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Abstract

The Rac1 GTPase plays key roles in cytoskeletal organization, cell motility and a variety of

physiological and disease-linked responses. Wild type Rac1 signaling entails dissociation of

the GTPase from cytosolic Rac1-Rho GDP dissociation inhibitor (GDI) complexes, translo-

cation to membranes, activation by exchange factors, effector binding, and activation of

downstream signaling cascades. Out of those steps, membrane translocation is the less

understood. Using transfections of a expression cDNA library in cells expressing a Rac1

bioreporter, we previously identified a cytoskeletal feedback loop nucleated by the F-actin

binding protein coronin 1A (Coro1A) that promotes Rac1 translocation to the plasma mem-

brane by facilitating the Pak-dependent dissociation of Rac1-Rho GDI complexes. This

screening identified other potential regulators of this process, including WDR26, basigin,

and TMEM8A. Here, we show that WDR26 promotes Rac1 translocation following a

Coro1A-like and Coro1A-dependent mechanism. By contrast, basigin and TMEM8A stabi-

lize Rac1 at the plasma membrane by inhibiting the internalization of caveolin-rich mem-

brane subdomains. This latter pathway is F-actin-dependent but Coro1A-, Pak- and Rho

GDI-independent.

Introduction

Rac1 is a Rho GTPase subfamily member that plays key roles in biological processes such as

cytoskeletal structure, cell motility, adhesion, axon guidance, and cell proliferation [1–3]. Its

deregulation also contributes to the acquisition of malignant properties by cells in a number of

pathologies, including cancer [4–6]. In order to generate properly balanced responses and

avoid disease, this GTPase is subjected to several regulatory layers (for a review, see [7]). Thus,

Rac1 remains sequestered in the cytosol in non-stimulated cells due to the formation of inhibi-

tory complexes with Rho GDIs [7, 8]. Upon cell stimulation, Rac1 is released from those inhib-

itory complexes, moves to the plasma membrane, and undergoes exchange of GDP by GTP

molecules to acquire full signaling competence. This latter step is favored by the catalytic
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action of guanosine nucleotide exchange factors (GEFs), a large family of enzymes that pro-

motes the rapid transition from the inactive (GDP-bound) to the active, GTP-bound state [7,

9]. At the end of the stimulation cycle, Rac1 undergoes GTP hydrolysis catalyzed by GTPase

activating proteins, re-associates with Rho GDIs, and is finally internalized back to the original

cytosolic reservoir [7–9]. Whereas many of those steps have been characterized at the struc-

tural and cellular level, the mechanisms that regulate the tethering of Rac1 to membranes are

still poorly understood. Recent work in this area has shown that this process can be mediated

by multiple mechanisms, including those affecting the stability of the cytosolic Rac1-Rho GDI

complexes, the interaction of the free GTPase with plasma membrane subdomains, and the

stability of the membrane-anchored protein. For example, the release of Rac1 from Rho GDI

complexes is favored by the phosphorylation of Rho GDI by serine/threonine (protein kinase

C isoforms, Pak1) and tyrosine (Src, Fer) kinases, second messengers [10–17], and membrane

subdomains enriched in specific lipid subtypes [18, 19]. Once released from inhibitory com-

plexes, the docking of Rac1 onto the plasma membrane is modulated by Rac1 posttranslational

modifications [20–23], the binding of the hydrophilic Rac1 C-terminal tail to specific lipid

subtypes present in the plasma membrane [24–28] or associations with GTPase docking pro-

teins [29–31]. On the other hand, this process can be antagonized by the phosphorylation of

Rac1 on Tyr64 by the focal adhesion-localized protein tyrosine kinase Fak [32]. The shuttling

of Rac1 towards the plasma membrane can also occur via intracellular carriers such as the Ca2

+-dependent Ras GTPase activating protein CAPRI [33] and endocytic vesicles that deliver

Rac1 to the plasma membrane in a Rab5 GTPase- and clathrin-dependent manner [34].

Finally, the stability of Rac1 at the plasma membrane is influenced by integrin-derived signals

that block the Caveolin1 (Cav1)-dependent internalization of the GTPase [27, 28]. This com-

plex regulatory network suggests that cells probably utilize mechanistically independent waves

of Rac1 translocation and activation to assemble optimal biological responses.

To identify new regulatory proteins involved in the regulation of Rac1 translocation to the

plasma membrane, we previously conducted a genome-wide functional screen using a

HEK293T cell line constitutively expressing a cytosolic Rac1 bioreporter [35]. This approach

led to the identification of the cytoskeletal regulator Coro1A (also known as tryptophan aspar-

tate-containing coat protein, p57-coronin and coronin-1) as one of the molecules whose over-

expression promotes this tethering step. This function, which is not shared by the highly

related Coro1B protein, is mediated by its association with both Pak and Rho GDI-Rac1 com-

plexes that, upon Pak-mediated phosphorylation of Rho GDI, triggers the disassembly of the

GTPase from Rho GDI complexes and the subsequent GEF-mediated activation of the GTPase

at the plasma membrane. This process also requires the interaction of Coro1A with F-actin

and ArhGEF7 (also known as β-Pix or Cool1) [35], a GEF that can physically interact with

Rac1, Pak, focal adhesion- and cell-cell junction-localized proteins [36]. Further work revealed

that this protein also helps coordinating downstream signaling diversification events by active

Rac1 in cells [37, 38]. As a result of the foregoing screening, we isolated three additional hits

that were also presumably involved in the Rac1 translocation step. The characterization of

these clones in the present work has allowed us to discover new elements of the Coro1A-

dependent Rac1 translocation pathway and, in addition, unveil the presence of an alternative

mechanism that favors the long-term stability of Rac1 at the plasma membrane.

Materials and Methods

Immunological reagents

Mouse monoclonal antibodies to Rac1 and β1-integrin were from BD Transduction Laborato-

ries, those to AU5, EGFP and HA were from Covance, those to the Myc epitope were from
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Roche Life Sciences, and those to tubulin and Coro1A were obtained from Sigma. Rabbit poly-

clonal antibodies to the Myc epitope, Pak1, and WDR26 were obtained from Upstate Biotech-

nology, Zymed Laboratories and Bethyl Laboratories, respectively. Rabbit polyclonal

antibodies to Rho GDI (clones K-21 and A-20), GADPH, and GST were from Santa Cruz Bio-

technology. Rabbit polyclonal antibodies to phospho-Erk and EGFP were from Cell Signaling

and Clontech, respectively. Goat polyclonal antibodies to CD98 were from Santa Cruz Biotech-

nology. In the case of immunofluorescence experiments, appropriate Cy2-, Cy3-, and Cy5-la-

beled secondary antibodies were purchased from Jackson ImmunoResearch. In the case of

immunoblotting, horseradish peroxidase coupled to either the appropriate secondary antibody

or protein A was used (GE Healthcare Life Biosciences). Rhodamine-phalloidin, Alexa Fluor

635-labeled phalloidin, and Alexa Fluor 647-labeled CTxB were purchased from Molecular

Probes/Invitrogen.

