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Abstract

Web-based experimental testing has seen exponential growth in psychology and cognitive neuroscience. However, paradigms
involving affective auditory stimuli have yet to adapt to the online approach due to concerns about the lack of experimental
control and other technical challenges. In this study, we assessed whether sounds commonly used to evoke affective responses in-
lab can be used online. Using recent developments to increase sound presentation quality, we selected 15 commonly used sound
stimuli and assessed their impact on valence and arousal states in a web-based experiment. Our results reveal good inter-rater and
test-retest reliabilities, with results comparable to in-lab studies. Additionally, we compared a variety of previously used un-
pleasant stimuli, allowing us to identify the most aversive among these sounds. Our findings demonstrate that affective sounds
can be reliably delivered through web-based platforms, which help facilitate the development of new auditory paradigms for

affective online experiments.
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Introduction

Cognitive psychology and neuroscience researchers are in-
creasingly turning to online worker platforms such as
Prolific (https://prolific.ac/) and Amazon’s Mechanical Turk
(MTurk; https://www.mturk.com/) for recruiting participants
to complete research studies (Stewart et al., 2017). Given the
recent COVID-19 pandemic (Wang et al., 2020), online ex-
perimental studies may now even be necessary to circumvent
restrictions in carrying out in-lab testing. Web-based testing is
attractive not only for its convenience, but it also offers a
wealth of advantages, ranging from its cheap and rapid data
collection system allowing the collection of large sample sizes
necessary for well-powered research (Gillan & Daw, 2016), to
the availability of more diverse or underrepresented popula-
tions (Berinsky et al., 2012; Casey et al., 2018; Goodman et al.
,2013; Levay et al., 2016; Majima et al., 2017; Shapiro et al.,
2013). Moreover, there is strong evidence that web-collected
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data is qualitatively on par with data collected from traditional
participant pools (Berinsky et al., 2012; Klein et al., 2014;
Paolacci et al., 2010), with high internal reliability and test-
retest reliability (Shapiro et al., 2013). Pioneering web-based
studies across cognitive neuroscience, political science and
mental health have indeed produced impactful and replicable
findings (Rollwage et al., 2018; Rouault et al., 2018; Schulz
et al., 2020; Seow & Gillan, 2020).

However, not all fields have enthusiastically adopted the
online approach, owing to several criticisms of web-based
testing, such as the lack of experimental control. In particular,
experiments which utilize auditory stimuli must contend with
limited control over audio volume adjustment as system sound
settings are not accessible through the standard internet
browser; a necessary security measure. Additionally, it is dif-
ficult to certify consistent quality of sound presentation across
participants due to the variability in participants’ audio deliv-
ery equipment and distractions in the listening environment.
While the former issue is difficult to overcome, ensuring that
participants wear headphones (including in-ear varieties, i.e.,
earphones) can help to increase sound quality and reduce in-
terfering noises from the surrounding environment. Recently,
headphone screening tests have been developed and validated
online (Milne et al., 2020; Woods et al., 2017), allowing an
improvement in web-based audio presentation quality.

Building on this important work, we were interested in
testing the viability of sounds presented online to evoke affec-
tive responses. Affective stimuli like loud, unpleasant noises
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are commonly used in cognitive paradigms, for example to
induce aversive states and reactions (Neumann & Waters,
2006; Oyarzun et al., 2012; Zald & Pardo, 2002). These par-
adigms are widely utilized, as behavior in these tasks are well-
characterized with neural correlates (Biichel & Dolan, 2000;
Zald & Pardo, 2002) and computational modeling (Malaka,
1999; Moutoussis et al., 2008; Tzovara et al., 2018), and are
even central in investigating psychiatric disorders (Birbaumer
et al., 2005; Duits et al., 2015; Hauser et al., 2016). Yet these
tasks have not been adapted online (except one which
designed a gamified avoidance paradigm using colliding
asteroids as a threat to end the game; Wise & Dolan, 2020)
as it is unknown whether affective sounds delivered through
the web browser would be able to reliably and effectively
evoke the expected emotional responses.

The second intention of the study was to examine which
aversive sound stimulus would be most suitable for inducing
negative affective responses. Known unpleasant noises vary
greatly in semantic category, ranging from female screams
(Lau et al., 2008; Morriss et al., 2015, 2016), metal screeches
(Neumann & Waters, 2006; Zald & Pardo, 2002), and high-
frequency tones (Mirz et al., 2000; Zald & Pardo, 2002) to a
loud blast of white noise (Bacigalupo & Luck, 2018; Morris
et al., 2001). Unpleasant noises chosen for use in previous
research were often either selected by researchers a priori,
picked from unpublished pilot studies, or chosen from sound
databases with affective ratings collected from in-lab sessions
that could afford a decent degree of experimental control
(Bradley & Lang, 2007; Yang et al., 2018). As such, it is
unknown how the valences of these previously utilized aver-
sive stimuli compare against one another and whether biases
in valence would be similar when presented online with less
stringent experimental control.

Here, we capitalize on recent advances in auditory research
and sound delivery measures using a headphone screening test
and other technical adjustments to optimize online presenta-
tion of auditory stimuli. Our aims were twofold: to (i) inves-
tigate whether affective sounds presented through an online
platform could garner reliable affective responses, and (ii) to
identify an effective aversive stimulus by comparing the va-
lence of previously utilized aversive noises. Notably, an ad-
vantage of collating ratings from an online audience facilitates
the recruitment of a more diverse sample beyond that tradi-
tionally common to psychology studies (Henrich et al., 2010).
This enables contact with participants from difficult-to-reach
populations, allowing subjects that cannot attend in-lab exper-
iments to participate, thus possibly giving these data greater
ecological validity.

We conducted the study with a web-based task where N =
84 participants rated the emotional response that 15 different
sounds evoked along valence and arousal dimensions over
repeated presentations. Participants also completed psychiat-
ric questionnaires on anxiety and obsessive-compulsive

symptoms so that we could examine whether the severity of
their psychiatric symptoms influenced the affective ratings
reported or the reliability of the ratings. As these sound stimuli
are commonly utilized in tasks examining these psychopathol-
ogies (Duits et al., 2015; Hauser et al., 2016), biased or poor
reliability of ratings in these populations may then confound
task behavioral readouts.

