused equal healing effect on H. pylori 
infection of gastric mucosa in BALB/cA mice, leading to the conclusion that the major role in 
inhibition of H. pylori infection is played by the protein fraction of milk fat globule  
membranes [29,30]. The rich nutrient content of milk and the body temperature inside the mammary 
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gland provide optimal growing conditions for microbes [1]. The gland must develop a robust host 
defence system to counteract this condition. One aspect of such a defence system is the secretion of 
antimicrobial peptides and proteins into milk [30], which assumes an antimicrobial and 
immunomodulatory active function in the digestive tract of the newborn [31,32]. In the mammary 
gland there is a variety of glycoransferases synthesizing the oligosaccharide moieties present on the 
milk glycoproteins, homologues to the cell surface pathogen receptors in the stomach and intestine, 
which are supposed to be able to inhibit infection by competitively binding the pathogens [33]. 
MFGMs are rich in secretory immunoglobulin A (s-IgA) and several non-antibody proteins [34], 
particularly, it has been pointed out that MFGM-associated glycoproteins show antibacterial  
properties [35,36]. Oligosaccharide chains can enhance binding of s-IgA or MFGM glycoproteins to 
pathogens [35-38] preventing their growth/attachment on the mucosal cell membranes, where they 
might cause infections or deposit toxins [39,40]. 

Several MFGM proteins have been suggested as cholesterolemia-lowering factors, as well as 
vitamin binders, bactericidal, inhibitors of cancer cell growth, and suppressors of multiple  
sclerosis [41,42]. One of the most abundant and relevant MFGM protein is butyrophilin, a protein 
having effects on modulation of the encephalitogenic T-cell response to myelin oligodendrocyte 
glycoprotein (MOG), related to human multiple sclerosis, recently reported in experimental 
autoimmune encephalomyelitis (EAE) [41].  

It has been shown that a bovine MFGM component, likely of proteic origin, could inhibit in vitro 
purified E. coli β-glucuronidase, the enzyme involved in the intestinal degradation of glucuronides. 
The enzyme glucuronyl transferase has an important role in detoxification of many metabolites of 
endogenous and exogenous origin. Glucuronyl transferase neutralizes the toxic compounds in liver 
cells through the formation of glucuronides, subsequently excreted. Some bacteria in the gut express 
the enzyme β-glucuronidase, which is able to degrade the glucuronides. This leads to the release of 
toxic agents, some of which might be carcinogenic. Therefore, the consumption of MFGM could 
prevent colon cancer due to the presence of the inhibitor of β-glucuronidase [43]. 

The consumption of the MFGMs alone as a nutraceutical, as a dairy food, or the consumption of 
food products enforced by MFGMs, may have health benefits due to the presence of phospholipids, 
constituting almost 30% of the total MFGM lipids [44]. The three main MFGM phospholipids are 
sphingomyelin, which can exert anticarcinogenic activity [45], phosphatidyl choline, and phosphatidyl 
ethanolamine [46,47]. Phospholipids, including milk-derived ones, are able to affect numerous cell 
functions including absorption processes, molecular transport systems, development and growth, 
memory, stress responses, myelination in the central nervous system and development of Alzheimer’s 
disease [48-51]. It has been suggested that MFG (milk fat globules) can serve as a putative delivery 
system for fat-soluble vitamins, organic phosphates, drugs and anticarcinogenic microelements such as 
Selenium [10]. 

MFGMs have an effect on lowering the serum cholesterol level. This has been confirmed by the 
observation of a direct inhibitory effect of bovine MFGMs on hypercholesterolemia in the rat [52]. 
However, the influence on serum cholesterol by other components of the MFGMs such as, for 
example, phospholipids, was not excluded [45]. Recently, Noh and Koo demonstrated that 
sphingomyelin is an effective inhibitor of intestinal absorption of cholesterol in rats [27]. 
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Our aim was to analyze MFGM protein expression-profiles in two breeds, Holstein and Chianina, 
representing dairy and beef types respectively, by utilizing Two-Dimentional Isolectrofocusing- 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D IEF-SDS PAGE). Our proteomic study 
provides molecular insights into the physiological differences between Holstein and Chianina  
cattle breeds.  