Plasmids

Mammalian expression vectors encoding Coro1A-EGFP (pCoronin1AWT-EGFP), Coronin1A-

mRFP (pCoronin1AWT-mRFP), Coro1AshRNAMUT-EGFP (pACC58), AU5-Rac1 (pCEFL-AU5-

Rac1), AU5-Rac1T17N (pACC11), AU5-RhoG (pAM3), AU5-Cdc42 (pCEFL-AU5-Cdc42) and

AU5-RhoA (pCEFL-AU5-RhoA), Myc-Pak1 (pCMV6M-Pak1), EGFP-Pak-interacting domain

of Rac1 (pEGFP-CRIB) have been already described [35]. The expression vector encoding a

dominant negative form (K44A mutant) of dynamin 2 (pcDNA3-HA-dynamin2K44A) has been

described elsewhere [28]. The plasmids encoding Myc-tagged Rho GDI (pEF1-myc-Rho GDI)

and GST (pCEFL-GST) were from P. Crespo (CSIC-University of Cantabria, Santander, Spain).

The plasmid encoding TMEM8A-FLAG was obtained from T. Motohashi (Gifu University

Graduate School of Medicine, Japan).

The plasmid encoding EGFP-WDR26 (pACC13) was generated by PCR using as template

the pWDR6 vector (a gift from M. Liu, Hunan Normal University, Hunan, China) and the oli-

gonucleotides 5’-CGG GAT CCA TGC AAG AGT CAG GAT GTC G-3’ (forward) and 5’-

CGG GAT CCA CTA TCC ATG CTA CTG CAT TC-3’ (reverse) (BamHI sites underlined).

Upon digestion with BamHI and purification, the WDR26 cDNA fragment was cloned into

BamHI-linearized pEGFP-C1 (Clontech). The mammalian expression vector encoding Bsg-

EGFP (pACC05) was generated by PCR using as template the plasmid pBSG-HA (kindly pro-

vided by K. Kadomatsu, Nagoya University Graduate School of Medicine, Nagoya, Japan) and

the oligonucleotides 5’-CGG GAT CCA TGG CGG CTG CGC TGT TCG TG-3’ (forward)

and 5’-CGG GAT CCG GAA GAG TTC CTC TGG CGG-3’ (reverse) (BamHI sites under-

lined). Upon BamHI digestion and purification, the BSG cDNA fragment was cloned into

BamHI-linearized pEGFP-N3 (Clontech). A similar approach was used to generate the

GST-WDR26-encoding vector (pACC39), using in this case the pCEFL-GST as final acceptor

vector. The expression vector encoding TMEM8A-EGFP (pACC19) was generated in two

steps: (i) Elimination of the stop codon present after the FLAG epitope-encoding cDNA

sequence using site-directed mutagenesis (QuikChange kit, Agilent Technologies) to generate

the pTMEM8-FLAGSTOP-codon-mut vector. (ii) Liberation of the TMEM8ASTOP-codon-mut cDNA

from the latter vector by EcoRI digestion and subsequent cloning into EcoRI-linearized

pEGFP-N1 (Clontech). To generate the EGFP-PBRΔCAAX-encoding vector (pACC18), two

complementary oligonucleotides encompassing the C-terminal polybasic tail without the

CAAX box of Rac1 containing flanking EcoRI sites were annealed and ligated into EcoRI-line-

arized pEGFP-C1 (Clontech).

Site-directed mutagenesis was carried out using the QuikChange kit according to the man-

ufacturer’s instructions. To generate the vector encoding AU5-Rac1R66E (pJRC69), we used
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the pCEFL-AU5-Rac1 plasmid as template and the oligonucleotides 5’-GCT GGA CAA GAA

GAT TAT GAC GAA TTA CGC CCC CTA TCC TAT CC-3’ (forward) and 5’-GGA TAG

GAT AGG GGG CGT AAT TCG TCA TAA TCT TCT TGT CCA GC-3’ (reverse). To gener-

ate the vector encoding Myc-Pak1K299R (pACC30), we used the plasmid pCMV6M-Pak1 as

template and the oligonucleotides 5’-GGA CAG GAG GTG GCC ATT AGG CAG ATG AAT

CTT CAG CAG-3’ (forward) and 5’-CTG CTG AAG ATT CAT CTG CCT AAT GGC CAC

CTC CTG TCC-3’ (reverse). The plasmid encoding Myc-RhoGDIS101A/S184A (pACC46) was

generated using the plasmid pEF1-myc-RhoGDI as template through two mutagenesis steps to

generate the desired S101A and S184A mutations. Oligonucleotides used included 5’-GAG

AGC TTC AAG AAG CAG GCC TTT GTGCTGAAGGAGGG-3’ (S101A, forward), 5’-CCC

TCC TTC AGC ACA AAG GCC TGC TTC TTG AAG CTC TC-3’ (S101A, reverse), 5’-GCC

CAA GGG CAT GCT GGC GCG AGG CAG CTA CAA CAT CAA G-3’ (S184A, forward),

and 5’-CTT GAT GTT GTA GCT GCC TCG CGC CAG CAT GCC CTT GGG C-3’ (S184A,

reverse). Oligonucleotides were purchased from Thermo Fisher Scientific. All plasmids were

sequence-verified at the Genomics and Proteomics Facility of our Center.

Cell lines and tissue culture

COS1, HEK293T, and HeLa cells were obtained from the American Tissue Culture Collection.

The generation of the reporter cell line HEK293T stably expressing EGFP-Rac1 (Vincent#6) used

during the functional screening of Rac1 translocators plus the EGFP-expressing (ACC1-1),

Coro1A-expressing (ACC1-2), scrambled shRNA-expressing (ACC2-1), Coro1A-deficient

(ACC2-2), and Coro1A-expressing+ARHGEF7-knockdown (ACC3-2) COS1 cells were all

described in a previous publication [35]. The HeLa cell line stably expressing Cav1-EGFP was also

described in a previous work [39]. Cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum plus 1% L-glutamine and 100 units/ml pen-

icillin and streptomycin under standard culturing conditions (37˚C, humidified 5% CO2 atmo-

sphere). All culture reagents were obtained from Thermo Fisher Scientific. When appropriate,

COS1 cells were stimulated with EGF (100 ng/ml, EMD Millipore) or incubated with β-methyl-

cyclodextrin (10 μM, 30 min; Sigma), cytochalasin D (2 μM, 15 min; Sigma), Tat-Pak18 (10 μM,

overnight; EMD Millipore) or Tat-Pak18R192A (10 μM, overnight; EMB Millipore). In the case of

the EGF stimulation, cells were serum-starved for 4 hours before adding the mitogen.