Overall, we found that the affective ratings had good reli-
ability in several measures, were comparable to ratings from
their original sound databases and were not associated with
psychiatric severity scores. The most unpleasant sound in our
array was a modified female scream (Bauer et al., 2020;
Morriss et al., 2015, 2016, 2020). Our findings suggest that
despite limitations of audio experimental control in web-based
testing, affective responses can be reliably evoked in partici-
pants, validating the use of affective sounds for online
research.

Materials and Methods

Participants Participants were recruited via Prolific (https://
www.prolific.co/) (N=100). They were aged between 18
and 40 years (mean [M]=26.85, standard deviation [SD]=
5.96). We decided not to include older participants because
declining sensitivity to high-frequency tones spreads to low-
frequency tones from 40 years of age onwards (Moore et al.,
2014). All individuals were residents of the UK and reported
normal hearing. The latter meant that they had no past or
current personal history of auditory/hearing difficulties in-
cluding tinnitus, hearing sensitivity (e.g., hyperacusis), hear-
ing loss, use of hearing aids, or current ear infections/inflam-
mation. All participants provided informed consent online af-
ter reading the study information and consent pages.
Participants were given 30 minutes for task completion and
were reimbursed at £8.25/hour. All experimental protocols
were conducted in accordance with guidelines approved by
the UCL Research Ethics Committee (project ID number
15301\001).

Exclusion criteria Several predefined exclusion criteria were
applied to ensure data quality. Participants were excluded (i) if
their final chosen upper frequency threshold (see “Sound fre-
quency calibration”) was below 8000 Hz (N = 11), which in-
dicated either faults in the auditory setup or a failure to under-
stand instructions, or (ii) if they failed the attention check
question (i.e., “Demonstrate your attention by selecting 'A
lot'.”) in the questionnaire section (N =2). Participants with
incomplete datasets due to remote data collection issues were
also excluded (N=3). In total, 16 participants (16%) were
excluded, leaving N =84 participants for analysis. Of the re-
maining sample, 43 (51.19%) identified as female, 40
(47.62%) as male and one (1.19%) as other gender. Note that
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our sample size (N =84) was more than three times that of
prior rating studies (e.g., each sound was rated by > N=22 in
Yang et al., 2018).

Sound array A sound bite array of 15 sounds was selected to
contain a range of (predominantly) unpleasant and pleasant
noises. The majority of the unpleasant sounds were chosen
from prior studies that had already identified and/or utilized
them as an aversive stimulus, while the rest of the sounds were
intended to balance out the sound assortment to avoid biased
ratings. Across the array, we purposefully covered a variety of
semantic categories, extending from signal noises to pure
tones, to synthetic sounds and to naturalistic sounds.

The sound array was assembled from a variety of sources:

1) Four sounds from the open-source sound database
Expanded Version of the International Affective
Digitized Sounds IADS-E) (Yang et al., 2018): female
scream (ID: 0276), cicada (ID: 0335), sea wave (ID:
0921) and a piano melody (ID: 1360)

il)  Four sounds generated using the sound editor software
Audacity (http://audacityteam.org/) version 2.4.2: pink
noise, Brownian noise, 800 Hz sine tone and 5000 Hz
sine tone, all with 1500 ms duration at 0.8 amplitude

iii)  One sound from a collaborative database of Creative
Commons Licensed sounds, Freesound (https://
freesound.org): a dentist’s drill (https://freesound.org/
people/alexanderwendt/sounds/385680/)

iv)  Three sounds from previous studies of aversive learn-
ing: white noise (Bacigalupo & Luck, 2018), a modi-
fied female scream (Bauer et al., 2020; Morriss et al.,
2015, 2016, 2019, 2020) (which was altered from the
original sound in the second version of the International
Affective Digitized Sounds database (IADS-2)
(Bradley & Lang, 2007), ID: 277), high-frequency tone
and a metal screech (Zald & Pardo, 2002)

V) Two sounds of 2000 ms high-frequency tones generat-
ed in-browser from frequencies based on participants’
input (see “Sound frequency calibration”) with react-
tone (https://www.npmjs.com/package/react-tone)
version 1.1.1.

All sounds were cut to 2000 ms or 1500 ms in Audacity if
the original file was longer. See Supplemental file 2 for a
detailed list of all sounds and their specific sound length in-
formation. See Open Practices Statement for the availability of
these stimuli.

Procedure The experimental task was programmed with
React]JS and bootstrapped with Create React App (https://
create-react-app.dev/). The use of headphones (including
earphones) was required in this study. After participants
provided online consent, they were directed to adjust their
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volume settings, which was intended to help avoid
presentation levels that would result in uncomfortably loud
or inaudible sounds, before performing a headphone check
test. Once through, participants were told to indicate their
maximum audible frequency level (see “Sound frequency
calibration”) that would subsequently inform two sounds of
the sound array (see “Sound array”). Participants then rated
how each sound made them feel along valence and arousal
dimensions, and completed three psychiatric questionnaires.
Details of the procedures are further detailed below:

Volume calibration. Volume intensity depends on both
the computer system and browser sound settings. As the
former cannot be altered by the experimenter, we first
instructed participants to adjust their computer sound set-
ting to 30% of the system maximum. Thereafter, we re-
lied on adjustments of the browser-based volume to ma-
nipulate loudness. To do this, participants were presented
with a noise sample which could be adjusted in volume
via browser sound settings from 0 to 100 along a loga-
rithmic scale of lower bound 1 and higher bound 100 (as
changes in perceived hearing are better described along a
logarithmic scale). Participants were told to adjust the
indicator of the scale (initial value = 80) until the sound
bite volume was loud but comfortable, allowing as many
repeated sound presentations as needed. The final set vol-
ume level was subsequently used for the rest of the task.
Headphone screening test. We required participants to
use headphones, as this improves the control of sound
delivery and attenuates environmental interference.
Participants needed to pass a headphone check task
(Woods et al., 2017) to ensure that they were wearing
headphones. The task consisted of six questions where
they had to discriminate the sound intensity of several
tones (i.e., which was the quietest), where one was pre-
sented with a phase difference of 180° between stereo
channels. The sound volumes are difficult to discriminate
with loudspeakers (as phase-cancellation is imperfect),
but easy with headphones. The sound stimuli of the head-
phone check task were presented in randomized order.
Participants were required to answer at least 5/6 of the
questions correctly to proceed to the next stage; otherwise
they were directed back to the volume adjustment module
to calibrate their sound settings before attempting the
headphone test again. Most participants passed the head-
phone check on the first attempt (N = 68, 80.95%), while
15.48% of the participants took the test twice (N=13),
and the remainder (N = 3, 3.57%) took more tries, up to a
maximum of five attempts. Participants were explicitly
instructed not to adjust their sound settings prior to each
of the subsequent audio sections.

