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Simple Summary: The microbiota can modulate immune responses and modify the physiology
of the human organism, thereby increasing infective risks and a neoplastic predisposition. In this
review, we focus on the composition of the cervical microbiota, to identify the risk of developing
Cervical Intraepithelial Neoplasia and better understand the interaction between cervico-vaginal
microbiota and human papillomavirus as a means of promoting the identification of new therapeutic
strategies. In fact, no therapy for HPV is yet available. A better understanding of the cervical micro-
environment could be a key element allowing complete viral clearance to be achieved in largely
affected populations.

Abstract: The heterogeneity of the cervico-vaginal microbiota can be appreciated in various condi-
tions, both pathological and non-pathological, and can vary according to biological and environmental
factors. Attempts are still in course to define the interaction and role of the various factors that consti-
tute this community of commensals in immune protection, inflammatory processes, and the onset of
precancerous lesions of the cervical epithelium. Despite the many studies on the relationship between
microbiota, immunity, and HPV-related cervical tumors, further aspects still need to be probed. In
this review article, we will examine the principal characteristics of microorganisms commonly found
in cervico-vaginal specimens (i) the factors that notoriously condition the diversity and composition
of microbiota, (ii) the role that some families of organisms may play in the onset of HPV-dysplastic
lesions and in neoplastic progression, and (iii) possible diagnostic-therapeutic approaches.
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1. Epidemiology of HPV

Papillomaviruses are widely distributed in mammals and are species-specific [1].
Human papillomavirus (HPV) cannot be cultivated in tissue cultures or in common exper-
imental animals [1]. They are members of the Papillomaviridae family, have no coating,
measure from 50 to 55 nm in diameter, and have an icosahedral capsid of 72 capsomers [2].
Of the approximately 200 genotypes of HPV, subdivided into 14 species, about 40 can
infect the epithelial cells (skin or mucous membranes) of the anogenital regions and other
areas [3]. Differentiation into types is made based on the characteristics of the L1 protein [4].
HPV was the first virus to be recognized as responsible for cervical cancer (CC). According
to the degree of association with invasive tumors, HPV genotypes have been subdivided
into: high oncogenic risk (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68), related with
an increased risk of developing CC [5]; low oncogenic risk (6, 11, 40, 42, 43, 44, 54, 61, 70,
72, 81, 89) associated with no disease most commonly or with benign epithelial lesions
(such as anogenital and oropharyngeal warts) [6]; and, finally, HPV with an “undetermined
risk” (3, 7, 10, 27, 28, 29, 30, 32, 34, 55, 57, 62, 67, 69, 71, 74, 77, 83, 84, 85, 86, 87, 90, 91)
include those whose oncogenicity has not yet been fully defined [7]. It has been established
that about 99.8% of CC have a high-risk HPV DeoxyriboNucleic Acid (DNA) sequence,
particularly HPV 16 and 18, found in about 70% of invasive carcinomas [8]. The prevalence
of infection is very high (70% of sexually active female patients over 25 years old), and most
infections tend to regress spontaneously, with or without manifestations of dysplasia; only
in some cases can HPV infection become persistent [9]. Data from the scientific literature
show that in female patients over 30 years old, persistent high-risk HPV infections play
a critical role in predicting the risk of developing CC [8–10]. The risk of developing in
histopathologic high-grade cervical intraepithelial lesion HSIL (CIN2 and CIN3) or invasive
CC is estimated to be much higher in women with persistent high-risk HPV infection, being
11 times higher in the 30–44 age group, 35-fold higher between 45 and 54 years, and 49-fold
in those over 50 years of age [11]. The ability of HPV viruses, especially those at high risk,
to integrate into infected cells, and to orchestrate a gene expression program that allows
the transcription of oncogenic proteins (E6, E7), promotes carcinogenicity [12]. Cervical
intraepithelial lesions (CIN) can regress spontaneously, or progress to invasive neoplasia in
different percentages depending on their severity. More specifically, histopathologic low-
grade cervical intraepithelial lesion LSIL (CIN1) tends to regress spontaneously, particularly
in young patients. Ostor and coworkers [13] report that CIN1 subsides spontaneously in
60% of cases, persists in 30%, and can progress in 10% of cases. On the other hand, CIN2
regresses spontaneously in 40%, persists in another 40% of cases, and can progress in 20%
of cases; finally, CIN3 can regress in 33% of cases and progress in more than 12% of cases.