Immunofluorescence studies

COS1 cells were grown onto poly-L-lysine-coated coverslips and transfected using liposomes

(FuGENE6, Roche Life Sciences). To that end, we mixed 1 μg of the appropriate plasmid DNA

and 3 μl of FuGENE6 in 100 μl of serum-free DMEM. The transfection mix was then added

into each well and cells cultured for an additional 24–36 hour period. Upon culturing under

indicated experimental conditions, cells were fixed with 3.7% formaldehyde/phosphate buff-

ered saline solution and subjected to conventional immunofluorescence techniques with the

appropriate antibodies, as indicated in each figure. Samples were analyzed by confocal micros-

copy using a Zeiss LSM150 laser confocal microscope equipped with a 63x oil-objective.

The Rac1 translocation index was used to quantify the amount of Rac1 associated to the

plasma membrane in the immunofluorescence studies, as previously described [18]. Briefly,

COS1 cells expressing AU5-Rac1 were scored for value 0 (absence of AU5-Rac1), value 1

(weak presence of AU5-Rac1 at the plasma membrane) and value 2 (high amounts of localiza-

tion of AU5-Rac1 at the plasma membrane). The translocation index was calculated using the

formula (b+2c)/(a+b+c), where a, b and c are the number of cells scored for the values 0, 1 and

2, respectively. The values for this index are represented as box histograms in each figure as the
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average and standard deviation of three independent experiments where at least 50 cells per

experiment were randomly scored.

Subcellular fractionation

Exponentially growing COS1 cells cultured in 100 mm dishes were transfected using Lipofec-

tamine 2000 according to the manufacturer’s recommendations (Thermo Fisher Scientific).

To this end, 2 μg of the appropriate plasmid DNA and 6 μl of Lipofectamine 2000 were diluted

separately into 250 μl serum-free DMEM, the two solutions were then mixed, incubated for 30

min at room temperature, and added onto cells. After culturing for 24–36 hours, cells were

washed with chilled phosphate buffered saline solution, re-suspended in 1 ml of ice-cold hypo-

tonic solution buffer (20 mM Tris-HCl [pH 7.5], 10 mM KCl, 10 mM NaCl, 5 mM MgCl2, 1

mM DTT, 1 mM Na3VO4, 10 mM β-glycerophosphate and the Cϕmplete protease inhibitor

mix [Roche Life Sciences]), and homogenized by passing at least 15 times through a blunt,

20-gauge needle fitted to a 2 ml syringe. Lysates were then kept on ice for 10 min, centrifuged

at 14,000 rpm for 10 min at 4˚C to remove unbroken cells and nuclei. The supernatants

obtained in that step were transferred into polycarbonate tubes (Beckman) and subjected to

centrifugation at 100,000 xg for 1 hour in a refrigerated ultracentrifuge (Beckman). After the

centrifugation, the cytosol-containing supernatant was removed and the crude membrane pel-

let gently washed with hypotonic lysis buffer and recollected by ultracentrifugation. Membrane

fractions were then assayed for total protein content using the Bradford method (Bio-Rad) and

subjected to immunoblotting. As control, we analyzed by aliquots of cell lysates taken before

the ultracentrifugation step as above.

Immunoblotting

Protein samples obtained as indicated in each experimental procedure were denatured by boil-

ing in SDS-PAGE sample buffer, separated electrophoretically, and transferred onto nitrocel-

lulose filters using the iBlot Dry Blotting System (Thermo Fisher Scientific). Membranes were

blocked in either 5% non-fat dry milk (when immunoblotted with standard antibodies) or 5%

bovine serum albumin (Sigma, when using phospho-specific antibodies) in 25 mM Tris-HCl

(pH 8.0), 150 mM NaCl, 0.1% Tween-20 (TBS-T) for 1 hour and then incubated overnight at

4˚C with the appropriate primary antibody diluted in blocking buffer. After three washes with

TBS-T, membranes were incubated with horseradish peroxidase-conjugated to either protein

A or the appropriate secondary antibody (1:5,000 dilution) for 1 hour at room temperature.

Immunoreacting bands were developed using a standard chemoluminescent method (ECL,

GE Healthcare Life Biosciences).

siRNA knockdown experiments

Transcript knockdowns were done by transfecting siRNAs (200 pmol) targeting the WDR26
(M-032006-01-0005, On-TargetPlus collection, GE Dharmacon) [40], CORO1A (L-012771-00-

0005, On-TargetPlus SmartPool collection, Thermo Fisher Scientific) or CD98 (L-003542-00-

0005, On-TargetPlus SmartPools collection, Thermo Fisher Scientific) mRNAs. As control, we

used a scrambled siRNA (D-001810-10-05, On-TargetPlus Non-targeting pool, GE Dharma-

con). Transfections were made using Lipofectamine 2000 as above.

Co-immunoprecipitation experiments

Lipofectamine 2000-trasfected COS1 cells were cultured for 24–36 hours, washed with chilled

phosphate buffered saline solution, disrupted in 1 ml of 20 mM Tris-HCl (pH 7.5), 150 mM
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NaCl, 0.5% Triton X-100, 1 mM Na3VO4, 10 mM β-glycerophosphate and Cφmplete (lysis

buffer), an incubated on ice for 10 min. Extracts were then centrifuged at 14,000 rpm for 10

min at 4˚C and the resulting supernatants immunoprecipitated at 4˚C using the indicated anti-

bodies. Immunocomplexes were collected with Gammabind G-Sepharose beads (GE Health-

care Life Biosciences), washed in lysis buffer, separated electrophoretically, and analyzed by

immunoblotting as above. In the case of GST-pull-down experiments, the lysates were incu-

bated with glutathione-Sepharose beads (GE Healthcare Life Biosciences) following the proto-

col described with the exception of the incubation step with the primary antibody that was

omitted. Aliquots of total cellular lysates were analyzed in parallel to detect expression of indi-

cated proteins.

Internalization of caveolin-rich membrane subdomains

HeLa cells stably expressing Cav1-EGFP were transfected with the indicated plasmids using

Lipofectamine 2000 as above. 36 hours post-transfection, cells were trypsinized and kept in

suspension for 1 hour to promote internalization of Cav1-enriched membrane subdomains.

Cells were then collected by centrifugation, fixed in 3.7% formaldehyde/phosphate buffered

saline solution, stained with indicated antibodies, and subjected to confocal microscopy using

a Zeiss LSM150 laser confocal microscope equipped with a 100x oil-objective to quantify the

number of cells displaying fully internalized Cav1-EGFP (which localizes in perinuclear

regions). Results from these experiments are represented as box histograms using the mean

and standard deviation of three independent experiments (100 cells scored per experiment).