Sound frequency calibration. This part of the experiment
was intended to determine the individual’s upper
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frequency threshold, which was subsequently used to se-
lect high frequencies as unpleasant noise stimuli.
Sensitivity to the high-frequency range tends to decline
with age (Lee et al., 2012; Moore et al., 2014), and as
such we sought to determine the maximum audible fre-
quency for each individual which we could then derive
subjectively high but audible frequency tones as part of
the sound array. In this section, participants were shown a
logarithmic (as frequency perception follows a logarith-
mic perception) scale that represented the frequency of a
sine tone, with the indicator at an initial frequency of
8000 Hz. They were told to adjust the frequency of the
tone three times (first scale: ranged from 5000 Hz to
20,000 Hz, second and third scales: 1000 Hz less than
previously chosen frequency to 20,000 Hz; all logarith-
mic) to a pitch where they could just hear the tone. We
did not find a significant influence of age on the final
chosen frequency level in our relatively narrow partici-
pant age range (Supplementary Fig S1). Two frequencies
were derived from this upper frequency threshold which
were subsequently used as part of the sound bite array for
the ratings task—one three-fourths (Frequency 1) and
one half (Frequency 2) of the chosen frequency level set
on a logarithmic scale of 10,000-20,000 Hz.

Auditory ratings. The participants rated how each of the
sounds made them feel on two affective scales: valence
and arousal. These dimensions are considered classic,
primary dimensions of emotion that account for most of
the variance in emotional judgments (Bradley & Lang,
1994) and were measured in prior rating studies (Bradley
& Lang, 2007; Yang et al., 2018). We used 0 to 100
continuous scales. For valence, the scale ranged from
very unpleasant (0) to neutral (50) to very pleasant
(100), while the arousal scale ranged from very sleepy
(0) to neutral (50) to very awake (100). Each of the 15
sound bites was presented four times (60 trials in total);
twice at the same volume set at the beginning (100%) (see
“Volume calibration”), and twice more at half the loga-
rithmic scale (lower bound 1 and higher bound 100) of
the original volume setting (50%). This was intended to
enable test-retest reliability analyses comparing affective
ratings across the repeated presentations of the specific
sound stimuli. Sounds were presented in a randomized
order.

The default value indicator for both affective scales was
also randomized to begin between 35 and 65 for every pre-
sentation. Participants were required to adjust the slider on
both scales before they could move on to rate the next sound.
The participants had the option to play the sounds multiple
times during rating, but sounds were generally played once (M
per participant = 1.09, SD = 0.16). Participants could also in-
dicate with a checkbox if they could not hear the sound; none

of'the sound presentations for any participant were signaled as
such.

Questionnaires. Lastly, participants provided basic de-
mographic data (age and gender) and completed three
self-report psychiatric questionnaires. We administered
questionnaires assessing symptoms of state (STAI-Y1)
and trait anxiety (STAI-Y2) using both scales of the
State-Trait Anxiety Inventory (Spielberger et al., 1983)
as well as obsessive-compulsive disorder (OCD) symp-
toms using the Obsessive—Compulsive Inventory—
Revised (OCI-R) (Foa et al., 2002). The presentation or-
der of the questionnaires was randomized.

Analyses All analyses were conducted in R, version 3.6.0, via
RStudio version 1.2.1335 (http://cran.us.r-project.org). The
intraclass correlation (ICC) measure and the internal consis-
tency measure, Cronbach’s alpha, were estimated with the
ICC() and alpha() functions, respectively, from the psych
package. For correlation tests, we used nonparametric
Spearman’s correlation tests with no ties to account for the
non-normality of the data, which were conducted with the
cor.test() function from the stats package. All mixed-effects
models were estimated with the /mer() function from the /me4
package with the ImerTest package for statistical tests. Linear
regression models were performed with the /m () function from
the stats package. Paired  tests were calculated with the z.zest()
function from the stats package.
Reliability measures

1. Inter-rater reliability. First, we would expect that partic-
ipants would rate each unique sound somewhat similarly,
but with some variation reflecting interindividual differ-
ences. To examine the agreement of ratings between par-
ticipants for each sound item presentation (i.e., sound
items = 60), we estimated the intra-class correlation
(ICC) of the ratings across participants with a two-way
random-effects model, separately for both valence and
arousal ratings.

2. Intra-rater item test-retest reliability. Next, we asked how
reliable a participant rates each unique sound across its
repeated presentation. We tested this by correlating the
individual ratings (valence or arousal) of the first presen-
tation of each sound with the rating of its identical, repeat-
ed presentation (same volume level) for each participant
(i.e., sound items per time point = 30). From this, a corre-
lation estimate was obtained for each specific scale type
and volume level, for each participant. We then tested
whether volume (Volume: low [50%] or high [100%]) or
affective scale type (ScaleType: valence or arousal) were
linked to this intra-rater item test-retest reliability correla-
tion measure (RatingReliability). Both Volume and
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ScaleType were taken as factors. We used a mixed-effects
model in which Volume, ScaleType were fixed effect co-
variates, with them and the intercept taken as random
effect predictors. The model was: RatingReliability ~
Volume + ScaleType + (1 + Volume + ScaleType |
Subject).

3. Sound test-retest reliability. The sounds themselves may
also differ in test-retest reliability variance owing to their
inherent characteristics (e.g., emotional content). To
probe whether a sound’s features influenced its consisten-
cy of ratings between repeated presentations, we correlat-
ed the affective ratings from the two repeated presenta-
tions across all participants for each sound at its unique
volume level. As such, correlation was examined for each
sound, for each affective scale type and volume level. We
additionally tested whether Volume and ScaleType influ-
enced the sound reliability (SoundReliability) using a
mixed-effects model where Volume, ScaleType were
fixed effect covariates, with them and the intercept taken
as random effect predictors. The model was:
SoundReliability ~ Volume + ScaleType + (1 + Volume
+ ScaleType | Sound).