The proposed method analyzes udder indirectly, by extracting mammary epithelial cells of the 
lactating cow from milk. This bypasses the need for biopsies or animal slaughtering, a limiting factor 
in sampling, for both ethical and economic reasons.  
 
2. Results and Discussion 
 

Mammary epithelial cells were successfully isolated from milk samples, resulting in a suitable 
system to avoid the sampling of udders by biopsy or from animal slaughtering. In 2D IEF-SDS PAGE 
maps, differences in protein contents between the two breeds can be observed. 2D maps show that we 
successfully reduced the casein amount, so that less abundant proteins such as MFGM proteins 
become visible, and that extraction of MFGM proteins was successful. Representative maps are shown 
in figure 1. Results are reported in Table1. 

Figure 1. 2D Isolectrofocusing-Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
of MFGM protein fractions of Chianina and Holstein cattle, respectively. Protein spots 
reported in Table 1 are indicated.  
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Semiquantitative analysis shows an increase of glycoprotein antigen MGP57/53 (milk fat globule 

epidermal growth factor homologue) in Chianina versus Holstein. MGP57/53 is supposed to be the 
bovine analogue of mouse Milk Fat Globules-Epidermal Growth Factor 8 (MFG-E8) protein, 
associated with cell apoptosis [53]. Hayanama and Nagata [54] show that the expression of MFG-E8 in 
mice mammary gland is strongly upregulated when mammary gland undergoes involution. Primary 
epithelial cells from involuting mammary gland express MFG-E8. Moreover, macrophages present in 



Nutrients 2009, 1                            
 

306

the mammary gland at the late stage of involution also express MFG-E8. It should be pointed out that 
in MFG-E8 knockout mice mammary gland involution has been shown to be severely impaired. 
Moreover, after the mice started to nurse the second litter, the lobular-alveolar structure was not 
properly developed [55]. MFG-E8 expression in mouse mammary glands has been shown to be 
upregulated after parturition and maintained overexpressed during lactation even at a late stage [56]. A 
recent analysis of gene expression in mouse mammary gland involution, conducted by microarray 
technique, indicated that MFG-E8 transcripts gradually increased to about 1.5 times in the normalized 
intensity within three days after forced weaning in l0-days lactating mice [57]. Experimental data 
suggest that MFG-E8 might also be involved in the recognition and clearance of apoptotic mammary 
epithelial cells during involution [44]. Two independent groups reported that MFG-E8 is a critical 
protein for mammary gland remodelling during involution in MFGE8 knockout mice. A deficiency in 
MFG-E8 caused delayed clearance of apoptotic mammary epithelial cells as well as impaired 
involution and inflammation of the mammary gland [58-63]. 

Table 1. Differences in MFGM fractions, Chianina vs. Holstein breed. Spot number (SSP), 
protein molecular weight (Mw, kDa), isoelectric point (PI), number of peptides 
successfully identified by mass spectrometry (No. peptides), mascot score, protein 
accession numbers, protein ID and variation fold. 

SSP Mw. kDa  PI  
No. 

peptides 
Mascot 
Score 

NCBI 
accession 
number 

Protein ID 
Fold of 

Variation 
(C/F) 

10 60.734 4.69 10 669 gi|115495209 
zymogen granule membrane 

glycoprotein 2 (GP2) [Bos taurus] 
−0.27854 

16 45.704 8.59 13 987 gi|2136760 
adipocyte differentiation-related 

protein (ADRP) [Bos taurus] 
0.39175 

28 83.695 7.07 8 635 gi|3914346 
Polymeric immunoglobulin receptor 

(PIGR) 
−0.35186 

56 45.704 7.07 16 987 gi|2136760 
glycoprotein antigen MGP57/53. 

mammary gland - bovine 
0.28378 

 
This could suggest that MFG-E8 might have a role in the different structure of the Chianina 

mammary gland, smaller in size compared to the Holstein, and not specialized for large-scale  
milk production. 