Image processing

All images and figures were assembled and processed for final presentation using the Canvas

Draw 2 for Mac software (ACD Systems).

Statistical analyses

Data from at least three experiments were analyzed using the Student’s t-test with the indicated

experimental pairs. P values� 0.05 were considered statistically significant.

Results

Isolation of proteins involved in the translocation of Rac1 to the plasma

membrane

During a genome-wide functional screening previously described by us [7, 35], we identified

four cDNAs clones that could trigger the translocation of an enhanced green fluorescent pro-

tein (EGFP)-Rac1 chimera from the cytosol to the plasma membrane when expressed in

HEK293T cells. These clones encoded the β-propeller domain-containing proteins known as

Coro1A [35] and WD (tryptophan-aspartic dipeptide) repeat domain 26 (WDR26) as well as

two membrane-localized proteins, basigin (Bsg) and transmembrane protein 8A (TMEM8A)

(Fig 1A). Coro1A is a cytoskeletal regulator [41] that, upon characterization after the foregoing

genome-wide functional screen, was demonstrated to be actively involved in both the translo-

cation and downstream effector properties of Rac1 [35, 37, 38]. WDR26 has been linked to the

inhibition of both Wnt and Erk pathways, stimulation of phospholipase C-β2 and the phospha-

tidylinositol-3 kinase-Akt axis, signaling-connected ubiquitinylation processes, protection

against oxidative stress, Gβ/γ subunit triggered chemotaxis, and cell migration [40, 42–51]. Bsg

has been recurrently associated with integrin signaling and matrix metalloproteinase produc-

tion. In order to function, this protein has to form heteromolecular complexes with CD98 and
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other protein such as Glut1 and CD44 [52–55]. TMEM8A is a type I transmembrane glycosy-

lated protein of as yet unknown function. To assess the implication of these clones in Rac1

translocation, we analyzed the effect of the ectopic expression of EGFP-tagged versions of

WDR26, Bsg and TMEM8A in the subcellular localization of AU5-tagged Rho family GTPases

in COS1 cells using confocal microscopy analyses. In addition, we included in these experi-

ments co-transfections with a dominant negative version of Rac1 (Rac1T17N) to check whether

the subcellular localization and translocation activity of these EGFP-tagged hits required

upstream Rac1 signaling. As positive control, we used transfections with the previously charac-

terized Coro1A-EGFP [35]. Similarly to this latter protein (Fig 1B–1E) [35], we observed that

a fraction of EGFP-WDR26 localizes in juxtamembrane areas (Fig 1B–1E; top panels, green

Fig 1. Structure and activity of Rac1 translocators isolated in this study. (A) Schematic representation of the

structure of the Rac1 translocators derived from our cellomic screen. NE, N-terminal extension; CE, C-terminal

extension; U, unique region; CC, coil-coiled domain; LisH, Lis1 homology motif; CTLH, C-terminal to LisH; IgG,

immunoglobulin-like domain; TM, transmembrane domain; EGF, epidermal growth factor. (B-F) COS1 cells

transiently expressing AU5-tagged Rac1 (B), RhoG (C), Cdc42 (D), RhoA (E) and Rac1T17N (F) either alone (B to

F, left panels, labeled as “Mock”) or in combination with the indicated EGFPs (B to F, rest of panels) were fixed,

stained with antibodies to AU5, and subjected to confocal microscopy analysis. EGFPs and Rho proteins are

shown in green and red color in panels B-F, respectively. Scale bar, 20 μm. (G) Localization of endogenous Rac1

(top panel) and β1 integrin (second panel from top, negative control) in membrane fractions from COS1 cells

transiently transfected with the indicated proteins (top). The expression of endogenous (Rac1) and ectopic EGFPs

in aliquots (5% of total lysate) of the extracts subsequently used for the subcellular fractionation studies is shown in

the three bottom panels. The antibodies used in the immunoblots are shown on the right. WB, Western blot.

doi:10.1371/journal.pone.0166715.g001
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fluorescence) and promotes the translocation of Rac subfamily GTPases to the same subcellu-

lar localization (Fig 1B and 1C, bottom panels, red color). By contrast, this protein does not

have any detectable effect in the subcellular localization of AU5-Cdc42 (Fig 1D, bottom panel,

red color) and AU5-RhoA (Fig 1E, bottom panels, red color). EGFP-WDR26 looses its juxta-

membrane localization when coexpressed with the AU5-Rac1T17N mutant protein (Fig 1F),

indicating that it requires upstream Rac1 signaling for correct localization. Bsg-EGFP and

TMEM8A-EGFP also localize in juxtamembrane areas of the transfected cells (Fig 1B–1E top

panels, green color) independently of Rac1 upstream signaling (Fig 1F, bottom, red color).

Further highlighting the differential properties of these proteins relative to both Coro1A and

WDR26, we observed that the two transmembrane proteins can translocate Rac1 (Fig 1B, bot-

tom panels, red color), RhoG (Fig 1C, bottom panels, red color), Cdc42 (Fig 1D, bottom pan-

els, red color), and Rac1T17N (Fig 1F, bottom panel, red color) to the plasma membrane. None

of the identified hits, however, can translocate RhoA under the same experimental conditions

(Fig 1E, bottom panel, red color).

Confirming the foregoing results, we observed using subcellular fractionation experiments

that the ectopic expression of Bsg-EGFP, EGFP-WDR26 and Coro1A-EGFP promotes an

increase in the percentage of endogenous Rac1 present in membrane-enriched fractions of the

transfected COS1 cells (Fig 1G, top panel). By contrast, they had no effect in the distribution

of β1 integrin (Fig 1G, second panel from top). The effect of TMEM8A-EGFP could not be

assessed due to low levels of expression in these experiments (AC-C, data not shown). Taken

together, these results indicate that the ectopic expression of these proteins favor the transloca-

tion step of Rac1. They also indicate that the GTPase translocation step mediated is mechanis-

tically different in the case of the transmembrane and β-propeller domain-containing proteins.