2. Screening and Histopathology of Cervical HPV Lesions

The natural history of CC is typically characterized by the progression, over the years,
of non-invasive HPV-related precancerous lesions to invasive carcinoma [7–13]. Cytology
(Pap-Test) and human papillomavirus detection (HPV-DNA) are two screening tests whose
purpose is to detect CC or precancerous changes at an early stage. Before the development
of the HPV-DNA test, the Pap-Test alone was performed every 3 years in women after
the onset of sexual activity or in any case from 25 years of age [14]. Today, according to
guidelines from different countries, HPV-DNA tests are used for women over 30 or over
25, and a Pap-Test is only done if it gives a positive result [15–20]. In fact, globally the
recommended method of primary CC screening is the HPV-DNA test, independently of
resource settings [21], due to its sensitivity compared to the Pap-Test, even in the presence
of a lower specificity especially for the identification of CIN2 and CIN3 lesions. HPV testing
is recommended by the World Health Organization [14] and other guidelines [15,22] even
with respect to the Pap-Test which is now considered a secondary test [14]. In fact, the Pap-
Test even if it has allowed to tangibly reduce the incidence of invasive carcinoma, however,
presenting a variability between different operators, it can lead to the diagnosis of false
negatives as well as cases of invasive CC are also reported in the literature in women regu-
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larly investigated with the Pap-Test [23]. In view of the crucial role of persistent infection of
hr-HPV, the focus has shifted to the use of HPV-DNA testing as a screening test [24] so that
access to treatment is increasingly targeted and timely. According to the ASCO guidelines,
if the HPV-DNA test results positive, genotyping for HPV 16/18 (with or without HPV
45) and/or Pap-Test are also indicated [21]. In the event of a positive or abnormal result,
the HPV-DNA test procedure involves colposcopy and related biopsy [21]. Conversely, in
discordant results between the HPV test and cytological examination, it is recommended
to repeat the HPV-DNA test one year later, then repeat the test at 12–24 months in case
of negativity or colposcopy in women who tested positive [21]. Finally, in cases of CIN2
histological diagnosis, patients should be offered a surgical solution followed by targeted
follow-up over time [21]. According to data from the randomized study published by
Ronco et al. [25], HPV-research-based screening is more effective than the Pap-Test in pre-
venting CC in women aged 25–60, because it allows an earlier identification of high-grade
persistent lesions. In fact, the execution of the HPV-DNA test is useful in stratifying the
population according to the degree of risk: a negative test indicates a low risk of developing
CC, and so in these controls can be made at longer intervals. Although with differences
between the various settings, the HPV-DNA test should be started from the age of 30 in the
general female population, regular screening being done with the HPV test validated every
5–10 years, versus 25 years of age in women living with HIV, who should be screened more
frequently, every 3–5 years. CC is the fourth most common malignancy among women
worldwide, accounting for approximately 7% of all female cancers [26,27]. As reported
in the literature, most of the diagnoses of CC can be associated with the presence of HPV
infection and, in some studies, these associations can reach levels comparable to almost
all cases [28]. Among the high-risk HPV genotypes, variant 16 has the highest affinity for
neoplastic progression with over 50% of cases, followed by variant 18 which occurs in 20%
of cases; this association tends to vanish in the remaining high-risk genotype up to 5% and
even less [29]. Conversely, there does not appear to be a significant difference between
the HPV status and the histotype of the carcinomas except for squamous-cell carcinoma
(SCC) which is unlikely to be HPV-negative [30], as well as in mixed adeno-squamous
form where the HPV positivity may reach up to 86% [31] of cases and also in the vast
majority of Adenocarcinoma in situ (AIS) [30]. Vice versa, the prevalence of HPV among
adenocarcinoma (AD) types can vary and, according to the International Endocervical
Adenocarcinoma Criteria and Classification, ADs are divided in two categories: HPV-
associated (HPVA) and not HPV-associated (NHPVA), with well-defined characteristics
due to histology HPVA shows more mitotic activity or apoptotic figures than NHPVA. If
focal or equivocal HPVA features are visible at ×200, a tumor can be classified as a “limited
HPVA” and provisionally diagnosed as NHPVA AD [32]. To this histotype belong different
variants such as mucinous (that can show aspects of HPVA and NHPVA), gastric (preva-
lent NHPVA type), endometrioid and serous carcinomas (extraordinarily rare). NHPVA
comprehends histological variants [32] such as gastric, clear cell, serous, endometrioid,
or mesonephric carcinomas that notoriously tend to be HPV negative [33] compared to
histotypes presenting glandular/villo-glandular/intestinal aspects that appear to have a
higher percentage of HPV positivity.

