

Received 6 November 2015 Accepted 24 November 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 8-quinolinol; bis(2-picolyl)amine; hydrogen bonding; π - π interactions

CCDC reference: 1438483 Supporting information: this article has supporting information at journals.iucr.org/e

Koji Kubono,^a* Kimiko Kado,^a Yukiyasu Kashiwagi,^b Keita Tani^a and Kunihiko Yokoi^a

^aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, and ^bOsaka Municipal Technical Research Institute, Osaka 536-8553, Japan. *Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

In the title compound, $C_{22}H_{19}ClN_4O$, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intramolecular $O-H\cdots N$ hydrogen bond involving the hydroxy group and a pyridine N atom forming an S(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, molecules are linked *via* $C-H\cdots O$ hydrogen bonds forming inversion dimers with an $R_4^4(10)$ ring motif. The dimers are linked by $C-H\cdots N$ hydrogen bonds, forming ribbons along [011]. The ribbons are linked by $C-H\cdots \pi$ and $\pi-\pi$ interactions [intercentroid distance = 3.7109 (11) Å], forming layers parallel to (011).

1. Chemical context

8-Quinolinol and its derivatives are well-known chelating reagents, forming fluorescent complexes with various metal ions, such as Al^{3+} , Zn^{2+} and Cd^{2+} (Goon *et al.*, 1953; Valeur & Leray, 2000; Pohl & Anzenbacher, 2003). Bis(pyridin-2vlmethvl)amine [di-(2-picolvl)amine (DPA)] is an excellent ligand showing high selectivity for Zn^{2+} , which plays important roles in biological, pathological and environmental processes (Berg & Shi, 1996; Bush et al., 1994; Callender & Rice, 2000), and it is used to detect Zn²⁺ with low concentration in biological and environmental samples. Therefore, many fluorescence probes for Zn²⁺ bearing DPA as an ion-recognition site have been developed (Xue et al., 2008; Chen et al., 2011; Kwon et al., 2012). We have synthesized a new fluorescence chemosensor, based on 8-quinolinol containing DPA via a two-step reaction, and herein we report on its synthesis and crystal structure.

2. Structural commentary

The molecular structure of the title compound, is shown in Fig. 1. There is an $O-H \cdots N$ intramolecular hydrogen bond

OPEN access

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $O-H\cdots N$ hydrogen bond is shown as a dashed line (see Table 1).

involving the hydroxy group (O2–H2) and a pyridine N atom, N5, generating an S(9) ring motif (Fig. 1 and Table 1). The N(tertiaryamine)–C–C–N(pyridine) torsion angles, N4–C17–C18–N5 and N4–C23–C24–N6 are 75.0 (2) and 152.46 (19)°, respectively. The dihedral angle between the N5-and N6-containing pyridine rings pyridine rings is 80.97 (12)°,

Figure 2

A view along the *a* axis of the crystal packing of the title compound. The hydrogen bonds (see Table 1) and π - π interactions are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.

Table 1Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of rings N5/C18–C22 and N6/C24–C28, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O2−H2···N5	1.04 (3)	1.66 (4)	2.689 (3)	168 (2)
$C22-H22\cdots O2^{i}$	0.93	2.46	3.348 (3)	160
$C27 - H27 \cdot \cdot \cdot N3^{ii}$	0.93	2.55	3.406 (3)	153
$C17 - H17b \cdots Cg2^{iii}$	0.97	2.79	3.599 (3)	141
$C23-H23A\cdots Cg3^{iv}$	0.97	2.86	3.770 (3)	156

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y + 1, z + 1; (iii) -x, -y + 1, -z; (iv) -x, -y + 2, -z + 1.

and they make dihedral angles of 44.15 (9) and 36.85 (9) $^{\circ}$, respectively, with the quinolinol moiety.