β-propeller domain and transmembrane proteins regulate Rac1 using

different mechanisms

We next evaluated the effect induced by the depletion of Coro1A and the Bsg/CD98 complex in

the localization and biological activity of WDR26 and Bsg to detect potential functional interac-

tions among those proteins. In the case of Coro1A, we used siRNA described in a previous

study to knock down its transcript in COS1 cells [35]. However, in the case of Bsg, we blocked

this pathway indirectly via the elimination of CD98 given the lack of good antibodies to detect

Bsg on these cells. CD98 forms stable heteromolecular complexes with Bsg, playing key roles in

the formation of Bsg-mediated complexes with integrins and monocarboxylate transporters

[54, 55]. As negative control, we performed parallel experiments using COS1 cells transfected

with a scrambled (Sc) siRNA. We found that the knockdown of endogenous CORO1A tran-

scripts (Fig 2A, top left panel) leads to a significant reduction of the translocation of Rac1

induced by the ectopic expression of EGFP-WDR26 in COS1 cells (Fig 2B and 2C). Despite

this, the subcellular localization pattern of EGFP-WDR26 remains similar to that observed in

control cells (Fig 2B). The CORO1A mRNA depletion does not perturb the subcellular localiza-

tion (Fig 2B) and Rac1 translocation (Fig 2B and 2C) seen in Bsg-EGFP expressing COS1 cells.

These results indicate that Coro1A and WDR26 probably work in a common pathway that is

mechanistically independent from the Bsg-regulated one. Consistent with this idea, the deple-

tion of endogenous CD98 (Fig 2A, top right panels) has no effect on the subcellular localization

of Coro1A (Fig 2D) and the Coro1A-induced translocation of Rac1 (Fig 2D and 2E) in COS1

cells. As control, it does abrogate Bsg-EGFP-triggered Rac1 re-localization (Fig 2D and 2E)

without any obvious effect on Bsg-EGFP subcellular localization in those cells (Fig 2D).

To narrow down the signaling events associated to the Rac1 translocation step mediated by

these proteins, we next focused our attention on signaling elements (Pak1) and cellular
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structures (cholesterol-enriched membrane subdomains, F-actin cytoskeleton) known to affect

the stability of Rac1 with Rho GDI complexes and at the plasma membrane, respectively. To

this end, we first treated COS1 cells ectopically expressing the indicated combinations of

AU5-Rac1 and the EGFP-tagged versions of WDR26, Bsg and TMEM8A with drugs that

deplete cholesterol from the plasma membrane (β-methyl-cyclodextrin) [56, 57], disrupt the

Fig 2. β-propeller domain and transmembrane proteins regulate Rac1 using different mechanisms. (A) Example of the

abundance of endogenous Coro1A (left, top panel) and CD98 (right, top panel) proteins upon transfection of COS1 cells with the

indicated siRNAs (top). As control, we used in both cases the abundance of tubulin α (bottom panels). The antibodies used in the

WBs are indicated on the right of each panel. (B and D) COS1 cells transfected with the indicated combinations of siRNAs (B and D,

bottom), AU5-Rac1 (B and D, top) and fusion EGFPs (B and D; indicated on the left) were fixed, stained with antibodies to AU5 plus

Alexa Fluor 635-phalloidin, and subjected to confocal microscopy. Signals from EGFPs, AU5-Rac1 and F-actin are shown in green,

red, and blue color in the panels, respectively. Scale bar, 20 μm. (C and E) Quantification of the Rac1 translocation index obtained in

experiments shown in B and D, respectively. ***, P� 0.001 compared to cells expressing AU5-Rac1 alone (mock).

doi:10.1371/journal.pone.0166715.g002
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F-actin cytoskeleton (cytochalasin D) [58], or block Pak1 activation by eliminating the interac-

tion of this serine/threonine kinase with ArhGEF7 (the cell permeable Tat-Pak18 peptide)

[59]. We have previously shown that these compounds eliminate the Coro1A-mediated trans-

location of Rac1 to the plasma membrane [35]. After those treatments, cells were fixed, stained

as indicated, and subjected to confocal microscopy analyses. We found that the β-methyl-

cyclodextrin (Fig 3A) and cytochalasin D (Fig 3B) treatments eliminate both the juxtamem-

brane localization of the EGFP-tagged proteins as well as the ability of these proteins to trigger

the translocation of Rac1 to the plasma membrane. Consistent with the disruption of choles-

terol-enriched plasma membrane subdomains induced by β-methyl-cyclodextrin, the cells

treated with this drug show not surface staining for the lipid raft, Cav1-rich domains and gly-

cosphingolipid marker cholera toxin B subunit (Fig 3A) [60, 61]. By contrast, the Tat-Pak18

peptide only eliminates the Rac1 translocation steps induced by both Coro1A-EGFP and

EGFP-WDR26 (Fig 4A and 4B). Furthermore, this peptide does not affect the subcellular

localization of any of the interrogated proteins (Fig 4A). The treatment of cells with the inac-

tive Tat-Pak peptide (Tat-Pak18R192A) does not have any effect in the translocation of Rac1

triggered by any of the interrogated proteins Fig 4A and 4B), confirming the specificity of the

results obtained with the Tat-Pak18 peptide. These results further indicate that the effects

induced by β-propeller domain and transmembrane proteins on GTPases are mechanistically

different, although they share common features such as the dependency of cholesterol-rich

membrane subdomains and polymerized actin filaments.

WDR26 and Coro1A work in a concerted manner in the Rac1

translocation step

The foregoing results suggest that WDR26 mediates Rac1 translocation in a Coro1A- (Fig 2)

and Pak-dependent (Fig 4) manner. In agreement with this idea, we found that the transient

expression of either a kinase dead (Myc-Pak1K299R) or a dominant negative version (a GST

fusion protein containing the Pak binding domain [PID] of Rac1) of Pak1 eliminates the

WDR26-mediated translocation of Rac1 in COS1 cells (Fig 5A and 5B). As expected [35],

these mutants also eliminate the translocation of Rac1 triggered by Coro1A-EGFP (Fig 5A

and 5B). These effects are specific, because the expression of the two Pak1 mutant proteins has

no effect on the translocation of Rac1 mediated by both Bsg and TMEM8A (Fig 5A and 5B).

Despite their effect on Rac1 translocation, the Pak1 mutant proteins do not affect the subcellu-

lar localization of Coro1A and WDR26 (Fig 5A). Further underscoring the concurrent action

of WDR26 and Coro1A in the same pathway, we found that Myc-Pak1 (Fig 5C, top panel, lane

4) and endogenous Rho GDI (Fig 5C, second panel from top, lane 4) can co-immunoprecipi-

tate with EGFP-WDR26 in COS1 cells. Conversely, we could find EGFP-WDR26 (Fig 5C, fifth

panel from top, lane 4) and Myc-Pak (Fig 5C, sixth panel from top, lane 4) in the immunopre-

cipitates obtained with antibodies to endogenous Rho GDI. Confirming the specificity of these

associations, we could not detect them when EGFP-WDR26 was replaced by the non-chimeric

