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Abstract

Semantic segmentation of bone from lower extremity computerized tomography

(CT) scans can improve and accelerate the visualization, diagnosis, and surgical

planning in orthopaedics. However, the large field of view of these scans makes

automatic segmentation using deep learning based methods challenging, slow and

graphical processing unit (GPU) memory intensive. We investigated methods to

more efficiently represent anatomical context for accurate and fast segmentation

and compared these with state‐of‐the‐art methodology. Six lower extremity bones

from patients of two different datasets were manually segmented from CT scans,

and used to train and optimize a cascaded deep learning approach. We varied the

number of resolution levels, receptive fields, patch sizes, and number of V‐net

blocks. The best performing network used a multi‐stage, cascaded V‐net approach

with 1283−643−323 voxel patches as input. The average Dice coefficient over all

bones was 0.98 ± 0.01, the mean surface distance was 0.26 ± 0.12mm and the 95th

percentile Hausdorff distance 0.65 ± 0.28mm. This was a significant improvement

over the results of the state‐of‐the‐art nnU‐net, with only approximately 1/12th of

training time, 1/3th of inference time and 1/4th of GPU memory required.

Comparison of the morphometric measurements performed on automatic and

manual segmentations showed good correlation (Intraclass Correlation Coefficient

[ICC] >0.8) for the alpha angle and excellent correlation (ICC >0.95) for the hip‐knee‐

ankle angle, femoral inclination, femoral version, acetabular version, Lateral Centre‐

Edge angle, acetabular coverage. The segmentations were generally of sufficient

quality for the tested clinical applications and were performed accurately and quickly

compared to state‐of‐the‐art methodology from the literature.
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1 | INTRODUCTION

Differentiating between different tissue types on radiological scans,

also known as segmentation, is an important part of modern medical

image analysis. In orthopaedics, it is most often used to differentiate

between bones, muscle, ligaments and cartilage on X‐ray, computed

tomography (CT) and magnetic resonance imaging (MRI) scans.1

Segmentation of bones of the lower extremities has a multitude of

use‐cases in the clinical practice, such as the measurement of hip,

ankle and knee joint range of motion,2,3 determination of anatomical

and mechanical axes of the full lower limbs,4–6 indication of

landmarks,7 and the fabrication of surgical tools8 and medical

implants.9 However, manual segmentation is a time consuming task

that requires knowledge and expertise of dedicated software.1

Difficulties encountered in bone segmentation include differing

image intensity values between cortical and cancellous bone,

insufficient resolution to differentiate between bones in joint spaces

and low signal‐to‐noise ratios in scans. Therefore, automatic

segmentation methods have been developed that aim to accelerate

the segmentation process and remove interobserver variability.

Initial (semi‐) automatic segmentation algorithms relied mostly on

intensity‐based methods, such as thresholding, region growing, or

edge detection. Later, more sophisticated methods such as Statistical

Shape Models (SSMs) and Atlas‐based methods were applied.10 For

example, Audenaert et al.11 proposed a SSM based pipeline for

semantic segmentation of lower body CT scans. Recently, deep

learning networks, and more specifically Convolutional Neural Net-

works (CNNs), have shown to be an effective approach for CT bone

segmentation.9,12–15 An often used network architecture for medical

image segmentation is the U‐net,16 which can be extended to 3D and

is then called 3D U‐net17 or V‐net.18 Noguchi et al.19 showed that

the V‐net architecture is suitable for binary segmentation of the

complete human skeleton from CT.

