
sensors

Article

Delay Analysis in IoT Sensor Networks †

Asaad Althoubi 1, Reem Alshahrani 2 and Hassan Peyravi 1,*

����������
�������

Citation: Althoubi, A.; Alshahrani,

R.; Peyravi, H. Delay Analysis in IoT

Sensor Networks. Sensors 2021, 21,

3876. https://doi.org/10.3390/

s21113876

Academic Editor: Erol Gelenbe and

Maria Carla Calzarossa

Received: 6 May 2021

Accepted: 1 June 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Kent State University, Kent, OH 44242, USA; aalthoub@kent.edu
2 Department of Computer Science, Taif University, Taif 26571, Saudi Arabia; rashahrani@tu.edu.sa
* Correspondence: peyravi@cs.kent.edu
† This paper is an extended version of our paper published in the proceedings of IEEE 28th International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Nice, France, 17–19 November 2020.

Abstract: Internet of Things (IoT) devices, particularly those used for sensor networks, are often
latency-sensitive devices. The topology of the sensor network largely depends on the overall
system application. Various configurations include linear, star, hierarchical and mesh in 2D or 3D
deployments. Other applications include underwater communication with high attenuation of radio
waves, disaster relief networks, rural networking, environmental monitoring networks, and vehicular
networks. These networks all share the same characteristics, including link latency, latency variation
(jitter), and tail latency. Achieving a predictable performance is critical for many interactive and
latency-sensitive applications. In this paper, a two-stage tandem queuing model is developed to
estimate the average end-to-end latency and predict the latency variation in closed forms. This
model also provides a feedback mechanism to investigate other major performance metrics, such
as utilization, and the optimal number of computing units needed in a single cluster. The model
is applied for two classes of networks, namely, Edge Sensor Networks (ESNs) and Data Center
Networks (DCNs). While the proposed model is theoretically derived from a queuing-based model,
the simulation results of various network topologies and under different traffic conditions prove the
accuracy of our model.

Keywords: sensor networks; edge networks; data center networks

1. Introduction

The exponential growth in wireless and mobile devices has resulted in producing an
unprecedented amount of traffic that needs to be processed by various nodes, sometimes
in real time. The advancements in sensing, data processing, and cloud communication
technology have enabled the systems to interact with the environment and optimize pro-
cesses. The Internet of Things (IoT) is evolving from vertical to polymorphic applications,
supporting both personal and industry users. To provide a seamless experience to the
end-users, many challenges need to be addressed, including technology standards, interop-
erable module components supporting heterogeneous applications and requirements at
several layers. In general, scalability is a limiting factor both vertically and horizontally.
In the vertical scalability, computing resources are added or deleted, and in the horizon-
tal scalability, network nodes are added or deleted. Security, privacy, self-organization,
and energy efficiency are also other challenges in IoT deployment. The vehicular networks
applications, such as Vehicular to Vehicular (V2V), Vehicular to Pedestrian (V2P), and
Vehicular to Infrastructure (V2I) networks are latency-sensitive networks. Some healthcare
and wearable devices have stringent requirements in terms of latency and latency variation
(jitter). The authors in [1] provide a survey of communication protocols for IoT networks
and related challenges. In [2], a taxonomy of IoT broad vision for various applications
is examined. It provides a categorization of analytic approaches and proposes a layered
taxonomy from IoT data for analytics.

Sensors 2021, 21, 3876. https://doi.org/10.3390/s21113876 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21113876
https://doi.org/10.3390/s21113876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113876
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21113876?type=check_update&version=1

Sensors 2021, 21, 3876 2 of 17

Several billion active IoT and sensor devices around the world continuously require
data connections to data centers to operate and connect with other devices. These con-
nections to data centers yield a significant ever-growing amount of data continuously
being updated as the use of IoT increases. How is this affecting data centers around the
world? Data storage is a very important consideration. With such a huge rise in data
consumption and traffic, the connections from devices to data centers will need to be
improved drastically in terms of response time, particularly for real-time applications. Real-
time applications include environmental sensor networks, weather forecasting networks,
healthcare, and epidemic networks, etc. With more smart houses being built than ever
before and more IoT devices being implemented, data centers will need to respond within
a constrained time.

These applications service several millions of queries and instructions on several
thousands of machines and are concerned with response latency, latency variation (jitter),
and tail latency. Optimizing data center networks for tail latency is a shift from the previous
designs where the performance metrics of interest were throughput or average latency.
Moreover, optimizing for tail latency is another key performance metric and has already
been considered in vertical designs with new operating systems, cluster managers, and data
services [3–5]. Optimizing the average throughput for latency-insensitive traffic is still an
important performance metric.

Network latency is directly related to the two other troublesome network compli-
cations, packet loss and jitter. Thus, identifying the root causes of the latency problem
and what latency means to the applications is necessary. First, request latency reflects
how long it takes from sending a request to receiving the reply, including the time spent
waiting in the queue and the time spent executing the corresponding instructions. Second,
a significant portion of latency is dominated by the network transfer time which in turn is
dominated by the queuing probabilistic delay. There is also the variation in the network
latency, which is caused by various network traffic types, including the background traf-
fic and the request/response traffic with tight deadlines. The background traffic can be
latency-sensitive packets, short control messages, or large replicated transfer files. Third,
the absence of priority scheduling for latency-sensitive traffic when latency-sensitive and
non-latency-sensitive traffic share the network equally. Additionally, uneven load balanc-
ing and burst traffic all contribute to variation in network transfer times. Fourth, increasing
buffer size to reduce loss rate introduces variable buffer latency. As predictability of re-
sponse time becomes more critical for latency-sensitive cloud services, finding a balance
between the expected response time and deployment of computation/communication
resources becomes more critical.

In this paper, an analytical model was developed to reduce the stringent task service
delays for sensor and IoT devices, particularly when they must obtain or update data
from/to cloud data centers. Eliminating the sources of latency and latency variability in
large-scale systems is impractical, especially in shared environments. However, predictions
and mitigation of latencies are possible through queuing analysis.