4. Scale test-retest reliability. We also asked whether
there were differences in participants’ ratings across
the repeated sound presentations in terms of their
overall use of the rating scale for each sound pre-
sentation batch. For this, we calculated the ratings’
means and standard deviations by volume and affec-
tive scale type across all sounds for each participant,
separately for the sounds’ first and second presenta-
tion. We then examined the correlation between the
means and standard deviations obtained across the
two presentations across participants. Thus, a corre-
lation measure for rating mean/standard deviation
was obtained for each affective scale type and vol-
ume level.

5. Internal consistency. Internal consistency of the affective
ratings was measured in prior studies (Bradley & Lang,
2007; Yang et al., 2018), which reflected similarity of the
ratings across all sound items. Likewise, we measured the
consistency of the ratings using Cronbach’s alpha for all
sound item presentations (i.e., sound items = 60) for both
valence and arousal scales.

6. Correlation with prior ratings. To examine the robustness
of our ratings which were garnered online versus in-lab
rating studies, we compared the affective ratings of five
sounds from the current online study (using the averaged
rating across repeated presentation at 100% volume) with
the ratings from their original lab-based study (Bradley &
Lang, 2007; Yang et al., 2018). We used Pearson’s cor-
relation in this measure, as we were interested in the nu-
merical rather than ordinal relationship between the
ratings.
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Ranking affective ratings We ranked the sounds in order of
valence and arousal ratings. For these analyses, we organized
them in descending order by the averaged rating across repeat-
ed presentations of the same sound at its specific volume. To
test for significance in rating differences between sounds in
order to identify the top- and bottom-ranked valence/arousal
sounds, we conducted paired ¢ tests between the two top/
bottom-ranked sounds for each scale type. We also asked
whether affective ratings were influenced by the volume of
the presented sound by testing whether the averaged affective
ratings across both presentations for a specific scale type
(ScaleRating, for arousal or valence, which was the rating
measure used in subsequent analyses) were associated with
Volume, using a mixed-effects model for both affective scale
types. The model was: ScaleRating ~ Volume + (1 + Volume |
Subject). For further fine-grained examination of the impact of
volume on each sound, we performed individual paired # tests
between each volume pair for all sounds for each scale type.
Note that # test analyses here were intended to serve as a broad
illustration of rating differences between sounds/volume; the ¢
test statistics were not corrected for multiple comparisons.

Unique high-frequency tones High-frequency tones are
known to be unpleasant (Zald & Pardo, 2002). However, up-
per hearing frequency limits might differ for participants given
the effect of age on hearing thresholds (Lee et al., 2012).
Though we attempted to circumvent this issue with our age
exclusion criteria (<40 years), we also allowed participants to
identify subjectively high frequencies for themselves
(Frequency 1 and Frequency 2; see “Sound frequency calibra-
tion”) in addition to having two separate sine wave stimuli
with frequencies set at 800 Hz and 5000 Hz. Therefore,
unique frequencies were played across the participants for
Frequency 1 and Frequency 2 in the sound array. We thus
tested whether the unique frequencies that participants heard
(Frequency, z-scored) influenced their affective ratings
(ScaleRating) for valence and arousal dimensions with the
model: ScaleRating ~ Frequency + (1 + Frequency | Subject).

Questionnaires Finally, we asked whether mental health
symptoms influenced the rating or the rating reliability of
these stimuli, which could have ramifications for experiments
with populations with high percentages of these psychopa-
thologies. For this, we tested whether the affective ratings
(ScaleRating) or intra-rater item test-retest rating reliability
(RatingReliability) were associated with the psychiatric symp-
tom severity, calculated as the total score for the individual
questionnaire (QuestionnaireScore, z-scored), and whether
that main effect was modulated by Volume for both valence
and arousal dimensions. For this, we used a mixed-effects
model: ScaleRating ~ QuestionnaireScore * Volume + (1 +
Volume | Subject) and a linear model: RatingReliability ~
QuestionnaireScore * Volume. Also see Supplementary Fig.
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S5 and Supplementary Fig. S6 for questionnaire score distri-
butions and correlations, respectively.

Results
Volume and frequency adjustment

Volume adjustment First, to ensure that sounds presented in
this study were appropriate (i.e., not dangerously loud), we let
participants calibrate the browser sound volume to a level that
was comfortable for them (see “Volume calibration”). We
subsequently used the adjusted sound volume from the suc-
cessful attempt of the headphone task (see “Headphone
screening test”) for the rest of the experiment. Participants
generally chose a volume level on the scale that was close to
the default of 80 (mean [M]=76.49, standard deviation
[SD]=16.97), with a range of 27 to 100 (Fig. 1a).

Frequency adjustment Next, we attempted to identify fre-
quency thresholds for each participant in order to select sub-
jective high-frequency pitches for each participant as an un-
pleasant noise. Participants chose 16,141.15 Hz on average
(8D =2516.79 Hz, ranging from 8184 Hz to 22,000 Hz)
(Fig. 1b) as the pitch where they could just hear the tone.
These frequency levels are in line with hearing threshold stud-
ies where the 22-35 age group sample is thought to have
approximately 16,000 Hz (at 63.03 dB, a relatively moderate
to loud volume) as their upper frequency threshold (Lee et al.,
2012). For the ratings task, we used sine tones of frequency
levels which were slightly lower than their self-reported
threshold for each participant (see “Sound frequency calibra-
tion”): Frequency 1, which was 70% (log-scaled) of the

threshold (M =8033.45Hz, SD=959.89 Hz, min =4838.65
Hz, max =10,158.21 Hz), and Frequency 2, which was 50%
(log-scaled) of the threshold (M= 4004.45 Hz, SD =326.87
Hz, min =2860.77, max =4690.42 Hz).

High reliability of affective ratings

Inter-rater reliability In this study, we sought to examine the
reliability of the affective ratings by our online participant
pool. First, we would expect that participants would give
somewhat similar ratings for each unique sound, with some
variation reflecting individual differences. We examined this
degree of agreement amongst the ratings across participants
for all sound items with an intraclass correlation measure
(ICC) estimated for both valence and arousal ratings. We
found that there was decent agreement between participants’
ratings for all sounds in the valence domain (ICC =0.73, 95%
Confidence Interval (CI)=[0.64 0.77]), while arousal ratings
were more diverse (ICC=0.51, 95% CI=[0.44 0.59]). This
suggested that participants indeed tended to rate the same
sounds similarly, but there were still considerable individual
differences, particularly in the arousal domain.