3. Supramolecular features

In the crystal, molecules are linked *via* C–H···O hydrogen bonds, forming inversion dimers with an $R_4^4(10)$ ring motif (Fig. 2 and Table 1). The dimers are linked by C–H···N hydrogen bonds, forming ribbons along [011]. The ribbons are linked by C–H··· π (Table 1) and slipped parallel π - π interactions [Cg1···Cg1ⁱ, = 3.7109 (11) Å; Cg1 is the centroid of ring C7–C11/C15; inter-planar distance = 3.5518 (8) Å; slippage = 1.075 Å; symmetry code: (i) -x, -y + 1, -z], forming layers parallel to (011).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) for 8-quinolinols gave 387 hits, and for DPA, bis(pyridine-2-ylmethyl)amine gave 4535 hits. A search for the fragment 2-[bis(pyridin-2-ylmethylamino)-methyl]phenol gave 56 hits of which none contained 8-quinolinol. In the compounds that resemble the title compound, namely 2,6-bis[bis(pyridine-2-ylmethyl)aminomethyl]-4-tert-butylphenol (I) (Bjernemose & McKenzie, 2003), and 3-{[bis(pyridin-2-ylmethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde (II) (Wang et al., 2012), an intramolecular bifurcated hydrogen bond is formed. The N-C-C-N torsion angles in the related compounds are -46.9(2) and $152.7(2)^{\circ}$ in (I) and 48.35(18) and $-116.99 (15)^{\circ}$ in (II), compared to 75.0 (2) and 152.46 (19)^{\circ} in the title compound. The crystal structures of other compounds containing a fluorescent core and bis(pyridine-2-ylmethyl)amine have been reported; for example one containing a fluorescein core (Wong et al., 2009), and another a coumarin core (Kobayashi et al., 2014).

5. Synthesis and crystallization

A suspension of paraformaldehyde (0.41 g, 14 mmol) and bis(2-pyridylmethyl)amine (1.99 g, 10 mmol) in 100 ml of MeOH was stirred for 18 h at room temperature. The solvent was removed under vacuum. To the product obtained was

added 100 ml of toluene and 5-chloro-8-quinolinol (1.80 g, 10 mmol), and the mixture was heated for 24 h at 353 K. The solvent was removed under vacuum to give an oily product, which was crystallized from hexane–dichloromethane. The crude solid was recrystallized from acetonitrile to obtain yellow crystals of the title compound (yield 55%; m.p. 380.4–382.6 K). HRMS (m/z): [M + 1]⁺ calculated, 391.1326; found, 391.1271. Analysis calculated for C₂₂H₁₉ClN₄O: C 67.60, H 4.90, N 14.33%; found: C 67.50, H 5.01, N 14.37%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxy H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C-H = 0.93-0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

This study was supported financially in part by Grants-in-Aid for Scientific Research (No. 15 K05539) from the Japan Society for the Promotion of Science.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Berg, J. M. & Shi, Y. (1996). Science, 271, 1081-1085.
- Bjernemose, J. K. & McKenzie, C. J. (2003). Acta Cryst. E59, o1275– 01276.
- Bush, A. I., Pettingell, W. H., Multhaup, G., d Paradis, M., Vonsattel, J.-P., Gusella, J. F., Beyreuther, K., Masters, C. L. & Tanzi, R. E. (1994). Science, 265, 1464–1467.
- Callender, E. & Rice, K. C. (2000). Environ. Sci. Technol. 34, 232-238.
- Chen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362–1365.
- Goon, E., Petley, J. E., McMullen, W. H. & Wiberley, S. E. (1953). Anal. Chem. 25, 608–610.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kobayashi, H., Katano, K., Hashimoto, T. & Hayashita, T. (2014). *Anal. Sci.* **30**, 1045–1050.
- Kwon, J. E., Lee, S., You, Y., Baek, K.-H., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S. Y. & Nam, W. (2012). *Inorg. Chem.* 51, 8760–8774.

Experimental details.	
Crystal data	
Chemical formula	C22H19CIN4O
$M_{ m r}$	390.86
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.3170 (5), 11.5993 (7), 11.6135 (6)
$lpha, eta, \gamma$ (°)	116.8473 (13), 105.2809 (13), 92.0110 (17)
$V(Å^3)$	948.68 (10)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.22
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.769, 0.978
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	9412, 4293, 2329
R _{int}	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.648
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.123, 1.09
No. of reflections	4293
No. of parameters	257
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.26, -0.24

Table 2

Computer programs: *RAPID-AUTO* (Rigaku, 2006), *SIR92* (Altomare et al., 1993), *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *CrystalStructure* (Rigaku, 2014).