Our main contributions can be summarized as follows:

• We developed a two-stage tandem queuing model for Edge Sensor Networks (ESNs)
and Data Center Networks (DCNs), as well as feedback mechanisms to investigate key
performance indicators, such as latency, delay variation (jitter), utilization, and the
optimal number of computing units needed in a cluster.

• We derived closed-form formulas for the above key performance indicators and
analyzed tail latency under various traffic scenarios. We extended the result presented
in [6] for the last mile delay analysis in DCN networks to incorporate the first-mile
delay analysis for ESNs and achieve end-to-end delay analysis.

• We formulated the compound latency accumulated by ESNs and DCNs, which can
be used to suggest the optimal workload allocations among schedulers and servers,
thereby minimizing the turn-around time required by applications.

Sensors 2021, 21, 3876 3 of 17

• These findings were verified by simulating the system with the traffic obtained from
synthetic data as well as IoT traffic traces. The distinction between the model pre-
sented in this paper and the previous models [7–10] is three-fold. First, the model
relaxes the assumption in some previous models in which the servers were assumed
to be homogeneous to be able to apply an M/M/k queuing model. However, in our
model, the servers are assumed to be heterogeneous with different service rates. Sec-
ond, unlike some previous models [7,8] and from the queuing perspective, the model
separates schedulers from servers. Distributed schedulers perform distinctive oper-
ations and could cause a bottleneck. With heterogeneous servers, different servers
have different probabilities of being dispatched depending on their load. Third, since
scheduling policies are based on fair sharing through statistical multiplexing and/or
over-provisioning, the previous models were not capable of providing guarantees on
job latency.

Source of Latency and Challenges

Generally, the network-specific real-time analytics, heterogeneous resources, scala-
bility of many detailed data, tail latency, and sub-millisecond response time requirements
represent most of the critical challenges facing data centers. Short-running jobs are nor-
mally held disproportionately and become subordinate to long-running jobs (called
stragglers [11]). Despite using many straggler mitigation techniques, stragglers are still
increasing the average job duration by 47%, which means the job completion suffers
significantly from stragglers [11]. A connection is only useful if it satisfies its deadline.
However, stragglers increase tail latency, which can also be influenced by resource
contention with background jobs, device failure, uneven split of data between tasks, and
network congestion.

A query or response initiated by a sensor or an IoT node suffers a cascade of three
latencies. The edge latency is associated with an edge distribution network consisting
of edge devices such as computers, Wi-Fi access points, and desktop and wiring closet
switches, also known as hosts or end systems, which are connected at the edge of the
network. The core network latency is associated with operation in data centers. Data
centers have their edge networks in racks that aggregate server traffic. Finally, network
latency is often dominated by propagation (distance) delay between the edge network and
core network (data centers). The first mile (edge network) and the last mile (data center
or core network) contribute significantly to the latency and its variation. In the following
sections, we develop models for edge and core networks to estimate and predict the latency
and latency variation in each network. The edge network model consisting of sensors
and IoT devices is called the Edge Sensor Network (ESN), and the core network model
associated with a cloud center is called the Data Center Network (DCN).

An analytical model is a valuable tool that provides insights into a system’s behavior
under normal and extreme conditions. One can draw a trajectory of the system’s character-
istics by varying the system’s parameters with extreme or boundary values. For example,
one can increase the load or aggregation level to project tail latency. This is particularly
useful when schedulers target real-time data processing in which jobs are latency sensi-
tive. The Data Center Network (DCN) is modeled based on tandem queuing networks
and fork-join systems to analyze parallel job latency with distributed schedulers in data
center cluster networks. We consider conserving policies in which a job demands system
resources if the job is ready for execution. Work conserving policy states that the total
backlog of work is independent of the scheduling policy at any given time. FCFS is an
example of work conserving policies. Multiplexing J jobs to a single processor such that
each job receives 1/J-th of the resources (or time) is another example.

The rest of the paper is organized as follows. Section 2 provides a short survey
of related work in modeling and analysis of data center networks. Section 3 presents
modeling and analysis of two classes of networks, Edge Sensor Networks (ESNs) and Data
Center Networks (DCNs) from the queuing theory perspective. It also shows one of the

Sensors 2021, 21, 3876 4 of 17

contributions concerning modeling and latency analysis in data centers. It describes a
queuing network model, which can be used to model the average latency and its variation.
It can also be used to predict tail latency particularly at a higher load. Section 4 develops
formulas for delay variation (jitter) including service time and end-to-end latency variation.
It also covers factors impacting tail latency and techniques to mitigate it. Section 4.3 briefly
describes trade-offs, how simulation traces were obtained and used. Finally, conclusions,
limitations, and remarks are presented in Section 5.

2. Related Work

Recent research in the core and edge networking has focused on several aspects
of underlying cluster architecture such as creating various layer 2 network topologies,
designing transport protocols, virtualizing network resources, latency analysis, and so on.
Both edge and core networks play a significant role in supporting enterprise networks
and cloud computing services, including, but not limited to large-scale computations, web
searching, email, online gaming, and social networking. As far as latency, which is a high
priority in both networks, some work took an experimental approach and others tried to
develop a generalized analytical model to explain and draw a trajectory of the behavior of
a cluster of nodes under various workloads. For example, Flexplane [12] is an experimental
platform for users to program resource management algorithms in data center networks. It
is an alternative approach to simulation and a platform for experimenting in real networks.
It is based on a centralized emulator on a multi-core machine. It can predict the behavior of
several network schemes such as RED (Random Early Detection) and DCTCP (Data Center
TCP). Unlike an analytical model, it cannot scale to support arbitrary large networks. It
uses a fixed abstract packet size that may degrade accuracy with variable packet sizes.

In terms of analysis, the work in [13] surveys the research efforts conducted on ap-
plying queuing theory to model and analyze cloud computing. In [14], an approach in
the context of M/G/m/m + r queue was developed to analyze a data center with hetero-
geneous servers. In this model, the analysis was extended to approximate the response
time distributions, the mean number of tasks in the system, and the blocking probability.
An interesting finding in this work is that a cloud data center that accommodates hetero-
geneous servers may impose longer waiting times for the incoming jobs compared to its
homogeneous counterpart with the same traffic intensity. Although the results appear
consistent with the prior research, the model is limited to jobs with a single task.