Intra-rater item test-retest reliability Next, we also aimed to
measure how consistent participants were in their sound rat-
ings over repeated trials. To do so, each of the sounds (at two
volume levels, 50% and 100%) was played twice to examine
how similarly the same sound was rated across two presenta-
tions, and we calculated the Spearman correlation (p) between
the two ratings of the same sound played for each participant
at its specified volume level. We found that the correlations
across the ratings of these repeated sound presentations were
positive and high for all participants in both valence (M=
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Fig. 1 Adjusted volume and frequency levels. a Distribution of adjusted
volume of browser sound settings. Participants were instructed to keep
their computer system sound settings at 30% of the maximum before
calibrating the browser volume on a (log) scale to a level that was appro-
priate (not uncomfortably loud) for them. b Distribution of the maximum
audible frequency selected, and the frequencies derived to use in the

Max Audible

Frequency 1  Frequency 2

Frequency

sound array for subsequent rating which were unique to each participant.
Frequency 1 was derived from 75% (log-scaled), and Frequency 2 was
50% (log-scaled), of their threshold frequency. Circles in the graphs rep-
resent volume/frequency level per participant. Red marker indicates
mean, and error bars indicate standard deviation
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0.89, SD =0.08) and arousal (M =0.79, SD =0.14) (Fig. 2a),
showing good test-retest reliability. We generally observed
that valence ratings had a stronger positive correlation be-
tween repeated presentations than arousal ratings (3=0.11,
SE=0.02, p<0.001) (Fig. 2a), indicating that participants
gave more reliable valence than arousal ratings. There was
no significant impact of volume on correlation strength be-
tween the repeated ratings (6=0.02, SE=0.01, p=0.10).
Overall, these findings suggest that participants rated sounds
very similarly across their repeated presentation on both va-
lence and arousal scales, confirming the ratings as a reliable
measure of emotional response.

Sound test-retest reliability Across our array of 15 sounds, we
also wondered whether the sounds individually intrinsically
differed in the consistency of their ratings across their repeated
presentations. Therefore, for each sound, we examined the
degree of correlation between the ratings from its first and
second presentation, across all participants. Overall, all sounds
were able to reliably induce valence ratings at both 50% (M =
0.68, SD=0.06) and 100% volume (M =0.70, SD=0.07)
(Supplementary Fig. S2). At 100% volume, the sound which
gave the most reliable ratings was the modified female scream
of Morriss et al. (p=0.78, p <0.001), while the least reliable
was the Pink Noise stimulus (p=0.56, p<0.001)
(Supplementary Fig. S2). Similarly, arousal ratings were gen-
erally decently reliable across all sounds at both 50% (M =
0.62, SD=0.09) and 100% volume (M =0.66, SD =0.06),
with Frequency 1 (p=0.75, p<0.001) as the most reliable
arousal rating, while the least reliable was Brownian Noise
(p=0.54, p<0.001) at 100% volume (Supplementary Fig.
S2). Similar to intra-rater item test retest-reliability, valence

ratings had a stronger positive correlation between repeated
presentations than arousal ratings (3=0.05, SE=0.02, p=
0.01), while the impact of volume on correlation strength be-
tween the repeated ratings did not reach significance (5=
0.03, SE=0.02, p=0.06).

Scale test-retest reliability We also investigated how consis-
tently participants utilized the rating scale over repeated sound
presentations. We first estimated the rating mean and standard
deviation for all sounds for the first and second sound presen-
tation separately for each participant, and then compared these
over all participants. We found that participants gave compa-
rable rating patterns over the repeated presentations in both
valence and arousal scales. Correlations between the mean
rating of all sounds between the first and second sound pre-
sentation across all participants were high (valence: p=0.87,
p<0.001; arousal: p=0.87, p<0.001) and the variances were
also very similar (valence: p=0.88, p<0.001; arousal: p=
0.86, p <0.001) (Supplementary Fig. S3). Again, these results
support the high reliability of participants providing affective
ratings for the sounds presented online.

Internal consistency Prior studies have also reported good
internal consistency of sound ratings in both valence and
arousal affective dimensions (Yang et al., 2018). Similarly,
we estimated Cronbach’s alpha for all sounds per scale type.
The top seven valence sounds (100% and 50% volume for
Cicada, Sea Wave and Piano Melody, and 50% volume for
Brownian Noise), which were the same as the bottom seven
arousal sounds, were automatically identified as being nega-
tively correlated with their respective scale types. This indi-
cated that our sound array had a balanced range of sounds with
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Fig. 2 Intra-rater and scale test-retest reliabilities of affective ratings. a
Distribution of intra-rater item test-retest reliability. Affective ratings for
each sound were correlated with those from its repeated presentation per
participant as the intra-rater item reliability measure. These were found to
be high for both arousal and valence in both volumes. Circles represent
Spearman’s rank correlation estimate p across repeated sound ratings for
each participant across all sounds at a specified volume/scale. Marker
indicates mean and error bars indicate standard deviation. b Scale test-
retest reliability as measured by the comparison of the means across all
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sound ratings per participant in the first (x-axis) versus second (y-axis)
stimulus presentation. Strong positive correlations between the measures
for both arousal and valence indicate reliable rating patterns. Circles rep-
resent the rating mean for each participant at its specified volume, with the
dashed line indicating the linear relationship between means.
*##%p <0.001 (Spearman’s correlation). See Supplementary Fig. S3 for
the correlation between rating standard deviations in the first versus sec-
ond sound presentation
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differing valence and arousal. The internal consistencies were
found to be high for both scale types after automatic sign
reversion of those sounds in the estimation (valence: o=
0.93, arousal: «=10.94).

Correlation with prior ratings Finally, we asked whether the
ratings we collected online were comparable to those from in-
lab studies to test whether the decreased degree of experimen-
tal control of web-based audio delivery impacted the affective
ratings. We gathered the ratings of five sounds in our stimulus
array (played at 100% volume) to compare them with those
from their original studies, which were all conducted in tradi-
tional laboratory environments (Bradley & Lang, 2007; Yang
et al., 2018). Pearson’s correlations of the sounds across ours
and the prior studies for both affective dimensions were high
(arousal: »=0.98, p=0.003; valence =0.96, p <0.01) (Fig.
3). These results suggest that the affective ratings we collected
online were reliable and valid, and rated similarly as those
measured in well-controlled in-lab environments.