The lower extremity CT scans used in this study have a large field

of view and comparatively high resolution, resulting in a large amount

of data to be processed. An issue encountered in CNNs when

segmenting large volumes is the increase in graphical processing unit

(GPU) memory that is needed when the input for the network

becomes larger. Patch‐based networks circumvent this problem by

segmenting only part of the image at a time. This reduces the amount

of voxels the network needs to process each iteration, but also

reduces the amount of contextual information the network has for

each prediction. Additionally, due to the large number of patches

per scan inference can become prohibitively slow. Multiple studies

have tried to balance the amount of information available to the

network and its memory consumption by implementing cascaded

approaches20–23 or by using dilated (atrous) convolutional layers.24,25

Isensee et al.26 introduced a (cascaded) U‐net based network

called nnU‐net that automatically adapts its architecture and

processing steps to the dataset on which it is used. However,

none so far have studied the influence of varying the number of

cascades by more than two. Additionally, full lower extremity scans

have a larger number of voxels than usually encountered in these

studies, increasing the need for lightweight method for efficient

segmentation.

Two examples of the clinical application of segmentations of the

lower extremities include the hip‐knee‐ankle angle (HKA) measurement

and hip morphometry assessment. Although HKA measurements were

conventionally performed manually on 2D radiographs,27 recent studies

in knee realignment planning show an increased trend towards 3D CT

planning and 3D measurements.28 Hip morphometry assessment was

conventionally also performed on X‐rays or CT scans by manual

segmentation and indication of landmarks.29–32 Recently, Palit et al.2

performed automatic assessment of the location of bone impingement

and range of motion analysis using manual segmentations of the bone

from CT. Lerch et al.3 showed that MR‐based segmentations of the hip

joint could also be used. Zeng et al.33 then showed that automatic MRI

segmentation also correlated well with manual CT segmentation,

removing the need for time‐consuming manual segmentations.

In this study, we propose a deep learning based approach for

automatic, accurate, fast and memory efficient segmentation of

bones from the entire lower extremities. For this purpose, we

introduce a new lightweight variant of the cascaded approach for the

V‐net architecture to reduce memory requirements and speed up

training and inference. Additionally, we applied a sampling scheme

that maximizes use of the available information. This approach was

evaluated in four steps:

1. The optimal network architecture was studied by comparing the

results with differing number of cascades and input configurations

of the cascaded V‐net.

2. The best performing network was trained as a fivefold cross‐

validation and the results were compared to existing methods

found in the literature and the recent nnU‐net.26

3. The clinical applicability was evaluated by performing two

different medical assessments using both the manual and

automatic segmentations:

a. The hip morphology was measured using proprietary software

developed by the Move Forward service (Clinical Graphics,

Zimmer Biomet).

b. The HKA angle was measured using an automatic workflow

based on the methods from Fürnstahl et al.4

4. The best performing network was evaluated on a dataset with

different subject demographics and acquisition parameters to

evaluate the robustness of the method.

2 | METHODS

2.1 | Data

2.1.1 | University Medical Center Utrecht
(UMCU) dataset

For the training and initial evaluation of the networks, fifty CT scans

of the lower extremity were used. The anonymized data were
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acquired retrospectively and was judged not to be subject to the

Medical Research Involving Human Subjects Act (WMO) by the

Medical Ethical Committee, as described in IRB Protocol Number 16‐

612/C. Lower extremity CT scans of patients who had undergone CT

scanning due to unrelated medical reasons (i.e., vascular indications)

were collected from the UMCU (Utrecht, The Netherlands) and

anonymized. The mean age of the male patients was 61 years (SD: 10

years) and of the female patients 53 years (SD: 15 years).

All CT scans were acquired with either the Philips iCT scanner or

Philips Brilliance 64 (Philips Medical Systems, Best, The Netherlands).

The CT acquisition parameters were: tube voltage = 120 kVp, tube

current = 31–347mA, effective dose = 35–150mAs, slice thickness =

1mm. slice increment = 0.7 mm, pixel spacing = 0.63–0.98mm, matrix

size = 512 × 512 pixels. The iDOSE4 reconstruction algorithm

was used.