An approximate solution for steady-state queue length in a M/M/m system with a
finite buffer has been described in [15]. A cloud platform with homogeneous servers and
capacitated buffers has been modeled as a M/M/m/C queuing system to estimate the
number of Virtual Machines (VMs) needed to satisfy the QoS requirements. Each server
can host up to m VM instances, where C is the maximum queue length of a server. A load
balancer, the point of entry for the system, is modeled as a M/M/1/C queue.

The authors in [16] presents an improvement to the classical model based on the power
of two choices randomized load balancing. The model combines randomization techniques
and static local balancing based on a round-robin policy. The model does not include
queuing network delays between the dispatcher and the servers. In [17], the authors reduce
the head-of-line blocking in a fat-tree network by reducing the number of exploited buffers.
Neither technique consider distributed schedulers. The authors in [18] formulate an elastic
aware VM (virtual machine) placement policy as an optimization problem. The model
does not include network tandem queuing latency.

To improve the difficulty of building large data centers in a dense metro area, the au-
thors in [19] proposed an optical-circuit-switched architecture that lowers cost and com-
plexity barriers and improves scalability. In [20], the authors proposed a new solution for
building a scalable and cost-effective data center networking infrastructure. The proposed
topology organizes nodes in clusters of similar structure and then interconnects these
clusters in a well-crafted pattern. A system of coordinates for nodes reduces the number of
redundant connections between clusters while maximizing connectivity.

Sensors 2021, 21, 3876 5 of 17

In terms of transport layer latency, the authors of [21] report on experiences with a
congestion control technique in Google datacenters. The scheme targets an end-to-end
delay by using additive increase and multiplicative decrease in window size. The tail la-
tency for short RPCs (remote procedure calls) has been evaluated with a load close to 100%.
Similarly, in [22], the performance of data center transport protocol has been investigated
with a two-dimensional explicit congestion notification along with an analytical model to
assess the convergence process.

3. Sensor and Data Center Network Models

While the M/M/1 and M/M/k described in Section 2 are helpful and simple to
analyze a data center, they are not sufficient when the bottleneck is within the data center
interconnection network. Hence, a network of queues is more representative to describe a
data center.

A Jackson queuing network [23] is a network of N M/M/1 state-independent queu-
ing system. Upon receiving its service at node i, a packet will proceed to node j with a
probability pij. Figure 1 illustrates a node model for a Jackson network. The queue capacity
at each node is assumed to be infinite, so there is no packet dropping.

.

. . .

. . .

γ

λ

i

ij

j

j

j
p

Figure 1. Node model for Jackson Network.

In this model, γj is the packet rate generated by node j and λj is the aggregate rate at
node j. Let N be the number of nodes in a Jackson [23] network, and PN×N be a probability
matrix describing routing within a Jackson network [23], where −→γ = (γ1, γ2, · · · , γN) is a
vector of the exogenous mean arrival rates, and

−→
λ = (λ1, λ2, · · · , λN) is a vector of mean

arrival rates of the traffic aggregates. Unlike the state transition used for Markov chains,
the rows of P matrix need not necessarily sum up to one, i.e., ∑j pij ≤ 1. The routing matrix
P can be generated by the underlying data center interconnectivity. Assuming the network
reaches equilibrium, we can write the following traffic equation using the flow conservation
principle, in which the total sum of arrival rates entering the system is equal to the total
departure rate under steady-state conditions.

λj = γj +
N

∑
i

λi pij, j = 1, 2, · · · , N. (1)

In the steady state,
−→
λ = −→γ +

−→
λ P, (2)

and the aggregate arrival rate vector can be solved by:

−→
λ = −→γ (I− P)−1 < −→µ , (3)

where the vector I is an identity matrix and −→µ = (µ1, µ2, · · · , µN) is a vector representing
service rates. The service times are assumed to be mutually independent and also inde-
pendent of the arrival process at that queue regardless of the previous service times of the
same packet in other nodes. At this point, we have the arrival rate and the service rate of

Sensors 2021, 21, 3876 6 of 17

each network node. From M/M/1, we can calculate the delay a packet suffers at node
j, i.e., 1/(µ− λ), λ < µ. In the following subsections, we will compute the end-to- end
delay a packet suffers by going through the Edge Sensor Network (ESN) and Data Center
Network (DCN).

3.1. Edge Sensor Network Model

In this section, we present a two-stage tandem queuing model to characterize the
Edge Sensor Network, which consists of k sensors or IoT nodes communicating with edge
servers or gateways. We derive closed-form formulas for the key features and performance
measures, including mean job response time (latency) and latency variation. Consider the
sensor network in Figure 2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 2. A configuration of edge sensor network with 3 gateways.

In this ESN network, there are 15 sensor nodes at level 1 (` = 1), each has access to two
gateways at level 2 (` = 2). Redundancy provisioning is a normal practice in Edge Sensor
Networks (ESNs). The model discussed below can easily adopt any network topology.
Based on the amount of traffic each node generates and the distance between sensor nodes,
one can figure out the number and placement of the gateways. This is particularly useful
during the deployment of sensors and smart devices in smart homes, smart roads, smart
cities, smart healthcare, etc. By applying Equation (3) to the corresponding routing matrix
from the network in Figure 2, we obtain

λs =

−→
λs = (γ1 , γ2 · · · γn) ` = 1
−→
λG =

−→
λs × P ` = 2

T
`
=

 (µh − γs)−1 ` = 1

(µG − λG)
−1 ` = 2

(4)

To illustrate the above formulation with an example, consider that the sensor network
in Figure 2 consists of 15 sensor nodes and three gateways. Further, assume γi = γ and
µi = µ, for an illustrative purposes, then

λ` =

{
λs = γ ` = 1
λG = 5γ ` = 2

T
`
=

 (µ− γ)−1 ` = 1 γ < µ

(µ− 5γ)−1 ` = 2 γ < µ/5
(5)

Therefore, the end-to-end delay in the sensor network can be estimated as

TESN =
L

∑
`=1

T
`
=

2(µ− 3γ)

(µ− γ)(µ− 5γ)
. (6)

Sensors 2021, 21, 3876 7 of 17

While the theory is sound enough based on queuing theory, we have conducted two
different sets of simulations. First, we generated the source traffic synthetically with an
exponentially distributed inter-arrival time and an exponentially distributed service time.
We varied the traffic load to compare the theoretical projection with the simulation results.
We also collected traces of several IoT networks from [24]. We used the inter-arrival times
and service times from these traces and conducted several runs of simulations for each
load point. Figure 3 illustrates the closeness of the theoretical model with simulations
which include simulations with synthetic data as well as simulations with traffic traces.