Principal Biomarkers for Cervical Cancer

The study of viral and cellular biomarkers that could be useful for identification of
specific stages of cervical intraepithelial lesions related to hrHPV infection is closely linked
to the biology of HPV and the different stages from infection through intraepithelial lesion,
and, if this is not properly treated, to invasive CC. After hrHPV infection, the infected
cervical epithelium begins to proliferate, leading to the transformation into CIN1, 2, and
3 [34–37]. Progression from a transient to a transformation HPV infection is characterized
by a sharp increase in HPV mRNA E6/E7 and protein expression [34,37]. With this in mind,
several authors have assessed how the detection of mRNA transcripts belonging to E6/E7
proteins could be helpful for identifying cervical precancers [36–42]. From these works,
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we can deduce a good sensitivity and specificity of these tests; there are two platforms
used for the study of this biomarker (PreTect. Proofer and APTIMA GenProbe). The
p16INK4a protein is a cyclin-dependent kinase inhibitor that plays a key role in cell cycle
regulation and is upregulated when E7 is overexpressed as in HPV infections, representing
an ideal biomarker to define the nature of cervical lesions [43,44], especially if combined in
a single test together with Ki-67 [45,46] which is generally used in immunohistochemistry
to evaluate the cell proliferation index [47]. Double-stained cytology p16/Ki-67 (approved
by FDA on 3 October 2020 [48]) is a qualitative immunocytochemical assay intended for the
simultaneous detection of proteins P16INK4a (clone E6H4) and Ki-67 (clone 274-11AC3V1)
in cervical specimens of women aged 25–65 years with positive HPV test (high oncogenic
risk); it is also indicated for patients aged between 30 and 65 who have to postpone col-
poscopy or have other risk factors regardless of the result of the HPV test [48]. It is highly
expressed in almost 100% of cases of CIN2, CIN3, squamous CC, but is rarely found in
benign forms; it is highly expressed in 100% of AIS cases. Several studies have highlighted
the ability of the p16 test to identify the neoplastic transformation of cervical cells infected
with human papillomavirus, being able to predict with greater precision the underlying
cervical intraepithelial neoplasia of grade 3 or worse [49,50]. Specifically, the ATHENA
study, on a group of 7727 patients, showed that p16/Ki-67 dual-stained cytology was
significantly (p < 0.0001) more sensitive than Pap-Test (74.9% vs. 51.9%) for the triage of
HPV-positive women and that specificity was comparable between the two methods [50].
In studies directed by Bergeron and Petry [46,51], as well as by Wright and coworkers,
the authors described a p16/Ki-67 dual-stained cytology, that either alone or combined
with HPV16/18 genotyping, represents a promising approach as a sensitive and efficient
triage for colposcopy of HPV-positive women when primary HPV screening is utilized [50].
These studies led the way in using p16/ki-67 as a reliable tool for risk stratification of
HPV-positive women with cervical lesions, reporting elevated sensitivity values similar to
those of the HPV test [51–55]. Furthermore, other authors have shown that p16/ki-67 had
a higher specificity than the HPV test [45,53–55]. These data reinforce the diagnostic value
of p16/Ki-67, which represents a useful tool in avoiding further diagnostic investigations
such as unnecessary colposcopies given its ability to more precisely identify female patients
at increased CIN2 risk. In the field of research into serum biomarkers for the early detection
of CC, the activation of Macrophage-Colony Stimulating Factor (M-CSF) and Vascular
Endothelial Growth Factor (VEGF) is likely involved in the pathogenesis and spread of CC.
In particular, M-CSF is overexpressed in the CC lines compared to CIN and the blocking of
the M-CSF receptor determines both a growth arrest and an increase in intratumoral apop-
tosis [56,57]. In various papers, Lawicki and coworkers [38,58], using the immunosorbent
assay (ELAISA), evaluated the plasma levels of M-CSF as compared to commonly accepted
tumor markers, such as CA 125 and SCC-Ag in CC patients before surgery and in healthy
subjects. The M-CSF plasma level was significantly higher, as also CA 125 and SCC-Ag, in
CC patients. The diagnostic sensitivity of M-CSF was higher than stem cell factor, CA 125,
and SCC-Ag (25%, 30%, 40%, respectively). The diagnostic specificity was high and equal
for all tested cytokines and CA 125 (92%). Positive and negative predictive values were
higher for all tested parameters but highest for M-CSF (83% and 69.7%, respectively) [38].