Pohl, R. & Anzenbacher, P. Jr (2003). Org. Lett. 5, 2769–2772. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Valeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3-40.
- Wang, R.-X., Gao, D.-Z., Ye, F., Wu, Y.-F. & Zhu, D.-R. (2012). Acta Cryst. E68, 01672–01673.
- Wong, B. A., Friedle, S. & Lippard, S. J. (2009). J. Am. Chem. Soc. 131, 7142–7152.
- Xue, L., Wang, H.-H., Wang, X. J. & Jiang, H. (2008). *Inorg. Chem.* 47, 4310–4318.

supporting information

Acta Cryst. (2015). E71, 1545-1547 [doi:10.1107/S2056989015022410]

Crystal structure of 7-{[bis(pyridin-2-ylmethyl)amino]methyl}-5-chloroquinolin-8-ol

Koji Kubono, Kimiko Kado, Yukiyasu Kashiwagi, Keita Tani and Kunihiko Yokoi

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2014).

7-{[Bis(pyridin-2-ylmethyl)amino]methyl}-5-chloroquinolin-8-ol

Crystal data C₂₂H₁₉ClN₄O $M_r = 390.86$ Triclinic, $P\overline{1}$ a = 8.3170 (5) Å b = 11.5993 (7) Å c = 11.6135 (6) Å a = 116.8473 (13)° $\beta = 105.2809$ (13)° $\gamma = 92.0110$ (17)° V = 948.68 (10) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.769, T_{\max} = 0.978$ 9412 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.123$ S = 1.094293 reflections 257 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 408.00 $D_x = 1.368 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 5840 reflections $\theta = 3.1-27.4^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.30 \times 0.20 \times 0.10 \text{ mm}$

4293 independent reflections 2329 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.023$ $\theta_{max} = 27.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = -14 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 0.1777P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$

$$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (S) are based on F^2 . *R*-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating *R*-factor (gt).