Figure 3. An illustration of closeness of the theoretical model with simulation.

3.2. Simulation

To test and validate our mathematical model, we developed a simulator based on
the Abstract Network Simulator (anx) [25], which is a discrete-event network simulator
intended for simulations networks that exchange discrete information packets. More
specifically, anx is written in pure Python3 and has only two dependencies outside Python
standard libraries; NetworkX and Simpy. NetworkX is a library for creation and ma-
nipulation of complex networks, where these are modelled, viewed and manipulated as
graphs. SimPy is a library for discrete-event simulations framework that relies on Python
generators. anx uses NetworkX to create and manipulate network representations. These
representations are converted into a computational module that SimPy can use for simulat-
ing and exchanging of information packets between nodes. The simulation model can be
summarized as follows:

• The network consists of arbitrary types of nodes. A node is either a source, forwarder
(edge switch), or destination node.

• Source nodes generate packets (traffic) whose destination is a randomly chosen desti-
nation node that exists in the network. Any given node generates traffic independently
to other nodes.

• Each node maintains a forwarding queue where the packets are stored.
• Periodically, a node checks its forwarding queue. If there are packets in the node’s

queue, it pick up a packet from the head of the queue and forwards the packet either
to the destination node (if directly connected to it) or to the next-hop node along the
path to the destination.

• Upon receiving a packet at the destination, the packet is processed and then removed
from the network.

Sensors 2021, 21, 3876 8 of 17

Parameters

The core simulation parameters include:

• node_pkt_rate: represents the of arrival rate (λ) of packets at nodes, except the
destination.

• node_proc_delay: the time to process packet.
• node_queue_check: the time to check the forwarding queue of node. It is set to a very

small value of 0.001 s.
• node_queue_cutoff: represents the length of queue of a node. It is set to 1024 packets.
• link_transm_delay: the time spent to transfer a packet between two neighboring

nodes. It is set to 0.0001 s.

In terms of traffic traces, the traces were captured over different time frames of 10 min,
15 min, 30 min, 60 min, and some traces were captured over 12 h. The traces were collected
using MEGA, which is a cloud-based service that can be used using all major devices and
platforms from anywhere with Internet. Each packet in the trace’s files represented by
starting time, source node, destination node, protocol type, and packet length.

The simulation runs for 400 s. During the simulation frame, each IoT node generated
packets with exponentially distributed inter-arrival time. These packets were put into the
buffer of IoT devices for transmission to the Access point (gateway). The aggregated packets
at each gateway were transmitted to the Data Center Network (DCN). The simulation was
executed 10 times for each load (0.1 ≤ ρ ≤ 0.9). The delay for each packet traversing the
network was recorded and then averaged. The service time of a packet at a gateway was
also exponentially distributed with the rate of µ packets per second. The transmission link
delay between an IoT node and the gateway node was set to a very small value equal to
0.0001 s. The delay to monitor queue and queue length was set to 0.001 s, and each node
had a queue-cutoff equal to 1024 packets.

3.3. Wireless Mesh Sensor Networks (WMSN) Model

The most challenging part of connecting IoT sensors to the infrastructure is often
called “the last mile” problem that supports bridging IoT devices via a wireless mesh
network to a wired Internet gateway. To better understand the WMSN’s advantages,
consider wireless IP networks in which a star topology is used to communicate directly
with the network through devices such as IoT gateways. If the end-to-end transmission
latency is a critical metric, such as in smart highways, then a direct communication path
can provide it. However, a star topology is neither fault-tolerant nor scalable. WMSNs
provide an alternative solution for scalability and robustness in which alternative paths are
provided through a dynamic routing mechanism such as Ad hoc On-Demand Distance
Vector (AODV) Routing [26]. Figure 4 illustrates a WMSN consisting of 100 wireless
sensors, 14 wireless routers, one wired gateway and a spanning tree generated by an AODV
routing. In [27], the authors discuss how a gateway placement with QoS constraints can be
deployed in wireless mesh networks. As in previous sections, we assume exponentially
distributed inter-arrival time and service time. There are three types of nodes. Wireless
sensor or IoT nodes transmit their packets to wireless routers, and wireless routers forward
their packets along with the aggregated traffic received along the spanning tree towards
a wireless gateway. Wireless routers act as access points for IoT nodes, sensor nodes,
or mobile devices.

Sensors 2021, 21, 3876 9 of 17

1

2 3

4

5

6 7

8

9

10

11

12 13

14

15

1

2 3

4

5

6 7

8

9

10

11

12 13

14

15

Figure 4. An illustration of Wireless Mesh Sensor Network.

λi =

∑ γj i = 1, j = 1 · · · 15
∑ γj i = 2, j = 2, 5 · · · 6, 10 · · · 12
∑ γj i = 3, j = 3, 7 · · · 9, 13 · · · 15
∑ γi i = 4, 9 · · · 15
∑ γj i = 5, j = 5, 10 · · · 11
∑ γj i = 6, j = 6, 12
∑ γj i = 7, j = 7, 13
∑ γj i = 8, j = 8, 14 · · · 15

(7)

Qi =

(µ− 14γ)−1 i = 1
(µ− 6γ)−1 i = 2
(µ− 7γ)−1 i = 3
(µ− γ)−1 i = 4, 9− 15
(µ− 3γ)−1 i = 5, 8
(µ− 2γ)−1 i = 6, 7

(8)

D = (µ− 14 γ)−1 + 2/5 (µ− 6 γ)−1 +
7
15

(µ− 7 γ)−1 +
8
15

(µ− γ)−1

+ 2/5 (µ− 3 γ)−1 +
4

15
(µ− 2 γ)−1 (9)

Simulation experiments, similar to those in Section 3.1, were conducted across different
loads for wireless mesh networks. Figure 5 illustrates the average delay performance with
synthetic data, IoT traces and the theoretical model. The slight gap between the simulation
with IoT traces and the theoretical model is the result of the gap between the CDF of the
traces and the CDF of the exponential distribution as shown in Figure 6.