More recent studies [59–62] confirmed that cytokine members of hematopoietic growth
factors may have a diagnostic potential in CC. Zajkowska evaluated serological markers
against CA 125 and SCC-Ag in 100 CC patients with chemiluminescent microparticle im-
munoassay and showed statistically significant M-CSF values from all parameters tested in
the CC cohort compared to the control groups [59]. Similar results have also been described
by Lubowicka et al. who investigated M-CSF, matrix metalloproteinase-2, and its inhibitor
beyond CA 125 and SCC-Ag in 89 CC patients and in 50 healthy women (aged 22–61 years)
reporting for M-CSF the highest specificity (86%) in the CC group [60]. Moreover, the asso-
ciation of these different markers increased in specificity, as observed in the combination
between matrix metalloproteinase-2 and CA 125 in different CC stages [60]. While median
levels of M-CSF and VEGF, as well as CA 125 and SCC-Ag are shown to be significantly
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different in women with CC, this relationship does not seem to be specific to SCC alone;
in fact, the plasma levels of M-CSF and VEGF are also higher in AD than in the control
group and, moreover, no significant differences were observed between SCC and AD [61].
Sidorkiewicz reported 81% sensitivity and 74% specificity for VEGF in the SCC group and
86% and 76% in the AD group [61]. Although the results of these studies are encouraging
and suggest a diagnostic utility and a possible clinical applicability of serum biomarkers
in patients with CC, to date they are not yet sufficiently studied, and more confirmations
would be useful for their wider use than p16/Ki67 testing and mRNA detection.

3. Diversity and Influencing Factors of Vaginal Microbiota

The vaginal microbiota (VM) is characterized by a heterogeneous variety of microor-
ganisms that are commonly found in cervicovaginal samples of female patients in both
pathological and non-pathological conditions. Based on species composition and the
relative abundance of bacterial population present in genital mucosae of 396 healthy
women [40], using next-generation sequencing platforms, Ravel et al. analyzed and classi-
fied the microbiota in five clusters, also known as community state types (CSTs) [41]. In
CST I, II, III, and V, Lactobacillus (L.) crispatus, L. gasseri, L. iners, and L. jensenii are more
common, respectively, unlike CST IV, which features a high bacterial diversity including
several anaerobic species such as Gardnerella, Megasphera, Atopobium, Prevotella, besides
Pseudomonas, Shigella, Peptostreptococcus, Enterococcus, Streptococcus, Propionibacterium, Bifi-
dobacterium, and Brevibacterium species [42]. The attempt to classify vaginal microorganisms
in order to establish the role of VM in immune protection, inflammatory processes, and
in cancer genesis is still ongoing today, owing to the different factors that notoriously
influence the diversity and composition of VM [63,64]. The diversity of vaginal microbiota
has a great geographic and ethnic variability [65,66] showing a greater variety in African
women. Again, Lactobacillus species are significantly more frequent in Caucasian and Asian
populations compared to Hispanic areas [41]. These differences, consisting of high VM
diversity and variable abundances of Lactobacillus, called dysbiosis, may be due to hygiene
practices, social, metabolic, and immune factors that influence vaginal homeostasis causing
bacterial vaginosis (BV), with or without symptoms [67–69]. In this regard L. iners, that
is unable to produce D-lactic acid and H2O2, seems to favor dysbiosis [70,71], although
generally species of Lactobacillus produce lactic acid, hydrogen peroxide, and antimicro-
bial peptides, such as bacteriocins and biosurfactants, that inhibit the growth of bacteria
and viruses [42,71,72], and regulate vaginal homeostasis. Vice versa, L. iners produces L-
lactic acid and inerolysin (a pore-forming toxin cytolysin capable, like Gardnerella-released
vaginosis, of prejudicing the integrity of the vaginal epithelium); both of these promote
pathogenic proliferations and infections [70,73,74]. Although hormonal endogenous agents
have a rather small impact on cervical and vaginal cancers’ development, female hormones
and reproductive factors can still induce diverse female malignancies [75–77] and are one
of the most important endogenous agents in the composition of the VM. In fact, estrogen
receptors are widely expressed in the endometrium, where they regulate the growth and
proliferation of epithelial cells and condition the stability of VM; estrogen-related factors
such as menstruation, sexual activity [78], oral contraceptive use, pregnancy and lactation,