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.20020 (9)	0.40251 (6)	0.58501 (6)	0.0724 (2)
O2	0.3787 (2)	0.45209 (15)	0.14798 (14)	0.0563 (4)
N3	0.3767 (2)	0.22221 (18)	0.14868 (17)	0.0560 (5)
N4	0.1525 (2)	0.72637 (15)	0.33905 (15)	0.0432 (4)
N5	0.2432 (2)	0.61932 (17)	0.06500 (16)	0.0500 (4)
N6	0.2990 (2)	1.07071 (18)	0.58796 (17)	0.0562 (5)
C7	0.3408 (2)	0.4468 (2)	0.25274 (18)	0.0444 (5)
C8	0.3075 (2)	0.5531 (2)	0.35655 (19)	0.0440 (5)
С9	0.2637 (3)	0.5344 (2)	0.45812 (19)	0.0488 (5)
C10	0.2564 (3)	0.4177 (2)	0.45746 (19)	0.0474 (5)
C11	0.2949 (2)	0.3074 (2)	0.35528 (18)	0.0451 (5)
C12	0.2940 (3)	0.1827 (2)	0.3486 (2)	0.0546 (5)
C13	0.3335 (3)	0.0841 (2)	0.2454 (2)	0.0642 (6)
C14	0.3733 (3)	0.1088 (2)	0.1483 (2)	0.0645 (6)
C15	0.3387 (2)	0.3236 (2)	0.25179 (18)	0.0439 (5)
C16	0.3190 (3)	0.6889 (2)	0.3710 (2)	0.0469 (5)
C17	0.0484 (3)	0.6472 (2)	0.19651 (18)	0.0453 (5)
C18	0.1068 (3)	0.67040 (19)	0.09391 (18)	0.0440 (5)
C19	0.0266 (3)	0.7400 (2)	0.0336 (2)	0.0542 (5)
C20	0.0860 (3)	0.7593 (3)	-0.0582 (2)	0.0646 (6)
C21	0.2264 (3)	0.7087 (3)	-0.0865 (2)	0.0637 (6)
C22	0.2999 (3)	0.6399 (2)	-0.0238 (2)	0.0577 (6)
C23	0.1681 (3)	0.8665 (2)	0.3842 (2)	0.0549 (6)
C24	0.2147 (3)	0.9495 (2)	0.53687 (19)	0.0463 (5)
C25	0.1679 (3)	0.9048 (2)	0.6174 (2)	0.0563 (6)
C26	0.2149 (3)	0.9865 (2)	0.7564 (2)	0.0600 (6)
C27	0.3044 (3)	1.1103 (2)	0.8101 (2)	0.0570 (6)
C28	0.3404 (3)	1.1481 (2)	0.7224 (2)	0.0614 (6)
H2	0.329 (3)	0.526 (3)	0.129 (3)	0.098 (9)*
H9	0.23914	0.60515	0.52745	0.0585*
H12	0.26668	0.16817	0.41415	0.0655*
H13	0.33386	0.00152	0.23959	0.0771*
H14	0.39931	0.0399	0.07819	0.0774*
H16A	0.38532	0.7515	0.46354	0.0563*
H16B	0.37804	0.69349	0.31109	0.0563*
H17A	-0.06633	0.66426	0.18846	0.0544*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H17B	0.04458	0.55522	0.17233	0.0544*	
H19	-0.06765	0.77418	0.05442	0.0651*	
H20	0.03192	0.80564	-0.10001	0.0776*	
H21	0.27022	0.72111	-0.14678	0.0764*	
H22	0.39441	0.60539	-0.04348	0.0692*	
H23A	0.06141	0.88388	0.34197	0.0659*	
H23B	0.25394	0.89247	0.35362	0.0659*	
H25	0.10548	0.82092	0.57873	0.0676*	
H26	0.18619	0.95777	0.81246	0.0720*	
H27	0.33951	1.16686	0.90321	0.0684*	
