
Supplementary information. To model the hypnozoite burden, we draw on the
within-host framework constructed in [15]. We adopt the simplest exponential clock
model, whereby each hypnozoite activates independently at constant rate η [13, 15].
Each infective bite is modelled to inoculate a geometrically-distributed sporozoite
batch of mean size ν. A sporozoite either undergoes immediate development with
probability (1− prel) to give rise to primary infection or it forms a hypnozoite that is
destined to activate at a later time (we have re-parametrised this model to ignore the
unobservable contribution of hypnozoite death). To capture population heterogeneity,
we allow the force of inoculation in the population to follow a Gamma-distribution,
with shape parameter κ and mean λ̄ [19].

Under a constant force of infection or infective bite rate λ, the hypnozoite burden
at stationarity follows a negative binomial distribution with mean λνprel/η and shape
parameter λ/η [12]. Each round of chloroquine MDA is assumed to confer T days of
chemoprotection. If an individual receives m rounds of chloroquine, this amounts to a
consecutive durationmT of complete prophylactic antimalarial protection. During this
period, each hypnozoite may activate spontaneously with probability (1−e−λmT ), but
the hypnozoite progeny will be unable to establish a blood-stage infection. Assuming
that additional hypnozoites cannot be acquired during this period of chemoprotection
(i.e. that transmission of P. vivax has also been interrupted completely), we can apply
the law of total expectation to show that the size of the hypnozoite reservoir Hm(λ)
following m bouts of treatment is negative binomial with mean λµe−ηmT /η and shape
parameter λ/η.

By applying the law of total expectation, we can show that the within-host hyp-
nozoite burden Hm after m bouts of treatment, accommodating heterogeneity, has
probability generating function (PGF)
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Now, we consider a closed population of N individuals with 100% adherence to an
MDA regimen spanning m bouts of treatment. Assuming that the hypnozoite burden
of each individual can be modelled independently, the population-wise hypnozoite
burden Hm(N) after MDA has PGF
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We can recover the probability mass function (PMF) of Hm(N) from the PGF (1)
by computing
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This can be performed directly using the function Series in Mathematica. To
obtain an analytic expression, we write the PGF (1) in the form
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Using Faa di Bruno’s formula as in [12], it then follows that
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where Bn,k denotes the partial Bell polynomial. Using standard identities, we obtain
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where
[
n
ℓ

]
denotes an unsigned Stirling number of the first kind.

We parametrise this model based on the posterior median estimates η = 1/171
day−1 and νprel = 2.7 from [15], with κ = 1.15 such that the 20% of individuals
subject to the highest transmission intensity are collectively expected to experience
50% of infective bites. We assume each round of CQ MDA yields T = 30 days of
chemoprotection.
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