Ranking of affective ratings

As part of the study, we aimed to identify the most unpleasant
sound amongst a variety that have been utilized in prior re-
search. Female screams were found to be the most unpleasant,
with the modified female scream of Morriss et al. (M = 8.48,
SD =12.09) being rated as significantly more unpleasant than
the scream from the IADS-E database (Yang et al., 2018)
(M=11.24, SD=12.68) (at 100% volume for both sounds:

=-1.99, 95% Cl=[-5.52, —0.008], p <0.05) (Fig. 4). This
was followed by high-frequency tones, metal sounds, com-
plex noises, and finally natural pleasant noises. The most
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Fig. 3 Rating comparison with prior studies. Relationship between
current affective ratings and those from prior studies (Bradley & Lang,
2007; Yang et al., 2018). Pearson’s correlation across the five sounds in

both rating dimensions was high (arousal: »=0.98, p =0.003; valence:
r=0.96, p<0.01), indicating that our ratings collected online are very

pleasant sound was the Piano Melody (M =88.57, SD =
10.88), which was rated as significantly more pleasant than
Cicada sounds (M =81.57, SD=13.81) (at 100% volume for
both sounds: =4.01,95% CI=[4.39, 13.02], p < 0.001) (Fig.
4).

We also observed that the ratings in valence and arousal
dimensions for the current sound array were negatively corre-
lated (Spearman: p: =—0.83, p <0.001) (Supplementary Fig.
S4). As such, the sounds followed almost the same (inverted)
ranking pattern for arousal ratings. The Morriss et al. modified
female scream was identified as the most arousing (M = 90.35,
SD=11.51), being more arousing than the IADS-E female
scream (M =84.50, SD=13.34) (at 100% volume for both
sounds: =442, 95% CI=[3.21, 8.48], p<0.001) (Fig. 4).
On the other hand, the 50% volume Piano Melody was rated
as the least arousing sound (M =23.54, SD =19.03), being
significantly lower than the Cicada sound (M =32.23, SD=
18.81) (at 50% volume for both sounds: r=3.51, 95%
CI=[1.75, 6.33], p<0.001).

Overall, the ratings suggest that the Morriss et al. modified
female scream may be the most ideal aversive stimulus
amongst those tested, as it was ranked as the most unpleasant
and arousing sound.

Volume intensity increases arousal and
unpleasantness

High sound intensity is often a factor in inducing aversive
responses (Liberman et al., 2006; Neumann et al., 2008),
and thus we sought to examine how volume influenced affec-
tive ratings. We found that both valence and arousal ratings
were modulated by volume. Louder sounds were generally
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(Prior studies)
similar to those from traditional in-lab studies. (n.b. The Morriss et al.
scream is a modified version of the original sound bite from the IADS-2
(Bradley & Lang, 2007), whose ratings were used for comparison here.)
**p < 0.01 (Pearson’s correlation). Rating scale from prior studies ranged
from 0 to 10 while that of the current study ranged from 0 to 100
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Morriss et al. scream was found to be the most unpleasant and arousing
sound. Frequency 1 and Frequency 2 were unique for every individual,
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calibration”), but the mean of the frequencies across all participants for
those sounds are indicated in their labels. Marker indicates rating means
and error bars indicate standard deviations for all sounds. Sounds are
ranked by the averaged rating across volumes. See Supplementary file 2
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rated as having lower valence (unpleasant) (3=—11.98, SE =
2.33, p<0.001) and being more arousing (awakeness) (0=
22.96, SE=1.82, p<0.001). Separate paired ¢ tests for ratings
of every sound between the two volumes indicated that this
was true for all stimuli (valence: all #s > 3.72, ps<0.001,
arousal: s > 4.17, ps <0.001), except Piano Melody in the
valence dimension (t=-0.49, 95% CI=[-1.88, 1.14], p=
0.62) (Fig. 4). The sound that reported the largest volume-
induced difference in both valence (r=11.73, CI=[16.07,
22.63], p<0.001) and arousal (r=—10.11, CI=[-21.69,
—14.55], p<0.001) ratings between the two volume levels
was White Noise. These results suggest that affective ratings
of sound stimuli are generally affected by volume intensity,
but sounds may intrinsically differ in this influence.

Slight variation in high frequencies not associated
with degree of unpleasantness

High-frequency tones are known to be unpleasant, and we
observed that the 5000 Hz sine tone was rated significantly
more unpleasant than the 800 Hz in both volumes (100%:
=-9.20, CI=[-22.83, —15.36], p<0.001; 50%: t=-9.27,
CI=[-19.29, -12.48], p < 0.001). As part of the sound array,
participants were also presented with two high-frequency sine
tones that were unique to their (self-reported) maximum audi-
ble frequency: Frequency 1, which was lower in pitch than
their threshold by one-fourth, and Frequency 2, which was
lower by half. Valence (=0.53, 95% CI=[-2.03, 3.50],
p=0.60) and arousal (t=-1.96, 95% CI=[-5.75, 0.04], p =
0.05) ratings did not differ significantly between these two
sounds at 100% volume (also not at 50% volume: s >
—1.45, ps > 0.15) (Fig. 4). We considered that because partic-
ipants heard objectively different frequencies in these sound
bites, affective ratings for Frequency 1 and Frequency 2 might
have been influenced by the absolute frequency that was cho-
sen by each participant. However, we found no significant
association between the ratings and the objective stimulus
frequency (valence: §=-0.44, SE=0.70, p=0.53; arousal:
B8=-1.07, SE=0.70, p=0.13). Our findings suggest that
while high frequencies are generally considered aversive, var-
iation from about 3000 Hz to 10,000 Hz (the sample pool’s
minimum of Frequency 2 and maximum of Frequency 1, re-
spectively) did not significantly impact valence ratings.

Psychiatric symptom scores are not associated with
affective ratings or rating reliability

Lastly, we measured psychiatric symptom severity of state
anxiety (STAI-Y1), trait anxiety (STAI-Y2) and obsessive-
compulsive symptoms (OCI-R) to test whether psychiatric
severity might affect the perception or rating reliability of
these stimuli, which could in turn confound task behavior
using these stimuli in samples with these psychopathologies.