H28	0.39751	1.2333	0.75867	0.0737*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0990 (5)	0.0762 (4)	0.0553 (4)	0.0150 (4)	0.0451 (3)	0.0312 (3)
O2	0.0698 (10)	0.0665 (10)	0.0499 (8)	0.0272 (8)	0.0355 (8)	0.0321 (8)
N3	0.0734 (13)	0.0579 (12)	0.0446 (10)	0.0263 (10)	0.0282 (9)	0.0247 (9)
N4	0.0515 (10)	0.0396 (9)	0.0336 (8)	0.0077 (8)	0.0159 (7)	0.0123 (8)
N5	0.0525 (11)	0.0546 (11)	0.0389 (9)	0.0099 (9)	0.0180 (8)	0.0169 (9)
N6	0.0747 (13)	0.0454 (11)	0.0413 (10)	0.0005 (9)	0.0243 (9)	0.0122 (9)
C7	0.0422 (11)	0.0567 (13)	0.0350 (10)	0.0116 (10)	0.0153 (9)	0.0206 (10)
C8	0.0415 (11)	0.0493 (12)	0.0364 (10)	0.0063 (9)	0.0121 (8)	0.0167 (9)
C9	0.0504 (12)	0.0543 (13)	0.0336 (10)	0.0101 (10)	0.0165 (9)	0.0125 (10)
C10	0.0511 (12)	0.0551 (14)	0.0363 (10)	0.0075 (10)	0.0161 (9)	0.0208 (10)
C11	0.0416 (11)	0.0543 (13)	0.0347 (10)	0.0079 (10)	0.0108 (8)	0.0181 (10)
C12	0.0622 (14)	0.0598 (15)	0.0463 (12)	0.0117 (11)	0.0188 (11)	0.0281 (12)
C13	0.0846 (18)	0.0573 (15)	0.0593 (14)	0.0216 (13)	0.0287 (13)	0.0308 (13)
C14	0.0896 (18)	0.0579 (15)	0.0530 (13)	0.0316 (13)	0.0333 (13)	0.0250 (12)
C15	0.0437 (11)	0.0522 (13)	0.0352 (10)	0.0132 (10)	0.0143 (9)	0.0192 (10)
C16	0.0478 (12)	0.0478 (12)	0.0364 (10)	0.0022 (10)	0.0140 (9)	0.0129 (9)
C17	0.0450 (11)	0.0461 (12)	0.0361 (10)	0.0051 (9)	0.0135 (9)	0.0122 (9)
C18	0.0441 (11)	0.0431 (11)	0.0305 (9)	0.0027 (9)	0.0095 (8)	0.0075 (9)
C19	0.0544 (13)	0.0585 (14)	0.0441 (11)	0.0130 (11)	0.0146 (10)	0.0201 (11)
C20	0.0732 (17)	0.0701 (16)	0.0520 (13)	0.0108 (13)	0.0155 (12)	0.0326 (13)
C21	0.0717 (16)	0.0737 (17)	0.0466 (12)	0.0020 (13)	0.0214 (12)	0.0288 (13)
C22	0.0566 (14)	0.0681 (15)	0.0446 (12)	0.0090 (12)	0.0230 (10)	0.0203 (12)
C23	0.0801 (16)	0.0432 (13)	0.0376 (11)	0.0105 (11)	0.0217 (11)	0.0144 (10)
C24	0.0585 (13)	0.0413 (12)	0.0363 (10)	0.0111 (10)	0.0191 (9)	0.0137 (9)
C25	0.0781 (16)	0.0463 (13)	0.0465 (12)	0.0078 (11)	0.0280 (11)	0.0193 (11)
C26	0.0820 (17)	0.0648 (16)	0.0449 (12)	0.0187 (13)	0.0331 (12)	0.0283 (12)
C27	0.0613 (14)	0.0620 (15)	0.0355 (11)	0.0108 (12)	0.0189 (10)	0.0113 (11)
C28	0.0685 (16)	0.0535 (14)	0.0442 (12)	-0.0039 (12)	0.0215 (11)	0.0076 (11)