2.1.2 | New Mexico Decedent Image Database
(NMDID) dataset

To evaluate the robustness of the final deep learning segmentation

network, a dataset of over 15,000 deceased subjects with different

acquisition parameters and population distribution was acquired from

the NMDID.34 We selected 10 patients with death by natural cause,

age under 50 and similar positioning to patients from the UMCU

dataset: 6 male and 4 female patients, with a mean age of 34 years

(SD: 6.4 years). For each subject, two CT scans were available which

included the lower extremities. A torso scan, including the coxae and

femur, and a lower leg scan, including the tibia, fibula, talus, calcaneus

and femur. All CT scans were acquired on a Philips Brilliance Big Bore

scanner (Philips Medical Systems). The CT acquisition parameters

were: tube voltage = 120 kVp, tube current = 82–245mA, effective

dose = 100–301mAs, slice thickness = 1mm, slice increment = 0.5

mm, pixel spacing = 0.63–1.17mm, matrix size = 512 × 512 pixels.

The images were resampled using trilinear interpolation to isotropic

0.8 × 0.8 × 0.8 mm to match the voxel size of the UMCU dataset more

closely. Due to high noise levels in the proximal part of the lower leg

scan and in the torso scan, a Gaussian filter (sigma = 0.5, kernel

size = 4) was applied before segmentation. Examples of CT scans

from both datasets are shown in Figure 1.

2.1.3 | Segmentation

For both datasets the bones were segmented semantically, i.e., each

bone was given an individual label. The tibia, fibula, talus, calcaneus,

femur, and coxae were manually segmented using a combination of

the CT Bone Segmentation Module and manual editing in Mimics

(Mimics Medical 21.0, Materialise). Two operators with 2 years of

experience using Mimics segmented the UMCU dataset. Both

operators checked each segmentation for accuracy. A single operator

with 4 years of experience using Mimics segmented the NMDID

dataset. Operators reported average segmentation times of up to

20min per label for each patient.

2.2 | V‐Net

The network that was used was based on the 3D U‐net17 and V‐net

architecture,18 which are 3D extensions of the original U‐net.16 In the

remainder of the paper, we refer to these 3D network architectures

as V‐net. To reduce the memory requirements of the network, we

used a lightweight implementation with only four stages per V‐net,

and only a single convolutional block per stage. Each convolutional

block consists of a 3 × 3 × 3 convolution, followed by a batch

normalization layer and a Rectified Linear Unit (ReLU) activation

layer. At the end of the V‐net a final convolutional layer is appended

with a voxel‐wise softmax layer to transform the output to a

F IGURE 1 Examples of the CT scans of two
patients. (A) UMCU dataset. (B) NMDID dataset,
lower leg scan. (C) NMDID dataset, torso scan,
cropped to include only the femora and coxae.
CT, computerized tomography; NMDID, New
Mexico Decedent Image Database; UMCU,
University Medical Center Utrecht

2896 | KUIPER ET AL.



probabilistic segmentation of the input patch. An overview of this

implementation of the V‐net architecture is shown in Figure 2.

2.3 | Cascaded networks

The lower extremity CT‐scans have a high resolution and large spatial

FOV. To segment the bones semantically from these scans a deep

network with a large receptive field would be preferred. However, a

single V‐net with these attributes would necessitate high amounts of

GPU memory and could lead to slow inference. A cascaded

lightweight V‐net strategy was therefore employed, which reduces

the amount of input voxels while maintaining a large receptive field.

This could speed up inference while minimizing the memory

constraints on the GPU.

The cascaded strategy used multiple consecutive V‐nets. The

first V‐net took as input a large FOV patch from the CT that had been

down‐sampled, such that information from a large receptive field was

available, albeit at a lower resolution. The prediction of this patch was

then used by the consecutive V‐net, which also used an additional CT

patch at a higher resolution, but with a smaller FOV. This continued

until a full resolution patch was used as input to the final V‐net, after

which the final full resolution patch was predicted. The network

outputs a semantic segmentation prediction for each V‐net, which

was used during training, but only the prediction at the full resolution

was used during inference. This strategy allowed the network to

process information from a large FOV while maintaining low memory

requirements. Figure 3 shows an example of a two‐stage cascaded V‐

net. All network configurations that were studied and their metrics

are summarized in Table 1. The network was implemented in such a

way that it automatically adapted its architecture to the number and

sizes of the input patches.