For affective ratings, neither valence (STAI-Y1: 5=-0.96,
SE=1.89, p=0.61; STAI-Y2: 3=-0.21, SE=0.03,
p<0.001; OCI-R: 5=-0.96, SE=1.89, p=0.61) nor arousal
(STAI-Y1: 3=2.49, SE=1.53, p=0.11; STAI-Y2: =
—0.96, SE=1.89, p=0.61; OCI-R: 3=2.49, SE=1.53, p=
0.11) ratings had a significant relationship with the question-
naire scores (Fig. 5a). There was also no interaction effect of
psychiatric traits with volume in either dimension (arousal:
STAI-Y1: §=-2.03, SE=1.83, p=0.27, STAI-Y2: 3=
—2.03, SE=1.83, p=0.27, OCI-R: =-2.03, SE=1.83,p=
0.27; valence: STAI-Y1: 3=1.03, SE=2.34, p=0.66, STAI-
Y2: 3=1.03,SE=2.34, p=0.66, OCI-R: 3=1.03, SE=2.34,
p=0.66) on the ratings (Fig. Sa).

For rating reliability, there was no significant relationship
between the intra-rater item test-retest reliability measure and
any questionnaire scores for arousal (STAI-Y1: 3=-0.006,
SE=0.02, p=0.75, STAI-Y2: 3=-0.004, SE=0.02, p=
0.85, OCI-R: 8=0.006, SE=0.02, p=0.76) or valence
(STAI-Y1: B=-0.008, SE=0.01, p=0.47, STAI-Y2: =
0.006, SE=0.01, p=0.62, OCI-R: 3=0.006, SE=0.01, p=
0.62) ratings (Fig. 5b). Similarly, volume did not interact with
any of these relationships (arousal: STAI-Y'1: §=-0.02, SE =
0.02,p=0.33, STAI-Y2: 3=-0.02, SE=0.02, p=0.20, OCI-
R: f=-0.02, SE=0.02, p=0.15; valence: STAI-Y1: 5=
—0.01, SE=0.03, p=0.71, STAI-Y2: 3=-0.01, SE=0.03,
p=0.63, OCI-R: 5=-0.03, SE=0.03, p=0.26) (Fig. 5b). In
sum, we did not observe an influence of psychiatric symptom
severity on affective ratings or the reliability of those ratings.

Discussion

In this study, we examined the feasibility of inducing affective
states in web-based online studies using sound stimuli. We
find that with the right technical measures in place, we can
reliably induce affective states using sound stimuli similar to
in-lab studies, which demonstrates that affective audio stimuli
can be used well in web-based tasks. Concretely, we found
that the ratings were reliable, had good internal consistency
and were comparable to those reported in prior studies which
collected ratings in controlled in-lab environments. Moreover,
we compared several unpleasant sounds consistently and
found that amongst them, a modified female scream led to
the most aversive state. Our study thus lays the groundwork
to use affective sound stimuli for inducing negative affective
states in online studies, a much needed means for cognitive
online studies.

First, we took on the challenge of ensuring good auditory
delivery on a web-based platform. In our procedure, partici-
pants were first screened to ensure they wore headphones
(Woods et al., 2017) to reduce distractions in the listening
environment. Thereafter, they were to set their computer sys-
tem volume at a fixed level, to enable a more consistent sound
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Fig. 5 Correlation of questionnaire scores with affective ratings or
participant reliability. For illustration purposes, the scatter plots depict
the relationship between a affective ratings or b ratings reliability with
questionnaire total scores. None of the correlations were significant,
indicating that neither affective rating nor its reliability was affected by

intensity level across participants, before the final adjustment
of the browser volume setting. While it is not possible to
objectively track whether participants followed our
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psychiatric symptom severity. Circles represent either the mean affective
rating for all sounds per participant or intra-rater item test-retest reliability
measure, while the dashed lines represent the linear relationship between
questionnaire score and mean rating/reliability estimate at its specified
volume

instructions, due to browser-imposed security restrictions,
the high pass rate (80.95%) of the headphone check task with
one attempt signaled that participants were generally
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compliant. Moreover, while there was wide variation in the
final browser volume level chosen, the majority of the partic-
ipants selected levels close to the default loud intensity.
Lastly, none of the sounds was indicated as inaudible in the
rating task, which might have occurred if volumes that were
too low were chosen. Overall, we were confident that our
procedure enabled a more consistent and reliable presentation
of sound quality online.

We asked participants to rate how the sounds made them
feel on two emotional scales, arousal and valence. Participants
tended to rate each unique sound quite similarly in their va-
lence ratings, showing decent agreement. Though their arous-
al ratings were more divergent, this is in line with other studies
reporting that arousal ratings (of words) presented more vari-
ability than valence with other affective norms, or participants
differing by age or language (Fairfield et al., 2017). To exam-
ine the test-retest reliability of sound ratings, we specifically
designed the task such that participants gave repeated ratings
of each sound. We found that participants reported very sim-
ilar ratings across the two presentations of a particular sound,
and they also gave comparable rating patterns in terms of their
overall rating means and variances over the repeated presen-
tations. Prior auditory affective rating studies tested in stricter,
in-lab environments also examined reliability in terms of in-
ternal consistency—Ilikewise, the internal consistency esti-
mates we measured from our ratings were high and similar
(e.g. «=0.95 for valence, o« =0.92 for arousal in Yang et al.,
2018, versus here: oc=10.93 for valence, &c=0.94 for arousal
in our study). These results suggest that the affective ratings
collected online were highly reliable. More fine-grained anal-
yses show that the sounds intrinsically differed in their ratings
reliability, but all of them (at 100% volume) evoked decent
reliability of a correlation of p > 0.60 (Supplementary Fig.
S2). More importantly, as several of our sounds were taken
from an open-source sound database (Yang et al., 2018), we
were able to compare our ratings that were presented online to
ratings that were previously collected in a traditional in-lab
setting that were afforded much stricter experimental control.
Notably, our sample size was larger than the previous study
(N =84 participants rated each sound versus N=22 in Yang
et al.), affording greater statistical power, and we replicated
the ratings of these sounds very closely. Overall, our results
support the validity of a web-based presentation for sounds to
evoke their expected affective responses.