Chianina samples also show a higher expression of the adipocyte differentiation-related protein 
(ADRP). This protein, previously believed to be specific for adipocytes, is a major constituent of the 
globule surface and is present in a complex containing stoichiometric amounts of xanthine oxidase and 
butyrophilin. ADRP is one of the earliest markers of adipocyte differentiation [64,65]. The mRNA for 
ADRP rises at least 100-fold within the first day after the induction of differentiation in cultured 
preadipocytes, before the increase of fatty acid-binding protein and lipoprotein lipase, early markers of 
adipocyte differentiation, can be observed [66]. Although the function of ADRP remains unknown, its 
expression in milk-secreting cells provides the suggestion that it might be involved in the deposition of 
triacylglycerols droplets in the cytosol, a phenomenon known to occur in both adipocytes and in 
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mammary epithelial cells. In mammary cells, ADRP seems to be concentrated specifically in cellular 
components involved in the generation of MFG. The hydrophobic N-terminus of ADRP, coupled with 
an apparent covalent of fatty acids, appear to allow its interaction with lipid droplets. Indeed, 
myristoylation and palmitoylation of hydrophobic peptides seem to increase the partitioning of the 
peptides into lipid micelles in model systems. Because ADRP is apparently synthesized without a 
signal peptide, and lacks a transmembrane sequence [64], the secretion of this protein cannot be 
predicted. Its secretion may be due to its interaction with the milk lipid droplets. In both  
adipocytes [67] and milk-secreting cells [68], triacylglycerol-rich droplets are formed in the 
endoplasmic reticulum membrane, and the surface coat on forming droplets in both cell types seems to 
be contiguous with endoplasmic reticulum membrane. Recently, it has been shown that treatment of 
rats with an inhibitor of carnitine palmitoyltransferase I induces the expression of ADRP in liver [69]. 
Lipid droplets also accumulated in livers of etomoxir-treated rats. This result suggests that ADRP 
could be involved in lipid deposition into droplets. ADRP might be an adaptor molecule involved in 
interaction between the droplet surface and the butyrophilinxanthine oxidase-containing inner 
membrane coat of apical plasma membrane [70]. The differences in MFGM proteins involved in lipid 
deposition that we observed in our samples, could suggest a different lipid composition in the milk of 
the two breeds, which deserves to be further investigated  

Polymeric immunglobulin receptor-like protein (PIGR) is more expressed in Holstein MFGM 
samples. PIGR is expressed on several glandular epithelia, including those of liver and breast. It is a 
member of the immunoglobulin superfamily which mediates transcellular transport of polymeric 
immunoglobulin molecules. The receptor is composed of five units with homology to the variable (V) 
units of immunoglobulins and a transmembrane region, which also has some homologies to the 
immunoglobulin variable region [70]. Recently, Ng et al. [71] tested milk protein effectiveness against 
HIV-1 proteins. It has been shown that PIGR inhibits HIV-1 protease and HIV-1 integrase, with a 
strenght similar to that of lactoferrin. PIGR is present at a concentration exceeding 0.2 M (at the end of 
the isolation procedure) in bovine milk, while its inhibitory concentration (IC50) value for HIV-1 
reverse transcriptase activity is 4.8 M. Hence it exerts some inhibitory effect on the HIV-1 enzyme at 
the physiological concentration found in bovine milk [72]. 

Glycoprotein 2 (zymogen granule membrane, GP2) is overexpressed in Holstein. GP2 is the major 
membrane protein present in the pancreatic zymogen granule, it is cleaved and released into the 
pancreatic duct along with exocrine secretions and has been reported to be expressed in milk  
MFGM [70]. Yu and Lowe showed that GP2 binds E. coli expressing Type 1 fimbria, and that binding 
is dependent on GP2 glycosylation, and specifically on the presence of mannose residues [73]. GP2, 
when binding to Type I fimbriae, may serve as a physical barrier and as a molecular decoy for bacterial 
adhesion. Although the common bile duct and pancreatic duct share a common exit to the intestine, 
ascending infections of the pancreatic duct are not reported in the literature and are not commonly 
observed in the clinical setting, even in chronic pancreatitis, when the pancreatic duct is obstructed. In 
contrast, ascending biliary tract secondary infections are relatively common. Noticeably, GP2 
comprises most of the protein precipitate present in the duct of patients afflicted with chronic 
pancreatitis, and thus may serve as a protective against infections [74]. 
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3. Experimental Procedure 
 

Samples: Fresh milk samples of individuals belonging to breeds of different origins and selected for 
different purposes (beef, Chianina, and dairy, Holstein) were collected. Chianina is the largest and one 
of the oldest beef cattle breeds in the world. Holstein is the highest producing dairy breed in the world. 
Samples from two animals per breed (two replicates per breed) were collected exactly at the same 
lactation phase, seven days after calving, and transported in ice to the laboratory. All individuals were 
raised on the same farm under the same conditions. 