EGFP in these co-immunoprecipitation experiments (Fig 5C, lane 3). They are also Coro1A-

dependent, because we could not observe them when performing co-immunoprecipitation

experiments in Coro1A-depleted (ACC2-2) COS1 cells (Fig 5C, compare lanes 4 and 8). Fur-

ther confirming the Coro1A-WDR26 interconnection, we found that these two proteins can

co-immunoprecipitate when co-expressed in COS1 cells (Fig 5D, lane 3). As control, such

interaction does not occur when performing co-immunoprecipitations with a control protein

(Fig 5D, lane 2). This association is independent on downstream elements of the Coro1A

translocation pathway [35], as inferred from the detection of similar amounts of Cor-

o1A-WDR26 co-immunoprecipitation in control and ArhGEF7-deficient COS1 cells (Fig 5D,
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compare lanes 3 and 4). All together, these results indicate that: (i) WDR26 and Coro1A work

in the same translocation pathway in cells. (ii) They can form heteromolecular complexes

Fig 3. The action of the Rac1 translocators is dependent on cholesterol-rich membrane subdomains

and the F-actin cytoskeleton. (A and B) COS1 cells transfected with indicated combinations of AU5-Rac1

(A and B, top) and EGFPs (A and B; left, green signals) were treated with methyl-β-cyclodextrin (A, bottom)

and cytochalasin D (B, bottom) as indicated, fixed, stained with antibodies to AU5 (A and B, red signals),

decorated with either Alexa Fluor 635-labeled cholera toxin B subunit (CTxB, blue signals) (A) or Alexa Fluor

635-phalloidin (B, blue signals), and subjected to confocal analysis. Scale bar, 20 μm.

doi:10.1371/journal.pone.0166715.g003
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Fig 4. The translocation of Rac1 induced by β-propeller domain and transmembrane proteins differs

in terms of Pak dependency. (A) COS1 cells transfected with indicated combinations of AU5-Rac1 (top, red

signals) and EGFPs (left, green signals) were treated overnight with 10 μM of Tat-tagged peptides as
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prior to the subsequent binding to the Pak-ArhGEF7 complexes that are involved in the

Coro1A-mediated translocation of Rac1 [35].

WDR26 is involved in the Rac1-Rho GDI disassembly step

Given the close association of WDR26 with the Coro1A translocation machinery (Fig 5C and

5D), we next analyzed the potential implication of Rho GDI in this pathway. Since Pak1 medi-

ates Rac1-Rho GDI disassembly through Rho GDI phosphorylation on two serine residues

(Ser101 and Ser174) present in the vicinity of the hydrophobic pocket where the GTPase prenyl

group binds to [13], we decided to investigate whether the overexpression in COS1 cells of

either a wild type Rho GDI or a Rho GDI mutant (S101A+S174A) that cannot be phosphory-

lated by Pak1 could affect the Rac1 translocation triggered by EGFP-WDR26. We observed

that the co-expression of those proteins blocks the translocation of AU5-Rac1 induced by

Coro1A and WDR26 with 30% and 100% efficiency, respectively (Fig 6A and 6B). This is due

to Rac1 sequestration, because such an inhibition does not occur when expressing an inactive

Rho GDI protein (Δ1–60 mutant) (AC-C, unpublished data) [62]. Likewise, Rho GDI and Rho

GDIS101A+S174A cannot inhibit the WDR26- and Coro1A-mediated translocation of a Rac1

mutant version (R66E) that cannot form complexes with Rho GDIs [63] (Fig 6C and 6D). The

overexpression of Rho GDIs only induces a marginal effect on the Bsg-EGFP-elicited translo-

cation of Rac1 (Fig 6A and 6B), further confirming the idea that this protein works using a

Coro1A- and WDR26-independent pathway.

Given the implication of WDR26 and Coro1A in the same regulatory pathway, we next

investigated whether the overexpression of WDR26 could rescue the defective release of Rac1

from Rac1-Rho GDI complexes previously described in a stable clone of Coro1A-deficient

COS1 cells [35]. To this end, we compared the amount of Rac1 that co-immunoprecipitates

with endogenous Rho GDI in non-stimulated and EGF-stimulated COS1 cells. According to

our published results [35], we found that Rac1 is released from Rho GDI complexes in EGF-

stimulated control (Fig 6C, top panel, compare lanes 1 and 2) but not in Coro1A-depleted

(Fig 6C, top panel, compare lanes 3 and 4) cells. The ectopic expression of EGFP-WDR26 does

not rescue normal dissociation rates in the latter cells (Fig 6C, top panel, compare lanes 5 and

6). However, as expected [35], this rescue does occur when the expression of Coro1A is rees-

tablished in those cells (Fig 6C, top panel, compare lanes 7 and 8). We confirmed the similar

immunoprecipitation of endogenous Rho GDI in these experiments by incubating the same

blots with antibodies to this protein (Fig 6C, second panel from top, lanes 1 to 8). The appro-

priate expression of the proteins used in these experiments was confirmed by Western blot

analysis using aliquots of the total cellular lysates utilized in the immunoprecipitation step (Fig

6C, five bottom panels).

Since the depletion of Coro1A abrogates the translocation of Rac1 induced upon the EGF

stimulation of COS1 cells, we finally investigated whether endogenous WDR26 was also

involved in this response. Consistent with this idea, we found that the effective siRNA-medi-

ated depletion of this protein (Fig 6D) leads to lower rates of translocation of EGFP-Rac1 to

the plasma membrane upon the EGF stimulation of serum-starved COS1 cells (Fig 6E and

6F). These data indicate that WDR26 and Coro1A play coordinated rather than redundant

functions in this regulatory step, a result that is in agreement with the lack of WDR26-me-

diated Rac1 translocation previously observed in Coro1A-deficient cells (see above, Fig 2B).

indicated (bottom), fixed, stained with AU5 antibodies and Alexa Fluor 635-phalloidin (blue signals), and

subjected to confocal analysis. Scale bar, 20 μm. (B) Quantification of the Rac1 translocation index obtained

in experiments shown in A. ***, P� 0.001 compared to cells expressing AU5-Rac1 alone (Mock).

doi:10.1371/journal.pone.0166715.g004
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These observations also indicate that this pathway entails the Pak-mediated disassembly of

Rac1-Rho GDI complexes in cells.