Sensors 2021, 21, 3876 10 of 17

Figure 5. An illustration of the closeness of the theoretical model with simulation in mesh networks.

Figure 6. CDF of IoT traces, synthetic data, and the theoretical model.

As it can be seen in Figures 3 and 5, the theoretical delay slightly higher than the
expected delay. This is due to the fact that the CDF of the inter-arrival times obtained from
IoT traces is lower than the CDF of the exponential inter-arrival times with identical means
but slightly different variance (Figure 6).

3.4. Data Center Network (DCN) Model

Figure 7 shows the conventional architecture of a data center. Requests arriving from
the Internet are IP packets routed through a core router (CR) to access an aggregator router
(AR), all in the layer 3 (L3) domain. A load balancer (LB) connected to a top-level access
switch (AS) spreads requests evenly across multiple servers. The dominant portion of
response time is consumed by the access network. Traffic moves north–south and east–west
(cross-rack communications), and it is generally asymmetric in terms of latency. While
spreading out reducers offers load balancing and reduces computing time, it increases
communication time, congestion and tail latency. Network latency consumes data retrieval
time and scalability, which is bottlenecked by latency and communication overhead. As
the number of servers is increased by provisioning or scaling, the communication time
increases by a higher rate than the computation time does.

Sensors 2021, 21, 3876 11 of 17

5
0
 m

s

1
0
0
 m

s

2
0
0
 m

s

AR ARAR

R R R.. .R R R..

LBLB

AR

Request Response

N
o
rt

h
−

S
o
u
th

East−West 100 ms

LB: Load balancer

AR: Aggregation router

CR: Core router

AS: Access switch

ES: Edge switch

R: Rack

AS AS

ES ES ES ES

Internet

CR CR

Figure 7. An illustration of latency components.

From the user’s perspective, latency and its variation (jitter) are primary performance
metrics. From the provider’s perspective, utilization and cost are primary performance
metrics. There are a few questions this article tries to answer, including how tail latency can
be mitigated without over-provisioning, how to schedule different user requests, and how
these decisions help the desire to minimize energy consumption. While the answers to these
questions often come from detailed experiments, it is of great value to have an analytical
framework that can identify major trade-offs and challenges supporting latency-sensitive
services in data center networks.

Figure 8a represents a miniature fat-tree replica of a data center interconnection
network. Core routers (layer 3) are interconnected with aggregate routers in a systematic
block-structured form. Aggregate routers and edge switches form pods that host servers.

S
e

rv
e

r

E
d

g
e
/A

c
c
e

s
s

A
g

g
re

g
a

te

C
o

re

12345678

9101112

13141516

1718

(a)
.

. . .

. . .

γ

λ

i

ij

j

j

j
p

(b)

Figure 8. (a) A 4× 16 fat-tree; (b) A node model.

The delay analysis of the Data Center Network (DCN) is similar to the analysis of the
Edge Sensor Network (ESN), except in the DCN there are several layers of tandem queuing

Sensors 2021, 21, 3876 12 of 17

systems. However, we can use the same Equation (3) to derive a closed-form solution
for the mean response time. Generally, joint traffic (south–north) contributes more to the
tail of latency than forked traffic (north–south). A similar approach can also be used for
the traffic moving south. We extended the model developed in [6] for end-to-end delay
approximation in closed-form.

Let λ`j be the aggregated traffic arrival at node j in stage `. Given the regularity and
hierarchical structure of the fat-tree, we can directly compute the load on each node at each
level. Assuming a uniform distribution of traffic governed by the load balancers, we can
formulate the aggregated traffic and the corresponding latency at each level (Equation (10)).

λ` =

−→
λh = (γ1 , γ2 · · · γn) ` = 1
−→
λe =

−→
λh × P, ` = 2

−→
λa =

−→
λh × P2, ` = 3

−→
λc =

−→
λh × P3, ` = 4

T
`
=

(µh − γh)
−1, ` = 1, γh < µh,

(µe − λe)−1, ` = 2, λh < µe,

(µa − λa)−1, ` = 3, λa < µa,

(µc − λc)−1, ` = 4, λc < µc,

(10)

where n is the number of hosts and h, e, a, c, are indices for hosts, edge switches, aggregator,
and core servers, respectively. The shortest (unique path) gives us the response time as
cumulative individual delays at each level.

TDCN =
L

∑
`=1

T
`

(11)

To illustrate the above formulation with an example, consider an 8× 2 fat-tree with
8 hosts, 4 edge switches, 4 aggregator switches and 2 core switches. Further, assume γi = γ
and µi = µ, for illustrative purposes

λ` =

λh = γ
λe = 2γ
λa = 2γ
λc = 4γ

T
`
=

(µ− γ)−1 ` = 1, γ ≤ µ

(µ− 2γ)−1 ` = 2, γ ≤ µ/2

(µ− 2γ)−1 ` = 3, γ ≤ µ/2

(µ− 4γ)−1 ` = 4, γ ≤ µ/4

(12)

TDCN =
L

∑
`=1

T
`
=

(2µ− 3γ)(2µ− 6γ)− µγ

(µ− γ)(µ− 2γ)(µ− 4γ)
. (13)

The average end-to-end latency can be estimated by adding the latencies from Equations (6)
and (13).

4. Delay Variation (Jitter) Analysis

Recent data center traffic traces [28,29] indicate that the modern applications often
experience a high variability in inter-arrival time and service time. Variability in inter-
arrival time represents the variability in workload, bursty or batch arrivals. Service time
variability represents processing time variability due to computing, access (read/write),
or communication requirements. Note that service time is the minimum task latency
assuming no communication or queuing delay.