 
MFGM extraction: Bovine MFGM was isolated by a procedure in which the fat globules were 

separated from whole milk and washed several times with physiological buffers to lay down caseins. 
The membrane was then released from the surface of the globules by physical or chemical means and 
collected by centrifugation [75-79]. Five hundred mL of milk were centrifuged at 2,000g for 30 min at 
4 °C to remove cells, obtaining cream. The recovered cream layer was washed five times with 7.4 pH 
Phosphate Saline Buffer solution to remove caseins. Washed globules were stored at −20°C until used. 
To extract the MFGM proteins, washed cream was mixed 1:3 with an SDS-containing solution (7 M 
urea, 2 M thiourea, 4% CHAPS, 1% Triton X-100, 20 mM Tris, 1% DTT and 0.5% IPG buffer) 
following Quaranta et al. [80], incubated in ice for 60 min and periodically vortexed, then centrifuged 
at 10,000 g for 1 hour. After removing the floating cream layer, the supernatant was subjected to 
precipitation with methanol and chloroform following Wessel et al. [81]. Before focusing, the sample 
was incubated for 3 h at room temperature, under strong agitation, to perform alkylation with 7.7 mM 
Iodoacetamide in a solution of 7 M urea, 2 M thiourea, 4% CHAPS, 20 mM Tris, pH 3–10 carrier 
ampholyte, 40 mM Tris, 5 mM TBP, 0.1 mM EDTA (pH 8.5), 2% (v/v) protease inhibitor cocktail 
(Sigma-Aldrich). To prevent over-alkylation, iodoacetamide excess was destroyed by adding 
equimolar amount of DTE. 

 
Semiquantitative IEF-SDS PAGE: IEF was performed using ready-to-use Immobiline Dry-Strips 

linear pH gradient 3–10 length 18 cm (BioRad, CA, USA) and the in gel sample rehydration method. 
600 µg of proteins per strip were loaded. IEF was run on a BioRad Protean IEF at 20 °C constant 
temperature and 8,000 V for 99,000 Vh. After IEF, the IPG gel strips were incubated at room 
temperature for 30 min in 6 M urea, 30% w/v glycerol, 2% w/v SDS, 5 mM Tris-HCl, pH 8.6. The 
strips were sealed at the top of a 1.0 mm vertical second dimensional gel (BioRad) with 0.5% agarose 
in 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3. SDS-PAGE was carried out on homogeneous 
running gels 12 % T 3% C. The running buffer was 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3 
and running conditions were 40 mA/gel until the bromophenol blue reached the bottom of the gel. 
Molecular weight marker used was Wide Range SigmaMarkerTM (BioRad). Gels were automatically 
stained with Brilliant Blue G colloidal (Sigma, St. Louis, MO, USA) following the manufacturer’s 
instructions. Four technical replicates per sample were performed, for a total of 16 gels. The 2-DE 
image analysis was carried out and spots were detected and quantified using the Progenesis SameSpots 
software v.2.0.2733.19819 software package (Nonlinear Dynamics, Newcastle UK). Each gel was 
analysed for spot detection and background subtraction. Within-group comparison of protein spot 
numbers was determined by repeated measure analyses. Among-group comparisons were determined 
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by ANOVA (Analysis of Variance) procedure in order to classify sets of proteins that showed a 
statistically significant difference with a confidence level of 0.05. 

 
In-Gel Digestion: Spots from 2-DE maps were carefully excised from the gel and subjected to in-

gel trypsin digestion according to Shevchenko et al. [82] with minor modifications. The gel pieces 
were swollen in a digestion buffer containing 50 mM NH4HCO3 and 12.5 ng/mL trypsin (modified 
porcine trypsin, sequencing grade, Promega, Madison, WI, USA) in an ice bath. After 30 min, the 
supernatant was removed and discarded; then 20 mL of 50 mM NH4HCO3 were added to the gel 
pieces, and digestion was allowed to proceed overnight at 37 °C. The supernatant containing the 
peptide mixture was removed and acidified with 5% formic acid before injection in the mass 
spectrometer. 