or diseases such as diabetes mellitus and stress, cause hormonal fluctuations that influence
the biological presence and the abundance of a bacterial community [71]. Age is clearly a
crucial factor in relation to the action of the mechanisms underlying endocrine stimulation:
low estrogen levels after birth cause a reduction in vaginal Lactobacillus and an increase in
anaerobic populations until puberty [42], when there is an increase in estrogen and glyco-
gen, further processed in lactic acid by Lactobacillus species [71,79]. During the reproductive
age, the cyclic secretion of female hormones determines a great instability, especially dur-
ing the menstrual phase when both the low levels of estrogen and progesterone, and the
presence of menstrual blood, are linked to the decrease in some microorganisms and the en-
richment of others [79,80]. Instead, high levels of estrogen and progesterone are a favorable
factor for the stability of the VM during the female fertile age [79]. On the other hand, as
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described by David A MacIntyre et al. [81], a 100–1000-fold decrease in circulating estrogen
concentrations postpartum triggers a significant increase in VM diversity. This condition
also occurs in the menopausal state, when the sharp decrease in the production of female
hormones causes atrophy of the vaginal epithelium and a relative absence of glycogen
and Lactobacillus species [82–84]. Furthermore, exogenous factors can also influence the
composition of the vaginal microbiota: the use of oral contraceptives is associated with
an increased level of inflammatory cytokines in the cervix [85]. In fact, it has been shown
that the use of oral contraceptives is associated with the risk of CC [86], even apart from
the role played by the inflammatory microenvironment in influencing cell proliferation in
different models of solid tumors [77,87–90]. In a meta-analysis conducted on the use of both
combined hormonal contraceptives and progesterone-only hormonal contraceptives, Lenka
A Vodstrcil et al. showed that, in general, they are equivalent, reducing recurrent BV by 31
and 32%, respectively [91]. These results are also reinforced by other studies showing the
propensity of oral contraceptives to favor lactobacillus species [91–93], unlike contraceptives
such as the intrauterine device and medroxyprogesterone acetate, which do not appear
to affect the composition of the VM [94]. Furthermore, as previously mentioned, other
exogenous factors seem to influence the biodiversity of the VM: in fact, in smoker women
there is a greater diversity of species characterizing the VM, with a substantial reduction
in L. crispatus [95] and an increase in species belonging to CST IV; Peptostreptococcus and
Veillonella have been identified as most closely related to the use of tobacco [95]. Finally,
even vaginal douches can affect not only the composition of the VM [96–98] but also the
risk of related HPV infections or HPV-associated cervical diseases [98,99]. In fact, literature
reports described a high production of proinflammatory cytokines in women with CST
IV, which increased the recruitment of activated CD4+CCR5+ cells to the vaginal mucosa,
increasing the risk of damage to the epithelial barrier and promoting HPV infection [42].

4. The Association of Cervical Microbiota with the Risk of CIN

The human body is an extraordinary ecosystem constituted by trillions of microor-
ganisms. The coevolution that occurred between man and microbes formed a complex
communication network [100,101]. Most microorganisms are bacteria that live in the gut
and have a strong impact on the health of their hosts [102]. Joshua Lederberg summed up
this concept in 2001, when he coined the term “microbiota” referring to the community
of commensal, symbiotic, and pathogenic microorganisms which share the same space
and exert diversified interactions with the specific human tissue compartments where they
are hosted [103]. In 1977, Carl R. Woese and George E. Fox had reported the first study
utilizing the 16S rRNA gene to recognize these bacteria, and demonstrated that the gene
could be used to detect microorganisms on the basis of molecular phylogeny [104]. This
approach was innovative in the biology field because previously this gene had been largely
used only for bacteria identification. In the literature, it has recently been shown that
the microbiota can play a crucial role in cancer progression, by affecting the host immu-
nity. The influence of the microbiota on HPV-induced gynecological neoplasms remains
poorly understood. Therefore, several studies have focused on the VM since together
with immune regulation, it could play an important role in HPV carcinogenesis [105].