Bsg and TMEM8A stabilize Rac1 at the plasma membrane

We surmised that the different behavior of the β-propeller and transmembrane proteins in

terms of spectrum of GTPases they could translocate (Fig 1) and the level of dependency on

both Rac1 (Fig 1) and Pak (Figs 4–6) signaling was a reflection of two non-overlapping mech-

anisms of translocation of Rho GTPases. Given the implication of Bsg [52, 53] and TMEM8A-

like proteins (i.e., CD47) [64–66] in integrin signaling, we decided to investigate whether their

translocation activity could be associated with the regulation of either the clustering or stability

of cholesterol-enriched plasma membrane subdomains. This hypothesis was also consistent

with the observation that the Rac1 translocation activity of both Bsg and TMEM8A is highly

dependent on the presence of both CTxB-positive plasma membrane subdomains (Fig 3A)

and F-actin (Fig 3B) in COS1 cells (Fig 3). In agreement with this, we observed that the

expression of a HA-tagged version of Bsg can promote the localization at the plasma mem-

brane of an EGFP version containing at this C-terminus the polybasic region of Rac1 (referred

to hereafter as EGFP-PBRΔCAAX) (Fig 7A and 7B). Since this sequence lacks the CAAX box,

the translocation of this fusion protein has to be directly mediated by the Rac1 polybasic tail

using a prenylation- and Rho GDI-independent mechanism. The same effect is observed when

EGFP-PBRΔCAAX is coexpressed with TMEM8A-FLAG (AC-C, data not shown). These effects

are specific, because the ectopic expression of either Bsg or TMEM8A cannot change the sub-

cellular localization typically displayed by the non-chimeric EGFP (Fig 7A and 7B; AC-C,

data not show) and EGFP-RhoA (Fig 1E). Based on the foregoing observations, we decided to

investigate whether Bsg and TMEM8A could play an integrin-like role in the regulation of the

dynamics of cholesterol-enriched plasma membrane subdomains. To this end, we evaluated

the effect of the ectopic expression of these two proteins on the internalization of these struc-

tures in cells that had been maintained in suspension. It is known that these experimental con-

ditions promote the internalization of these membrane subdomains in a Cav1- and dynamin 2

(Dnm2)-dependent mechanism due to loss of integrin signaling [28]. To facilitate the readout

of these experiments, we used a HeLa cell line derivative stably expressing Cav1 fused to EGFP

as a biosensor for cholesterol-enriched membrane subdomains. As positive control, we used a

Dnm2 dominant negative mutant (K44A) whose expression blocks the internalization of cho-

lesterol- and Cav1-enriched membrane subdomains in cells [28]. We found that the expression

of either Bsg-HA or TMEM8-FLAG reduces the internalization rates of Cav1-enriched mem-

brane subdomains in those cells down to values comparable to those found in Dnm2K44A-HA-

Fig 5. β-propeller domain proteins functionally interact with Pak proteins. (A) COS1 cells transiently

expressing AU5-Rac1 (top, red signals) with indicated combinations of EGFPs (left, green signals) in the

absence (Mock, left columns) or presence of Myc-PakK299R (middle columns, blue signals) or GST-PID (right

columns, blue signals) were fixed, stained with antibodies to either Myc (middle columns) or GST (right

columns), and subjected to confocal microscopy. Scale bar, 20 μm. (B) Quantification of the Rac1 translocation

index obtained in experiments shown in A. ***, P� 0.001 compared to cells expressing AU5-Rac1 alone

(mock). (C) EGFP (four upper panels) and Rho GDI (three middle panels) immunoprecipitates from COS1

cell derivatives expressing the indicated combinations of proteins (top) were subjected to WB using the

antibodies shown on the right. As control, aliquots of the same cell lysates were analyzed by WB (four bottom

panels) to confirm expression of indicated proteins. (D) COS1 cells stably expressing EGFP (ACC1-1 cells),

Coro1A-EGFP (ACC1-2 cells), and Coro1A-EGFP in the absence of endogenous ArhGEF7 (ACC3-2 cells)

were transfected with plasmids encoding the indicated GST proteins (top). 24 hours post-transfection, cell

lysates were obtained and subjected to pull-down experiments as described in Materials and Methods. Protein

complexes were detected by WB using indicated antibodies (three upper panels, right). Aliquots of same cell

lysates were analyzed by WB to detect abundance of EGFPs used in the experiment (two bottom panels).

doi:10.1371/journal.pone.0166715.g005
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expressing cells (Fig 7C and 7D). By contrast, Coro1A-mRFP does not have any influence in

the internalization of those membrane subdomains under the same experimental conditions

(Fig 7C and 7D). Collectively, these results indicate that β-propeller domain proteins promote

increased amounts of Rac1 at the plasma membrane by regulating in a Pak-dependent manner

the release of Rac1 from Rac1-Rho GDI complexes. By contrast, Bsg and TMEM8A do so by

maintaining the steady state amount of Cav1-enriched microdomains at the plasma membrane

(Fig 7E). These two pathways share similarities (i.e., their activities are both F-actin- and

Fig 6. WDR26 and Coro1A coordinately work in a Rho GDI-dependent Rac1 translocation step. (A) COS1 cells transiently

expressing either AU5-Rac1 or AU5-Rac1R66E (right, red signals) with indicated combinations of EGFPs (left, green signals) and

Myc-Rho GDI proteins (bottom, blue signals) were fixed, stained with antibodies to the Myc epitope, and analyzed by confocal

microscopy. Scale bar, 20 μm. (B) Quantification of the Rac1 translocation index obtained in experiments shown in A. ***,

P� 0.001 compared to cells expressing AU5-Rac1 alone (mock). (C) Extracts from non-stimulated and EGF-stimulated control

and CORO1A-knockdown cells (CORO1A KD) expressing the indicated EGFPs (top) were immunoprecipitated with antibodies

to Rho GDI and subjected to WB with antibodies to Rac1 (top panel). After stripping, the blot was incubated with antibodies to

Rho GDI (second panel from top). Aliquots of the same extracts were analyzed by WB to detect the indicated phosphorylated

and total proteins (five bottom panels). (D) Example of the abundance of endogenous WDR26 (top panel) upon transfection of

COS1 cells with the indicated siRNAs (top). As loading control, we used the abundance of GADPH (bottom panel). (E) COS1

cells transfected with the indicated combinations of siRNAs (top) and EGFP-Rac1 (left, green signals) were serum starved, EGF

stimulated, fixed, stained with rhodamine-labeled phalloidin (red color) and subjected to confocal microscopy. Scale bar, 20 μm.