 
Protein identification by MS/MS: Peptide mixtures were separated using Ultimate-Switchos-Famos 

HPLC system (LC Packings, Amsterdam, The Netherlands). A sample volume of 14 µL was loaded by 
the autosampler onto a homemade 2 cm fused silica precolumn (75 µm I.D.; 375 µm O.D) Reprosil 
C18-AQ, 3 µm (Ammerbuch-Entringen, DE) at a flow rate of 2 µL/min [83]. Sequential elution of 
peptides was accomplished using a flow rate of 200 nL/min and a linear gradient from Solution A  
(2% acetonitrile; 0.1% formic acid) to 50% of Solution B (98% acetonitrile; 0.1% formic acid) in  
40 minutes over the precolumn in-line with a homemade 10–15 cm resolving column (75 µm I.D.;  
375 µm O.D.; Reprosil C18-AQ, 3 µm, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). 
Peptides were eluted directly into a High Capacity ion Trap HCTplus (Bruker-Daltonik, Bremen, 
Germany). Capillary voltage of 1.5–2 kV and a dry gas flow rate of 10 L/min were used at a 
temperature of 230 °C. The scan range used was from 300 to 1800 m/z. Protein identification was 
performed by searching in the National Center for Biotechnology Information non-redundant database 
(NCBInr, version 20081128, www.ncbi.nlm.nih.gov) using the MASCOT program in-house version 
2.2 (Matrix Science, London, UK). The following parameters were adopted for database searches: 
complete carbamidomethylation of cysteines and partial oxidation of methionines, peptide Mass 
Tolerance ±1.2 Da, Fragment Mass Tolerance ±0.9 Da, missed cleavages 2. Only result scores  
[−10 x Log(P)] over the significance threshold level (P < 0.05) were identified as positive. Even when 
high MASCOT scores were obtained (values > 60), if proteins were identified by a single peptide a 
combination of automated database search and manual interpretation of peptide fragmentation spectra 
was used to validate protein assignments. The mass error, the presence of fragment ion series and the 
expected prevalence of C-terminus containing ions (Y-type) in the high mass range were all taken into 
account in the verification procedure. Moreover, protein hit identity was confirmed by  
replicate measurements. 
 
4. Conclusions 
 

Using a proteomic approach, we have successfully identified some of the major MFGM proteins in 
two different cattle breeds. We utilised a nonbiased method for the discovery of specific molecules 
involved in this unique secretory function. This work provides a preliminary study of the complexity 
of the secretion of MFG in mammary epithelial cells during the lactation process.  
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A considerable advantage of the proposed method relies on the possibility of analysing this peculiar 
kind of cells without the need of biopsy or animal slaughtering, which often represents a limiting 
factor in sampling, for both ethical and economic reasons.  

We analysed samples of two cattle breeds selected for different purposes, and our preliminary 
results indicate that protein differences at the MGF level can be observed even if the animals were 
raised in the same conditions. In detail, PIGR, having a role in the immunoglobulin function, and GP2, 
a protein that may serve as a protective against infections, resulted overexpressed in Holstein, which is 
a highly specialised dairy breed. Dairy breeds are selected, among other traits, for resistance to mastitis 
and for somatic cell score. This may represent an effect of long time selection and could lead on an 
insight on the effects of milk of different origin on calf health and on its nutraceutical characteristics. 
In Chianina beef breed ADRP, a protein involved in lipid deposition, is overexpressed. Further studies 
should focus on fat amount and composition in the milk of this breed, and on the potential implications 
of such information for the human diet. Also MFG-E8, a protein involved in the lactation process and 
showing anti-viral activity, is overexpressed in this breed at the lactation stage analysed. Beyond 
having antiviral properties, MFG-E8 could be related to the different timing in mammary gland 
maturation and drying off between the two breeds.  

Further investigations are needed to better define the difference in MFGM protein composition 
between Holstein and Chianina breeds and to fully describe the variation of the MFGM proteins during 
the lactation phases. 

Our study shows that proteomics is a suitable method for the investigation of the characteristics of 
milk proteins. Moreover, it is a powerful tool in nutritional genomics, allowing the analysis of milk as 
food and helping the selection of animals with characteristics relevant for human health. 
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