Sensors 2021, 21, 3876 13 of 17

4.1. Service Time Variation

To investigate the impact of variability in job latency, we consider a system with a
given inter-arrival time and service time distribution. We can use the squared coefficient of
variation (C2) to parameterize variability for inter-arrival time and service time.

C2(ta) = σ2(ta)/T2
a (14)

C2(ts) = σ2(ts)/T2
s (15)

where ta and ts denote inter-arrival time and service time, respectively. σ denotes the
variance, Ta, and Ts are the mean of inter-arrival times and service times, respectively.

The M/G/1 queuing system with exponential inter-arrival time and generic service
time allows us to analyze the mean job latency E(Tj) as a function of service variability
σ2(ts) and mean service time T2

s via the Pollaczek–Khinchin (P–K) formula [30].

Tj = Tw + Ts =
λ(σ2(ts) + T2

s)

2(1− ρ)
+ Ts = σ2(ts) ·

λ

2(1− ρ)
+ Ts ·

2− ρ

2(1− ρ)
, (16)

where λ = 1/Ta is the mean request arrival rate and ρ = λTs is the normalized system
load. Clearly, both Ts and σ2(ts) impact latency.

Tj =
C2(ts)

T2
s
· λ

2(1− ρ)
+ Ts ·

2− ρ

2(1− ρ)
(17)

σ2(ts) =
(2− ρ)(Tj− Ts)Ts

ρ
− TjTs (18)

Figure 9 illustrates load (ρ) versus job latency for different service rates. Figure 10
illustrates load (ρ) versus service rate versus delay variation. Figure 10 indicates that the
load (ρ) has more impact on the delay variation than the service time (Ts). The figure also
indicates that the load has more impact on delay variation than the service rate. Distributing
the load by deploying distributed schedulers gives better results than increasing the service
rate (faster machines), as far as delay variation is concerned.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

ρ

T
j

T

s
=1

T
s
=2

T
s
=3

T
s
=4

T
s
=5

T
s
=6

T
s
=7

T
s
=8

T
s
=9

T
s
=10

Figure 9. The impact of load (ρ) and service rate (Ts) on job latency Tj.

Sensors 2021, 21, 3876 14 of 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
2

3
4

5
6

7
8

9
10

200

400

600

800

1000

ρ
T

s

σ2 (t
s)

Figure 10. The impact of load (ρ) and service rate (Ts) on jitter σ2(ts).

4.2. Mitigating Tail Latency

With tail latency, we are not concerned solely about the average latency. Rather, we
care about the full latency distribution. At the very least, we should care about the tail.
Usually, between the 90th and 99th percentiles of the tail distribution is considered. For a
given fanout, how fast the children nodes have to be to get 99th percentile of latency.

Techniques such as resource provisioning, dividing jobs and parallelizing tasks, elimi-
nating head-of-line blocking, and caching helps in reducing the tail latency. Even with a
maximum level of parallelism in its finest form, the slowest instance of tasks (straggler)
dominates the response time. Smaller task partitioning (micropartition) helps to reduce
head-of-line blocking and achieves smoother latency distribution percentiles. At the 95th
percentile latency, the scheduler sends the same request to multiple replicas (hedged re-
quests) and using the result from the first responder. With a Canary request, one sends
normal requests but falls back to hedged request if the Canary request did not finish the
task in a reasonable time. More fine-grained scheduling also helps.

While parallelism mitigates tail latency, there is still a limit on how much tail latency
can be improved when microservices with fork and join are used. Amdahl’s law describes
the speedup (s) of a task when a fraction (f) of the computation is accelerated by a factor (k).

s =
1

f /k + (1− f)
(19)

Equation (19) says that the amount of parallel speedup in a given problem is limited by
the sequential portion of the problem, which are stragglers and dependent tasks. Figure 11
illustrates how stragglers can limit the speed-up gained by parallelism.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

S
pe

ed
up

 (
s)

Fraction of stragglers

k=1
k=5
k=10
k=20

Figure 11. An illustration of speed-up in M/M/k limited by Amdhal’s law.

Sensors 2021, 21, 3876 15 of 17

While Amdahl’s law captures the average performance from multiple cores, it does
not describe tail latency. Simple models such as M/M/1 and M/M/k are particularly
attractive for performance calculations in closed-form expressions. In [5], the previous
analyses on Amdahl’s law for parallel and multi-core systems [31,32] have been extended
to develop an analytical framework based on M/M/k queuing model to predict tail
latency. The tail latency for M/M/1 can be described as the q-percentile of the response
time. The mean response time of an M/M/1 queue is E[r] = 1

µ−λ , where λ is the mean
arrival rate and µ is the mean service rate. Hence, the probability density and distribution
functions for the latency in M/M/1 can be expressed as:

fr(t) = (µ− λ)e−(µ−λ)t, Fr(t) = 1− e−µ(1−ρ)t (20)

Now, the q-percentile of the latency can be expressed as:

1− Fr(t) =
q

100
⇒ tq =

−1
µ(1− ρ)

ln(1− q
100

) (21)

For M/M/k, the probability density and distribution functions for the latency can
be computed in a similar way but with more effort. However, computing the cumulative
distribution function of waiting is more tractable.

Fr(t) = 1− Pwe−kµ(1−ρ)t ⇒ tq =
− ln(100−q

100Pw
)

kµ(1− ρ)
(22)

where Pw is the Erlang-C probability of waiting.
While eliminating the sources of latency variability in large-scale systems is impracti-

cal, especially in shared environments, prediction and mitigation of tail latency are possible
through queuing analysis.