The cervical microenvironment is complex, constituted by immune cells and the specific
microbiota that regulate local immune responses [106]. Indeed, the immunologic status
of the host and HPV-induced immune evasion could explain persistent HPV infection,
but alone, these factors are not sufficient to determine cancer development [107]. In fact,
not all HPV-infected patients develop CC since the immune system together with other
additional factors influence the progression of cervical intraepithelial lesions to CC or else
regression [108–110]. Therefore, several researchers explored the relationship between the
VM and HPV infection, as the microbiota would seem to play a decisive role in neoplastic
evolution [42,111,112]. Recently, studying virus–bacteria–host interaction models, two
models were evaluated with the aim of better understanding the microbiota mechanisms
in the development of virus-associated cancers [113]. The first model relied on the concept
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that the microbiota could affect viral infectivity through the release of bioproducts that
could modulate virus–host interactions. The second model was based on the concept that
bacteria–host interactions impact the host gene expression, increasing viral production and
promoting tumorigenesis associated with the viral infection [114]. One of these studies
characterized the microbiota in a population with HPV infection, using laboratory culture,
and reported on the presence of ‘abnormal vaginal flora’ (that subsequent investigations
would then identify using 16S rRNA analysis) [115,116]. Based on the microbiota composi-
tion, the microenvironment could also protect the host from viral infections. It is known
that the main defense mechanisms of the cervicovaginal mucosa are antimicrobial peptides,
microbiota dominated by lactobacilli and a pH of less than 4.5. An alteration of these
protection mechanisms can result in physiochemical modifications that damage the cervical
epithelium and vaginal mucosa [117]. Particularly, a reduction in lactic-acid-producing
Lactobacilli, with a consequent increase in vaginal pH (4.5), can induce atypical bacterial
growth and a decrease in protective flora [118], weakening the endogenous system of
defense against viral infection. The most common type of cervicovaginal dysbiosis is
BV, defined as a VM with scarce Lactobacillus, and an increase in anaerobes [119]. BV is
associated with an increase in the levels of proinflammatory cytokines such as IL-1b and
a decrease in the levels of the anti-inflammatory molecule, secretory leukocyte protease
inhibitor, supporting the theory that BV causes changes in the immune system that can
lead to a greater susceptibility to HPV and hence the development of high-grade cervical
dysplasia [120]. Particularly, the authors also studied the oxidative DNA damage related to
the natural history of HPV persistence and cervical carcinogenesis. BV-associated oxida-
tive stress [121] could be involved in the generation of reactive oxygen species that could
generate double-stranded DNA breaks in the host genome, as well as the HPV episome,
accelerating HPV integration and neoplastic transformation, a mechanism also employed
by the HPV E6 oncoprotein [122]. The integration produces a loss of E1 and E2 genes,
which regulate E6 and E7 transcription. Subsequently, transcription of these oncoproteins
goes unchecked after viral integration, leading to a greater cellular proliferation and a
reduction in apoptosis [123]. Several studies in the literature support this evidence. Particu-
larly, Mitra et al. assessed a group of 169 patients referred for colposcopy, who showed an
increased bacterial diversity connected with diminished lactobacilli related to the gravity
of the cytological lesion [124]. Oh et al. also highlighted the finding that the risk of L-SIL
in HPV-positive patients with a high-risk microbial pattern was suggestively higher than
in HPV-negative women with a low-risk microbial score (or: 34.1, 95% CI: 4.95–284.5).
Therefore, the Lactobacillus genus (first described in 1892 by Döderlein) is usually abundant
in the cervicovaginal microbiota [125]. Lactobacillus species such as L. crispatus, L. gasseri,
and L. jensenii could generate lactic acid and hydrogen peroxide (H2O2), which limit the
progression of viral and bacterial infections [71] (Figure 1).

Therefore, the microbiota is the first line of defense against infections. The second
line is its composition, since it can produce lactic acid and H2O2, that have a defensive
role against viral and bacterial infections [70]. On the contrary, L. iners was evaluated as
a transitional species leading to the dysbiosis state [126]. Cross-sectional studies show a
negative relationship between HPV infection and CIN with Lactobacillus dominance, except
for L. iners, which shows the opposite tendency, being correlated with a higher frequency
of HIV, HPV, and HSV-2 [126]. Therefore, in most HPV-infected women, the immune
response can limit the infection, preventing high-grade lesions and tumors [127]. On the
other hand, some dysbiotic bacterial communities seem to cause immune dysregulation,
favoring a tumor-promoting microenvironment [128], and may play an important role in
CC progression [129]. Indeed L. iners are frequently detected in patients diagnosed with
CIN [130]. However, the role of this bacterium in cervicovaginal health is still uncertain,
since it can be found in normal environments as well as in states of vaginal dysbiosis [131].
In fact, it has been demonstrated that L. iners has more complex nutritional needs and
a more variable morphology than other Lactobacillus species. It has an unusually small
genome, suggestive of a symbiotic or parasitic lifestyle [74]. Actually, L. iners may have
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clonal variants that in some cases promote health and in other cases are associated with
dysbiosis and a predisposition to disease [74]. Moreover, literature reports suggest that the
VM is different in female patients of diverse ethnicities and such variety may be associated
to genetic differences among races including a few mitochondrial DNA haplotypes [131].