(F) Quantification of the Rac1 translocation index obtained in experiments shown in C. ***, P� 0.001 compared to cells

expressing the scrambled siRNA.

doi:10.1371/journal.pone.0166715.g006
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Fig 7. Bsg and TMEM8A mediate Rac1 translocation by inhibiting internalization of Cav1-enriched membrane

subdomains. (A) COS1 cells transfected with the chimeric fusion protein EGFP+PBRΔCAAX (green signals) either alone or in

combination with Bsg-HA (left) were fixed, stained with antibodies to HA (red signals) plus Alexa Fluor 635-phalloidin (blue

signals), and analyzed by confocal microscopy. Scale bar, 20 μm. (B) Plots (a) and (b) represent equal-distance-size line scan

analyses along the peripheral juxtamembrane areas indicated in A (right panels, white lanes). (C) Example of the internalization

of Cav1-EGFP (green signals) from the plasma membrane upon culturing of cells expressing the indicated combinations of

proteins (red signals) in suspension. The proteins transfected in each case are indicated on the left. Scale bar, 20 μm. (D)

Quantification of the percentage (expressed as mean and standard deviation) of cells showing perinuclear accumulation of

Cav1-EGFP (internalized fraction) in experiments similar that shown in panel C. **, P� 0.05; ***, P� 0.001 compared to cells

expressing Cav1-EGFP alone (mock) (n = 4). (E) Schematic representation of the site of action of Rac1 translocators in the

activation cycle of the GTPase. The first stimulus triggering Rac1 activation is shown in blue color. According to present results,

WDR26 must cooperate in the previously described Coro1A-based relay mechanism involved in the amplification of Rac1

signals (black color). By contrast, Bsg and TMEM8A are involved in the regulation of the internalization of active Rac1 from the

plasma membrane (brown color). Inhibitors shown to block some of these steps are shown in red. Hypothetical steps are shown

as broken lanes. iGTP-Rac1, internalized GTP-Rac1. The initiation, recycling (rec) and amplification phases involved in Rac1

signaling are indicated at the bottom. βMCD, β-methyl-cyclodextrin; CytD, cytochalasin D.

doi:10.1371/journal.pone.0166715.g007
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cholera toxin B subunit-positive plasma membrane subdomain-dependent) but differ in other

key biological properties (i.e., spectrum of GTPases they can act on, dependency on Rho GDI,

endogenous Coro1A and signaling from Rac1 and Pak1 proteins).

Discussion

We have described here the characterization of three proteins (WDR26, Bsg and TMEM8A)

that, together with Coro1A [35], were isolated in a genome-wide functional screening aimed at

identifying of molecules involved in the translocation of Rac1 from the cytosol to the plasma

membrane. Our study has confirmed that these new proteins participate in this process

although, depending on the specific protein analyzed, the mode of action is mechanistically

different. Thus, we have observed that WDR26 acts as a bona fide Rac1 translocator in a con-

certed manner with Coro1A (Fig 7E). Consistent with this, these two proteins promote the

translocation of a similar spectrum of GTPases (Rac1 and the highly related RhoG) in a choles-

terol-enriched membrane subdomain-, F-actin-, Pak-, and Rho GDI-dependent manner (Fig

7E). Our data also indicate that these two proteins work in a concerted rather than redundant

manner in this process. We have postulated in a previous study that the Coro1A pathway is

involved in the generation of secondary waves of Rac1 translocation and activation during cell

signaling that are triggered upon the reorganization of the F-actin cytoskeleton by an initial

pool of stimulated Rac1 proteins (Fig 7E) [35]. This is consistent with the observation that the

depletion of endogenous Coro1A leads to defective activation of Rac1 both in COS1 and Jurkat

cells [35]. It is likely that WDR26 will be involved in the same pathway, as inferred from its

Coro1A-like mechanism of action described in this work (Fig 7E). Interestingly, we have recently

described that Coro1A is involved in a myosin II-dependent step downstream of Rac1. This role

is signaling branch-specific, since it only affects the responses associated with the engagement of

the Rac1-Pak-ArhGEF7 pathway [38]. Due to this downstream function, the elimination of

endogenous Coro1A leads to the sequestration of active Rac1-ArhGEF7-Pak complexes in acto-

myosin ring structures and the generation of large, lamella-like cell protrusions rather than

membrane ruffles by cells [38]. In this effector phase, Coro1A is also involved in the 3D organiza-

tion of the F-actin cytoskeleton by promoting the bundling and stapling of actin filaments as well

as the inhibition of the Arp2/3 complex [67–69]. It will be interesting to investigate in the near

future whether WDR26 is implicated in some of these Rac1 downstream pathways.

By contrast, we have observed that the role of Bsg and TMEM8A in this GTPase transloca-

tion step is probably an indirect effect derived from their implication in the stabilization of

Cav1-enriched plasma membrane subdomains. Consistent with this mode of action, we have

seen that their effect on Rac1 localization is highly dependent on the presence of cholesterol in

the plasma membrane and the F-actin cytoskeleton, two elements that contribute to the for-

mation and stability of Cav1-enriched subdomains at the plasma membrane, respectively.

Moreover, unlike the case of Coro1A and WDR26, their activities are independent of both

Pak1 signaling and the dissociation of the Rac1-Rho GDI complexes. These results indicate

that these two transmembrane proteins contribute to the stabilization of the steady state pool

of Rac1 molecules already present at the membrane rather than being involved in the

Coro1A-dependent amplification phase of the Rac1 stimulation cycle (Fig 7E). A direct trans-

location effect of these proteins cannot be formally ruled out, as inferred by the observation

that Bsg and TMEM8A can “attract” a prenylation-defective Rac1 mutant to the plasma mem-

brane. It is likely that this effect is mediated by a clustering effect of these proteins on Rac1--

docking-competent subdomains at the plasma membrane, as evidenced by the ability shown

by these transmembrane proteins to translocate an EGFP fused to the C-terminal polybasic

region of Rac1.
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Further work will be required to fully assess the biological relevance and cell context in

which these regulatory mechanisms operate. We have seen that the depletion of the endoge-

nous Coro1A [35] and WDR26 (this work) does negatively affect the translocation of Rac1

under standard conditions of cell stimulation in the case of COS1 (Coro1A and WDR26) and

Jurkat cells (Coro1A), suggesting that their role in this process is probably physiological. How-

ever, these proteins are not ubiquitously expressed hence raising the issue of the actual spectra

of cells where they operate and the potential existence of additional proteins that could play

Coro1A/WDR26-like roles in other cell types. We have not tested the physiological role of Bsg

and TMEM8A in this process using siRNA knockdown approaches. However, given that the

effect of these proteins in Rac1 translocation is probably mediated by an indirect effect on the

stability of Cav1-enriched subdomains at the plasma membrane, it is likely that this function

could be exerted by any transmembrane protein capable of affecting the stability and/or inter-

nalization rates of those membrane microdomains such as, for example, the integrin them-

selves. In line with this, it is worth noting that a CD47, a TMEM8A-like protein, has been

involved in both integrin signaling [64–66] and Rho family GTPase activation through hith-

erto unknown mechanisms [70–73]. Given that our functional screening has interrogated a

total of 135,000 independent clones from a T cell expression cDNA library [35], it is also possi-

ble that many other Rac1 translocators could still exist both in lymphocytes and other cell types.

Further work on this area will shed further light on all proteins capable of regulating both the

cytosol to membrane shuttling and plasma membrane stability of Rho family GTPases, their

mechanisms of action, and the cell type specificity associated with each of them.
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