4.3. Discussion

The experiments discussed in Sections 3 and 4 were designed to verify the validity
of the model based on the M/M/1 queuing model for Edge Sensor Networks and Data
Center Networks with M/M/k servers. The average inter-arrival time, scheduling time
and service time were obtained from traffic traces and fed to the Equations (6) and (13).
From Google [28], Alibaba [29], and IoT traces, the CDF of various traffic parameters, such
as job inter-arrival time, job size, and service time were computed directly from the traces
and then used in the simulator. The DCN model gives a slightly slower response time when
tested with both Google [28] and Alibaba [29] traces. An obvious reason is that the DCN
model is based on an exponential inter-arrival time and an exponential service time, while
the tail of the traces is longer than the tail of an exponential distribution with the same
mean. It is intuitive and also observed that as network size increases (n = 1250 in Google
vs. n = 4043 in Alibaba), the speed gap will be reduced. The traces in Google [28] and
Alibaba [29] show that the average server utilization is below 40%, while we tested the DCN
model across various load up to 95% to measure the impact of long-tail latency. We also
observed that traces are not continuous observations. They are samples taken intermittently,
and hence they are statistically suitable to be used in continuous time simulations.

5. Conclusions

In distributed IoT, sensors, and data center network applications, achieving pre-
dictable performance is critical, particularly in interactive jobs. Resource provisioning,
such as parallel storage and multi-core servers, can pull tail latency. However, resource
provisioning may be insufficient in the absence of identifying traffic characteristics and
network bottlenecks. This paper, first, proposed a two-stage tandem queuing model, which
is theoretically derived from a queuing-based model. This theoretical queuing network
model provides a way to estimate the average end-to-end latency and predict the latency

Sensors 2021, 21, 3876 16 of 17

variation in closed forms. Additionally, this model introduces a feedback mechanism
to investigate other major networking performance metrics, such as utilization and the
optimal number of computing units needed in a single cluster. Second, a model for sensor
and IoT networks was implemented, and the simulation results validate the accuracy of this
model. Third, the model was extended and applied for two classes of networks, namely,
Edge Sensor Networks (ESNs) and Data Center Networks (DCNs).

While parallelism reduces tail latency, there is still a limit on how much tail latency
can be improved when microservices with fork and join. The takeaways from this study
can be summarized as follows.

• A significant amount of tail latency can be due to queuing effects. So, reducing tandem
queuing delays through distributed scheduling reduces tail latency.

• Queuing effects increase super-linearly with utilization.
• In M/M/1 and M/M/k, the tail latency can be reduced by low server utilization,

i.e., over-provisioning.
• With distributed scheduling, it is possible to keep the servers busy, yet keep the tail

latency low.

Author Contributions: This research has two major components, developing theoretical models and
performing simulation and experiments, as well as a few analyses. Conceptualization, H.P., A.A.
and R.A.; methodology, H.P.; software, A.A.; software, A.A. and H.P.; validation, H.P. and A.A.;
formal analysis, H.P.; investigation, A.A. and H.P.; resources, A.A.; data curation, A.A.; writing—
original draft preparation, A.A.; writing—review and editing, H.P.; visualization, A.A. and H.P.;
supervision, H.P.; project administration, H.P.; funding acquisition, H.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DCN Data Center Network
DCTCP Data Center Transport Control Protocol
ESN Edge Sensor Network
FCFS First Come First Serve
IoT Internet of Things
QoS Quality of Service
REDP Random Early Detection
TCP Transport Control Protocol
V2I Vehicular to Infrastructure
V2P Vehicular to Pedestrian
V2V Vehicular to Vehicular

References
1. Dizdarevic, J.; Carpio, F.; Jukan, A.; Masip-Bruin, X. A Survey of Communication Protocols for Internet of Things and Related

Challenges of Fog and Cloud Computing Integration. ACM Comput. Surv 2019, 51, 1–29. [CrossRef]
2. Siow, E.; Tiropanis, T.; Hall, W. Analytics for the Internet of Things: A Survey. ACM Comput. Surv 2018, 51, 1–36. [CrossRef]
3. Delimitrou, C.; Kozyrakis, C. QoS-Aware scheduling in heterogeneous datacenters with paragon. ACM Trans. Comput. Syst 2013,

31, 1–34. [CrossRef]
4. Delimitrou, C.; Kozyrakis, C. Quasar: Resource-efficient and QoS-aware cluster management. In Proceedings of the Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS’ 14, Salt Lake City, UT, USA, 1–5 March 2014;
Balasubramonian, R., Davis, A., Adve, S.V., Eds.; ACM: New York, NY, USA, 2014; pp. 127–144.

5. Delimitrou, C.; Kozyrakis, C. Amdahl’s law for tail latency. Commun. ACM 2018, 61, 65–72. [CrossRef]

http://doi.org/10.1145/3292674
http://dx.doi.org/10.1145/3204947
http://dx.doi.org/10.1145/2556583
http://dx.doi.org/10.1145/3232559

Sensors 2021, 21, 3876 17 of 17

6. Althoubi, A.; Alshahrani, R.; Peyravi, H. Tail Latency in Datacenter Networks. In Proceedings of the 28th International
Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2020), Nice,
France, 17–19 November 2020; Springer: Cham, Switzerland, 2020; pp. 254–272.

7. Bai, W.H.; Xi, J.Q.; Zhu, J.X.; Huang, S.W. Performance Analysis of Heterogeneous Data Centers in Cloud Computing Using a
Complex Queuing Model. Math. Probl. Eng. 2015, 2015, 1–15. [CrossRef]

8. Guo, L.; Yan, T.; Zhao, S.; Jiang, C. Dynamic Performance Optimization for Cloud Computing Using M/M/m Queueing System.
J. Appl. Math. 2014, 2014, 756592. [CrossRef]

9. Yang, B.; Tan, F.; Dai, Y.S. Performance evaluation of cloud service considering fault recovery. J. Supercomput. 2013, 65, 426–444.
[CrossRef]

10. Vilaplana, J.; Solsona, F.; Teixidó, I.; Mateo, J.; Abella, F.; Rius, J. A queuing theory model for cloud computing. J. Supercomput.
2014, 69, 492–507. [CrossRef]

11. Ananthanarayanan, G.; Ghodsi, A.; Shenker, S.; Stoica, I. Effective Straggler Mitigation: Attack of the Clones. In Proceedings of
the 10th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA, 2–5 April 2013;
Feamster, N., Mogul, J.C., Eds.; USENIX Association: Berkeley, CA, USA, 2013; pp. 185–198.