Geometric parameters (Å, °)

Cl1—C10	1.743 (3)	C21—C22	1.366 (4)
O2—C7	1.361 (3)	C23—C24	1.514 (3)

N3—C14	1.313 (4)	C24—C25	1.382 (4)
N3—C15	1.368 (3)	C25—C26	1.384 (3)
N4—C16	1.470 (3)	C26—C27	1.369 (4)
N4—C17	1.466 (2)	C27—C28	1.370 (4)
N4—C23	1.454 (3)	O2—H2	1.04 (3)
N5—C18	1.349 (3)	С9—Н9	0.930
N5—C22	1.347 (4)	С12—Н12	0.930
N6—C24	1.334 (3)	С13—Н13	0.930
N6—C28	1.338 (3)	C14—H14	0.930
C7—C8	1.381 (3)	C16—H16A	0.970
C7—C15	1.424 (4)	C16—H16B	0.970
C8—C9	1.422(4)	C17—H17A	0.970
C8-C16	1.504(3)	C17—H17B	0.970
C9-C10	1 349 (4)	C19—H19	0.930
C10-C11	1.315(1)	C_{20} H20	0.930
C11-C12	1.410(3) 1 412(4)	C21_H21	0.930
C_{11} C_{12}	1.412(4) 1.420(4)	$\begin{array}{c} C_{21} \\ C_{22} \\ H_{22} \end{array}$	0.930
C_{12} C_{13}	1.429(4) 1.250(2)	C22—1122	0.930
C_{12} C_{13} C_{14}	1.339 (3)	C23—H23A	0.970
C13 - C14	1.394(3)	C25_H25	0.970
C17 - C18	1.321(4)	C25—H25	0.930
C10_C19	1.373 (4)	C20—H20	0.930
C19 - C20	1.384 (4)	$C_2/-H_2/$	0.930
C20—C21	1.370 (4)	С28—П28	0.930
C14—N3—C15	1177(2)	N6	1244(2)
C16 - N4 - C17	117.7(2) 113.69(15)	C7 - O2 - H2	124.4(2) 1124(18)
C16 - N4 - C23	111 51 (16)	C8-C9-H9	112.1 (10)
C17 - N4 - C23	112 33 (18)	C10-C9-H9	118 830
C18 N5 C22	112.55(10) 117.9(2)	C_{11} C_{12} H_{12}	120 203
$C_{10} = 10 = 0.022$	117.9(2) 117.2(2)	$C_{12} = C_{12} = H_{12}$	120.293
02 07 08	117.2(2) 123.5(2)	$C_{12} = C_{12} = H_{12}$	120.274
02 - 07 - 08	125.5(2) 116.17(17)	$C_{12} - C_{13} - H_{13}$	120.515
$C_{2}^{}$ $C_{15}^{}$ C	110.17(17) 120.4(2)	$N_{2} = C_{14} = H_{14}$	120.314
$C_{0} = C_{1} = C_{1}$	120.4(2)	113 - 014 - 1114	117.655
$C_{7} = C_{8} = C_{9}$	110.4(2) 1240(2)	$N_{4} = C_{16} = H_{16}$	108.056
$C^{0} = C^{0} = C^{16}$	124.0(2) 117.66(18)	N4 - C16 + H16P	108.950
$C_{9} = C_{8} = C_{10}$	117.00(18) 122.34(10)	N4 - C10 - H10B	108.939
$C_{0} = C_{0} = C_{10}$	122.34(19)	C_{0} C_{10} H_{10} C_{10}	100.939
$C_{11} = C_{10} = C_{11}$	119.55(10) 110.4(2)		107.750
C_{11} C_{10} C_{11}	119.4(2)	$\mathbf{N}_{\mathbf{A}} = \mathbf{C}_{1} \mathbf{C}_{1} \mathbf{T}_{\mathbf{A}}$	107.739
	121.1(2)	N4 - C17 - H17A	108.290
C10-C11-C12	124.8(2)	N4 - CI / - HI / B	108.295
	117.0 (2)	$U_{10} - U_{1} - H_{1} / A$	108.301
$\begin{array}{c} C12 - C11 - C12 \\ C11 - C12 - C12 \\ \end{array}$	11/.59(18)	U18 - U1 / - H1 / B	108.301
C11 - C12 - C13	119.4 (3)	HI/A - UI/- HI/B	107.402
C12—C13—C14	119.0 (3)	C18—C19—H19	119.991
N3-C14-C13	124.7 (2)	C20—C19—H19	119.983
N3—C15—C7	118.2 (2)	C19—C20—H20	120.561
N3-C15-C11	121.6 (2)	C21—C20—H20	120.563