Consequently, distinguishing the VM in female patients of each race could justify the
differing incidence of BV and sexually transmitted infections among diverse ethnicities
and reveal the importance of genetic factors in influencing the VM of some individuals,
making them prone to illnesses [130]. Female patients with dysbiosis can develop chronic
inflammation, which may be an important factor for cancer development in different tis-
sue types, including cervical tissue [42]. Moreover, in CST IV, there is also Gardnerella
vaginalis, which produces sialidase that degrades the vaginal mucosal surface posing a
physical barrier able to inhibit bacteria–host interactions [67,132]. Gao and coworkers
tested 70 healthy women (32 HPV-negative and 38 HPV-positive) with normal cervical cy-
tology and, using the Shannon–Weiner diversity index, they discovered that HPV-positive
female patients had a greater biological diversity [91]. The major CSTs found in female
patients with CIN were CSTs, characterized by Lactobacillus depletion, anaerobic bacte-
ria predominance, and L. iners dominance [133]. On the other hand, L. crispatus was the
predominant Lactobacillus species in Italian female patients, who were better able to clear
HPV infection [133]. Indeed, Kwasniewski et al. [134] reported a study of the vaginal
flora of 250 female patients, including 85 women with high-grade SIL and HPV positivity,
95 female patients with low-grade SIL and HPV positivity, and 70 healthy controls. In the
control group, high levels of L. crispatus, L. iners, and L. taiwanensis and an absence of Gard-
nerella vaginalis and L. acidophilus were identified. In the low-grade-SIL group, L. crispatus
was less numerous than in the control group and L. acidophilus and L. iners prevailed. In
the high-grade-SIL group, Gardnerella vaginalis and L. acidophilus were prevalent, while the
frequencies of L. iners, L. crispatus, and L. taiwanensis were lower than in the control group.
Therefore, these results show a possible relationship between the VM, HPV infection, and
CIN development. In particular, a microbiota dominated by Gardnerella vaginalis and with
reduced L. iners, L. crispatus, and L. taiwanensis may play a role in HPV persistence, CIN
development, and CC [134]. Additionally, Oh et al. [125] reported a cytology study on
women with LSIL or HSIL vs. normal controls. The outcomes suggested that a paucity of
L. crispatus and a predominance of A. vaginae and secondarily of Gardnerella vaginalis, and
L. iners were linked to an almost 6-fold increase of the risk of cervical LSIL/HSIL disease
(odds ratio (OR): 5.80, 95% CI: 1.73–19.4). The study also reported that the risk of SIL in
HPV-positive women with a high-risk microbial pattern was significantly higher than in
HPV-negative women with a low-risk microbial score (OR: 34.1, 95% CI: 4.95–284.5). These
results were limited since risk factors were not evaluated, and the comparison groups
combined different grades of disease severity [125]. Specific bacteria, such as Gardnerella,
may be identified as biomarkers of cervical alterations to detect female patients with a
high risk of developing persistent HPV infection/CIN and progression to cancer, while
not all Lactobacillus species are uniformly protective [72]. On the other hand, in female
patients with CC a prevalence of Fusobacterium species and a decreased abundance of
Lactobacillus species were described. Both in women with CIN and in patients with CC,
the VM was similar to that in female patients with BV [135]. Particularly, a Fusobacterium
predominance was more commonly detected in CC patients and was shown to be correlated
with a cytokine pattern of increased levels of IL-4 and TGF-b1 mRNA, suggesting a local
immunosuppression state and supporting the concept of microbiota immunity [135]. BV
is related to higher HPV infection rates, so an increase in the diversity of vaginal bacteria
together with a decrease in Lactobacillus may be involved in the persistence of HPV infec-
tion [136]. Therefore, 16S-HTS and other methods, for example, molecular diagnostic tests
such as direct probe assays and real-time PCR, can be used to analyze HPV+ women with
a potential risk of developing cervical lesions or viral persistence [136]. These women may
have an increased risk of persistence/progression of HPV-related lesions, so the results of
such tests should impact diagnostic and therapeutic management. Another article by Piy-
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athilake et al. correlated well-defined cytological groups of women with HSIL vs. LSIL in
patients with high-risk HPV-positive infection [137]. In this study, the CST was not used to
classify patients according to the VM structure but the Dirichlet multinomial mixture model
was applied to partition the samples into four diverse metacommunities (partitions 1–4).
Bacterial communities featuring principally L. iners and unclassified Lactobacillus species
(partition 3) had a higher HSIL 1 level as compared to those with diverse-taxa-unclassified
Lactobacillus, L. iners, Allobaculum, Clostridiales, and Bifidobacteriaceae (partition 1; OR 5 3.48,
95% CI: 1.27–9.55) [138].
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Figure 1. Cervical cytology results and corresponding cervical microbiota. The illustration is a
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cate the reversibility of the cervical changes: precancerous stages versus negative for intraepithelial
lesion or malignancy (NILM).