12. Ousterhout, A.; Perry, J.; Balakrishnan, H.; Lapukhov, P. Flexplane: An Experimentation Platform for Resource Management in
Datacenters. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017,
Boston, MA, USA, 27–29 March 2017; Akella, A., Howell, J., Eds.; USENIX Association: Berkeley, CA, USA, 2017; pp. 438–451.

13. Jafarnejad Ghomi, E.; Rahmani, A.M.; Qader, N.N. Applying queue theory for modeling of cloud computing: A systematic
review. Concurr. Comput. Pract. Exp. 2019, 31, e5186. [CrossRef]

14. Khazaei, H.; Misic, J.V.; Misic, V.B. Performance Analysis of Cloud Computing Centers Using M/G/m/m+r Queuing Systems.
IEEE Trans. Parallel Distrib. Syst 2012, 23, 936–943. [CrossRef]

15. El Kafhali, S.; Salah, K. Stochastic modelling and analysis of cloud computing data center. In Proceedings of the 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017; pp. 122–126.

16. Garcia-Carballeira1, F.; Calderón, A.; Carretero, J. Enhancing the power of two choices load balancing algorithm using round
robin policy. Clust. Comput. 2020, 24, 611–624. [CrossRef]

17. Mohtavipour, S.M.; Mollajafari, M.; Naseri, A. A novel packet exchanging strategy for preventing HoL-blocking in fat-trees.
Clust. Comput. 2020, 23, 461–482. [CrossRef]

18. Sridharan, R.; Domnic, S. Network policy aware placement of tasks for elastic applications in IaaS-cloud environment. Clust.
Comput. 2021, 24, 1381–1396. [CrossRef]

19. Dukic, V.; Khanna, G.; Gkantsidis, C.; Karagiannis, T.; Parmigiani, F.; Singla, A.; Filer, M.; Cox, J.L.; Ptasznik, A.; Harland, N.; et al.
Beyond the Mega-Data Center: Networking Multi-Data Center Regions; SIGCOMM; ACM: New York, NY, USA, 2020; pp. 765–781.

20. Chkirbene, Z.; Hadjidj, R.; Foufou, S.; Hamila, R. LaScaDa: A Novel Scalable Topology for Data Center Network. IEEE/ACM
Trans. Netw. 2020, 28, 2051–2064. [CrossRef]

21. Kumar, G.; Dukkipati, N.; Jang, K.; Wassel, H.M.G.; Wu, X.; Montazeri, B.; Wang, Y.; Springborn, K.; Alfeld, C.; Ryan, M.;
et al. Swift: Delay Is Simple and Effective for Congestion Control in the Datacenter; SIGCOMM; ACM: New York, NY, USA, 2020;
pp. 514–528.

22. Zhang, T.; Huang, J.; Chen, K.; Wang, J.; Chen, J.; Pan, Y.; Min, G. Rethinking Fast and Friendly Transport in Data Center
Networks. IEEE/ACM Trans. Netw. 2020, 28, 2364–2377. [CrossRef]

23. Jackson, J.R. Networks of Waiting Lines. Oper. Res. 1957, 5, 518–521. [CrossRef]
24. Mega. Secure Cloud Storage and Communication Privacy by Design. Available online: https://mega.nz/folder/aKZmRQBC#62

zPv6WasTo5-eFi4G4Grg (accessed on 3 June 2021).
25. Anx. Abstract Network Simulator. Available online: https://anx.readthedocs.io/en/latest/index.html# (accessed on

3 June 2021).
26. Perkins, C.E. Ad Hoc Networking; Addison-Wesley: Boston, MA, USA, 2001.
27. Drabu, Y.; Peyravi, H. Gateway Placement with QoS Constraints in Wireless Mesh Networks. In Proceedings of the Seventh

International Conference on Networking (ICN 2008), Cancun, Mexico, 13–18 April 2008; pp. 46–51.
28. Reiss, C.; Wilkes, J.; Hellerstein, J.L. Google Cluster-Usage Traces: Format+ Schema; White Paper; Google Inc.: Mountain View, CA,

USA, 2011; pp. 1–14.
29. Alibaba Production Cluster Data. 2018. Available online: Alibaba.com (accessed on 3 June 2021).
30. Kleinrock, L. Queueing Systems; Vol. I: Theory; Wiley Interscience: Hoboken, NJ, USA, 1975.
31. Amdahl, G. Validity of the Single-Processor Approach to Achieving Large-Scale Computing Requirements. Comput. Des. 1967,

6, 39–40.
32. Hill, M.D.; Marty, M.R. Amdahl’s Law in the Multicore Era. IEEE Comput. 2008, 41, 33–38. [CrossRef]

http://dx.doi.org/10.1155/2015/980945
http://dx.doi.org/10.1155/2014/756592
http://dx.doi.org/10.1007/s11227-011-0551-2
http://dx.doi.org/10.1007/s11227-014-1177-y
http://dx.doi.org/10.1002/cpe.5186
http://dx.doi.org/10.1109/TPDS.2011.199
http://dx.doi.org/10.1007/s10586-020-03139-6
http://dx.doi.org/10.1007/s10586-019-02940-2
http://dx.doi.org/10.1007/s10586-020-03194-z
http://dx.doi.org/10.1109/TNET.2020.3008512
http://dx.doi.org/10.1109/TNET.2020.3012556
http://dx.doi.org/10.1287/opre.5.4.518
https://mega.nz/folder/aKZmRQBC#62zPv6WasTo5-eFi4G4Grg
https://mega.nz/folder/aKZmRQBC#62zPv6WasTo5-eFi4G4Grg
https://anx.readthedocs.io/en/latest/index.html#
Alibaba.com
http://dx.doi.org/10.1109/MC.2008.209

	Introduction
	Related Work
	Sensor and Data Center Network Models
	Edge Sensor Network Model
	Simulation
	Wireless Mesh Sensor Networks (WMSN) Model
	Data Center Network (DCN) Model

	Delay Variation (Jitter) Analysis
	Service Time Variation
	Mitigating Tail Latency
	Discussion

	Conclusions
	References