C7—C15—C11	120.18 (18)	C20—C21—H21	120.849
N4—C16—C8	113.11 (17)	C22—C21—H21	120.854
N4—C17—C18	115.94 (17)	N5—C22—H22	118.151
N5—C18—C17	116.4 (2)	C21—C22—H22	118.151
N5—C18—C19	121.2 (2)	N4—C23—H23A	108.897
C17—C18—C19	122.4 (2)	N4—C23—H23B	108.899
C18—C19—C20	120.0 (2)	C24—C23—H23A	108.892
C19—C20—C21	118.9 (3)	С24—С23—Н23В	108.896
C20—C21—C22	118.3 (3)	H23A—C23—H23B	107.725
N5—C22—C21	123.7 (2)	С24—С25—Н25	120.400
N4—C23—C24	113.4 (2)	С26—С25—Н25	120.399
N6-C24-C23	115.3 (2)	С25—С26—Н26	120.492
N6-C24-C25	122.17 (18)	С27—С26—Н26	120.490
C_{23} C_{24} C_{25}	122.53 (19)	C26—C27—H27	121.022
$C_{24} = C_{25} = C_{26}$	119 2 (2)	C_{28} C_{27} H_{27}	121.032
C_{25} C_{26} C_{27}	119.2(2) 119.0(3)	N6-C28-H28	117 816
$C_{25} = C_{27} = C_{28}$	117.95 (19)	C_{27} C_{28} H_{28}	117.809
020 027 020	117.55 (15)	027 020 1120	117.007
C14—N3—C15—C7	-179 57 (17)	C8-C9-C10-C11	0.9(3)
C14 - N3 - C15 - C11	-0.6(3)	$C_{11} - C_{10} - C_{11} - C_{12}$	-10(2)
C15 - N3 - C14 - C13	0.1(3)	$C_{11} - C_{10} - C_{11} - C_{15}$	$179 \ 37 \ (11)$
C16 - N4 - C17 - C18	-70.7(2)	C9-C10-C11-C12	178 57 (16)
C17 - N4 - C16 - C8	-653(2)	C9-C10-C11-C15	-11(3)
$C_{16} N_{4} C_{23} C_{24}$	-72.8(2)	C_{10} C_{11} C_{12} C_{13}	-179.91(16)
$C_{10} = 104 + C_{25} + C_{24}$	166 49 (16)	$C_{10} = C_{11} = C_{12} = C_{13}$	-179.63(15)
$C_{17} N_{4} C_{23} C_{24}$	158 23 (17)	C_{10} C_{11} C_{15} C_{7}	-0.7(2)
$C_{17} = 14 + C_{25} + C_{24}$	571(2)	$C_{10} = C_{11} = C_{15} = C_7$	0.7(2)
$C_{23} = 104 = C_{17} = C_{18}$	-0.4(2)	$C_{12} = C_{11} = C_{13} = N_3$	170.66(15)
$C_{10} = N_{5} = C_{22} = C_{21}$	-178.03(12)	C_{12} C_{11} C_{13} C_{13} C_{13}	-0.2(2)
$C_{22} = N_{5} = C_{18} = C_{19}$	-1/8.95(13)	C13 - C12 - C13	-0.3(3)
$C_{22} = N_{3} = C_{18} = C_{19}$	0.8(2)	C12 - C12 - C13 - C14	-0.2(3)
$C_{24} = N_{0} = C_{28} = C_{27}$	1.1(3)	C12-C13-C14-N3	0.4(4)
$C_{28} = N_{6} = C_{24} = C_{23}$	1/8.99 (18)	N4-C1/-C18-N5	/5.0 (2)
$C_{28} = N6 = C_{24} = C_{25}$	1.3 (3)	N4—C17—C18—C19	-104./3 (19)
02-07-08-09	177.87 (14)	N5-C18-C19-C20	-0.3(2)
02	-3.8 (3)	C17—C18—C19—C20	179.38 (13)
02—C7—C15—N3	1.0 (2)	C18—C19—C20—C21	-0.5 (3)
O2—C7—C15—C11	-177.99 (13)	C19—C20—C21—C22	0.9 (3)
C8—C7—C15—N3	-178.35 (15)	C20—C21—C22—N5	-0.4(3)
C8—C7—C15—C11	2.7 (2)	N4—C23—C24—N6	152.46 (19)
C15—C7—C8—C9	-2.8 (2)	N4—C23—C24—C25	-29.9 (3)
C15—C7—C8—C16	175.54 (14)	N6-C24-C25-C26	-2.4 (4)
C7—C8—C9—C10	1.1 (3)	C23—C24—C25—C26	-179.9 (2)
C7—C8—C16—N4	107.8 (2)	C24—C25—C26—C27	1.0 (4)
C9—C8—C16—N4	-73.8 (2)	C25—C26—C27—C28	1.2 (4)
C16—C8—C9—C10	-177.37 (15)	C26—C27—C28—N6	-2.3 (4)
C8—C9—C10—Cl1	-179.55 (14)		

Hydrogen-bond geometry (Å, °)

Co2 and Co3	are the centroids	of rings N5/C18	-C22 and N6/C24	L-C28 respectively
	are the centrolab	or imgo i (0, 010	011 4114 1 (0) 01	

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
02—H2…N5	1.04 (3)	1.66 (4)	2.689 (3)	168 (2)
C22—H22···O2 ⁱ	0.93	2.46	3.348 (3)	160
C27—H27…N3 ⁱⁱ	0.93	2.55	3.406 (3)	153
C17—H17b… <i>Cg</i> 2 ⁱⁱⁱ	0.97	2.79	3.599 (3)	141
C23—H23 A ···Cg3 ^{iv}	0.97	2.86	3.770 (3)	156

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*+1, *z*+1; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*, -*y*+2, -*z*+1.