A second aim of this study was to suss out the most un-
pleasant sound for use as an effective aversive stimulus.
Unpleasant sounds come from a wide range of categories
(Bradley & Lang, 2007; Yang et al., 2018), from naturalistic
sounds such as female screams to more synthetic sounds like
high-frequency tones or white noise. Varying sounds have
been used in prior research as aversive stimuli to drive learn-
ing (Bacigalupo & Luck, 2018; Bauer et al., 2020; Morriss
et al., 2015, 2016, 2019, 2020; Zald & Pardo, 2002), but it is

unknown how they compare to each other given the different
methods of selection. While some sounds have their affective
ratings documented in sound databases, others are often cho-
sen after unpublished pilot studies or selected a priori. Here,
we specifically rated some of these unpleasant sounds together
to compare their valence ratings. We found that white noise
and metal screeches were mildly aversive, followed by high-
frequency tones (>4000 Hz), while more naturalistic sounds
such as the female scream were rated as the most aversive. The
Morris et al. scream was rated as the most unpleasant and
arousing sound, indicating that it may be the most affective
aversive stimulus amongst those that we tested.

In this same vein, we manipulated loudness intensity system-
ically (full and half volume), as the volume is often key in
eliciting negative affect (Liberman et al., 2006; Neumann et al.,
2008). One previous rating study reported no changes in affective
ratings owing to sound intensity differences (Bradley & Lang,
2007), while another noted that volume negatively correlated
with valence and positively correlated with arousal (Yang et al.,
2018), though this was due to natural volumes in the environ-
ment rather than an intended task design. We replicated this same
effect with our systematic volume manipulation here. Notably,
the sounds intrinsically differed in the strength of influence of
volume on their affective ratings—for instance, the ratings for
White Noise varied the most depending on volume intensity
amongst our array sounds. Nonetheless, volume did not seem
to influence valence ratings more so than the type of sound itself
(Fig. 3), suggesting that these sounds are valanced because of
their inherent characteristics, and less because of the intensity at
which they were perceived.

High frequencies are known to be unpleasant (Mirz et al.,
2000; Zald & Pardo, 2002), but upper frequency thresholds
are subjective to the individual and are heavily dependent on
age (Fozard, 1990; Lee et al., 2012; Moore et al., 2014). We
attempted to circumvent this issue by limiting the age in our
participant pool to a maximum of 40 years. The final chosen
upper frequency threshold levels of our sample did show var-
iation, but this was not related to the participants’ age
(Supplementary Fig. S1). For rating, we presented high-
frequency tones that were subjective to each participant by
utilizing two frequencies that were slightly lower than their
unique threshold frequency. In general, we found that the
fixed high-frequency tone (5000 Hz) was more unpleasant
than the low-frequency tone (800 Hz), but variation in the
subjective high-frequency tones (from around 3000 Hz to
10,000 Hz) did not influence the degree of valence in ratings.
Given the lack of relationship between high frequencies and
unpleasantness, in addition to some participants having rather
low upper frequency threshold levels (Supplementary Fig.
S1), high frequencies may not be the most decisive aversive
stimuli as compared to others like naturalistic screams, which
were ranked as more unpleasant and are straightforward to
use.
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Lastly, we collected several psychiatric symptom question-
naires scores to ensure that affective ratings themselves were
not linked to symptom severity, especially given that online
populations are known to have increased mental illness sever-
ity (Chandler & Shapiro, 2016; Shapiro et al., 2013). We
measured anxiety and obsessive-compulsive symptoms which
are core components of two mental health disorders that often
utilize aversive learmning paradigms in research (Duits et al.,
2015; Hauser et al., 2016). A prior in-lab rating study only
collected state anxiety symptom data (Yang et al., 2018),
which was akin to the severities of our current online sample.
Overall, we found no significant relationship between the af-
fective ratings and the psychiatric scores of the participant
pool. Importantly, we also observed that the reliability of the
ratings was not affected by the psychiatric symptoms, further
supporting the use of these sounds in paradigms to study these
illnesses. We acknowledge that because our results were
drawn from a general population sample, their applicability
to diagnosed patients may differ, but there is growing evi-
dence that mechanisms captured with psychopathological var-
iation in online general population findings are clinically rel-
evant (Gillan et al., 2016, 2019).

There were some limitations to our study. Firstly, we exam-
ined the test-retest reliability of the sound ratings over two
presentations that were relatively close in terms of time; addi-
tional trial presentations and/or a longer duration between data
collection may result in greater variability between ratings.
Secondly, though we attained a certain degree of experimental
control with our procedure, the ability to monitor sound presen-
tation quality delivered to participants is still limited.
Commercially available headphones may vary in their frequen-
cy response, and we were not able to check whether participants
had adjusted their system sound settings or had taken their
headphones off after the screening test. Moreover, owing to
security features of web browsers, it is impossible to track any
computer system sound setting information—thus we could not
record the objective perceived sound intensities experienced by
our participants. Thirdly, the headphone screening test we uti-
lized (Woods et al., 2017) relies on the ability of headphones to
present separate signals to the two ears. As such, loudspeaker
systems that broadcast a single channel/output of the combined
audio could contribute to false positives. For future studies,
recent developments of alternative headphone tests may help
to resolve this issue (Milne et al., 2020). Lastly, though we
asked participants to provide ratings based on the emotional
response that they felt, they may have instead recognized and
reported the emotional characteristic of the sound. Examining
how physiological changes that are linked to emotional states
(e.g., skin conductance) align with the affective ratings may
bolster our interpretation. Despite the limitations, however,
our findings show that affective responses are robust and can
be evoked online to a level comparable to that collected in more
controlled, in-lab environments.

@ Springer

Given that web-based crowdsourcing will become increas-
ingly common for research, it is only reasonable to enable
more paradigms to be translated to online platforms. While
the degree of sound presentation control available may not be
ideal, many web-induced limitations in other domains such as
imprecision in measuring reaction times (Bridges et al., 2020;
Plant, 2016) have been found not to compromise data substan-
tially (Crump et al., 2013; Klein et al., 2014). Our findings
present evidence that sounds presented through a web-based
platform can evoke reliable affective ratings, which supports
the translation of affective audio-based paradigms to be con-
ducted online.
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