5. Future Prospects

Despite the many studies conducted on the relationship between the microbiota and
host immunity, the knowledge of the specific influence of HPV on gynecologic tumors
remains limited [93]. Moreover, study of the microbiota and CC would need to be under-
taken in large population samples in order to predict the development of precancerous
lesions, since the progression of HPV infection to CC takes decades, and in many indi-
viduals never progresses to cancer at all [139]. Therefore, long-term longitudinal studies
could allow the determination of early changes in the VM, that may help to evaluate the
progression of precancerous lesions [93]. Furthermore, the novel advances in microbiota
sequencing and sophisticated bioinformatics technologies have supported rapid progress
in our understanding of the gut microbiota and the development of tumors [139,140]. Other
research, using shotgun metagenomic sequencing, demonstrated that the VM community
compositions and metagenomic profiles differed between patients with CC and individuals
without cancer. Consequently, researchers understood that larger additional whole-genome
shotgun studies are necessary to verify these relations [93]. Research into the VM can
be further enhanced using metagenomic sequencing, rather than 16S (that sequences a
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specific 30S ribosome subunit of the human microbiota that is unique to prokaryotes and
has regions that vary significantly between diverse species of bacteria and clusters the iden-
tified bacteria into operational taxonomic units) [121,122,141] or other targeted sequencing
techniques, since these lack depth. Indeed, 16S amplification does not include microbes
that lack a gene to match the primers (such as viruses, archaea, and eukaryotes). Since
common medium- or large-scale VM analyses employed this technique, the role of non-
bacterial constituents of the VM in HPV infection and disease has not yet been described.
Therefore, proteomic analysis could be key to a more complete understanding of the VM
and its influence on disease in the metabolic context [142,143]. Only after the pathogenic
mechanisms of interaction between microbiota and HPV have been fully understood will
it be possible to identify the most effective therapeutic strategy. Indeed, the execution of
microbiota analysis in clinical practice in HPV-positive patients should make it possible to
identify women at high risk of progression/persistence [120,121]. Consequently this “high
risk” group could be candidates for cervical biopsy (for diagnostic confirmation), more
restricted follow-up, and genotyping [144,145]. In addition, a more complete knowledge
of the microbiota would permit the use of a targeted, personalized therapeutic approach
using antibiotics and probiotics. Indeed, in women with BV, for example, there is a high
diversity microbiota, and the usual cure is to prescribe antibiotics such as metronidazole
and clindamycin. However, these antibiotics could prevent cervicovaginal recolonization
by Lactobacillus species and could therefore, in turn, lead to relapse [144]. Indeed, high
rates of BV relapse are already predictable after oral treatment with metronidazole [144].
Moreover, antibiotic therapy features both side effects [146–148] and a lack of efficacy due
to resistant strains [149]. On the other hand, based on in vitro assays, L. crispatus LbV 88,
L. gasseri LbV 150N, L. jensenii LbV [149], and L. rhamnosus LbV96 strains, were selected
as relevant for vaginal health [150]. Consequently, a pilot clinical trial was performed in
which a yoghurt preparation containing those beneficial microbes was administered to
BV-diagnosed patients together with metronidazole. The study revealed that the group
receiving probiotics had a considerably improved recovery rate from BV as compared
to women treated only with antibiotics [151]. Likewise, in the literature, administration
of probiotics is also helpful in vivo and in vitro to achieve a major CIN regression and
total HPV clearance. In fact, the administration of probiotics for the manipulation of the
microbiota may be a feasible possibility to induce HPV infection clearance and prevent
progression to CC. Indeed, the authors revealed that the group receiving long-term pro-
biotic treatment (6 months) showed not only a significantly higher chance of resolving
cytological abnormalities but also presented increased rates of HPV clearance as com-
pared to the group receiving short-term probiotic therapy (3 months) [152,153]. Although
further clinical trials are required to elucidate this relationship in patients with high-risk
microbiota, the concomitant intake of antibiotics and probiotics could lead to an effective
impact on the microbiota, avoiding the persistence of HPV-related lesions and progression
to CC [151]. Instead, the literature on the impact of vaccination on the microbiota is still
limited. Particularly, a recent small Phase I study was performed to test whether the VM
could influence vaccine responses and VM composition in women with biopsy-proven
high-grade squamous intraepithelial lesions. There was no difference in bacterial diversity,
but a significant increase in circulating T-helper type 1 cells, and a significant decrease in
the HPV 16 viral load were reported. Further studies are needed to examine the role of the
VM in response to HPV therapeutic vaccines [154]. Much evidence is available related to
the microbiota, but there are still many shadows that require more sophisticated tools to
gain a more prolonged insight. In particular, study of the microbiota with metagenomics
may be the future roadmap, but it is also important to emphasize that these techniques
are expensive and require specific funds for such research. This review of the literature
was written to illustrate how a better understanding of the microbiota could be the key to
personalized and specific management of cervical precancers, so even if the road is long, it
may be worth investing in this direction.
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