All patches were downsampled using trilinear interpolation to the

size of the smallest patch before being put into the network. For example,

a 1283−643−323 configuration denotes a network that takes a

128×128×128 patch, a 64×64×64 patch and 32×32×32 patch as

input, all downsampled to 32×32×32 voxels. This configuration thus has

a receptive field twice larger than the V‐net proposed by Çiçek et al.,17

while the number of voxels used as input to the network is ten times

smaller, as shown inTable 1. To make optimal use of the cascaded V‐net

strategy an inference sampling strategy was used that performed

inference on all smaller patch, instead of only the center patch. A

detailed description of the training and sampling strategy is given in

Supporting Information Material: Appendix A.

2.4 | Study design

The study design was divided into four stages. In stage 1, the number

of cascaded networks and the input patch sizes were varied as

summarized Table 1 to find the optimal input and network

configuration. The 50 CT scans of the UMCU dataset were divided

into sets of 35 scans for training, 5 scans for validation and 10 scans

for testing. In stage 2, the configuration of the best performing

network of stage 1 was trained such that all scans could be

automatically segmented. In a fivefold cross‐validation method, 40

scans were used for training and 10 for testing in each fold, as well as

training of the cascaded version of nnU‐net as a benchmark to

compare our results. All training and inference parameters, settings

and pre‐ and postprocessing were kept the same as described in the

study by Isensee et al.,26 of which the code is available at GitHub

(https://github.com/MIC-DKFZ/nnUNet. In stage 3, the results of

the proposed network from stage 2 were used to compare the

outcome of automatic HKA measurement and hip morphometry

assessment between manual and automatic segmented scans. In

Stage 4, the best performing network was trained on all 50 scans of

the UMCU dataset using the same settings as for the five‐fold cross‐

validation, and then evaluated on the NMDID dataset to test the

robustness of the network to different subject demographics and

acquisition parameters.

F IGURE 2 Overview of the light‐weight
version of the V‐net18 architecture that was used
in this study. An input patch with shape N ×N ×N
was used as input. The network consists of a
downsampling (left side) and upsampling (right
side) portion, where the resolution decreases and
increases, respectively. In each level of the
network a single convolutional block was used, of
which the number of channels doubled for each
level of the network

KUIPER ET AL. | 2897

https://github.com/MIC-DKFZ/nnUNet


F IGURE 3 Overview of an example of the cascaded V‐net architecture. In this example, two patches were chosen of 643 and 323 voxels, the
smaller patch from within the larger patch. First, at the top of the network the 643 patch was downsampled to the same size as the smaller patch.
The lightweight V‐net shown in Figure 1 was then used to segment the patch. The output was both converted to a probability map for each
segmentation using the Softmax‐layer (on the right), as well as cropped to be used as additional information for the smaller, high resolution patch
(downward). Next, the output of the first V‐net was cropped and concatenated to the 323 full resolution patch. This was then used as input for
the second V‐net. After applying the Softmax‐layer, the 323 full resolution probability prediction for each segmentation is the final output of the
network

TABLE 1 Summary of the different configurations of the cascaded V‐net architecture that were compared

Network
Nr. of
V‐nets Receptive field

Nr. of input
voxels

Nr. of
parameters

Additional GPU memory
per patch (MB)

Proposed Cascaded
V‐net

1 323 3.3 × 104 1.2 × 106 51

1 643 2.6 × 105 1.2 × 106 419

1 1283 2.1 × 106 1.2 × 106 3340

2 643−323 6.6 × 104 2.4 × 106 52

2 1283–323 6.6 × 104 2.4 × 106 52

2 1283–643 5.2 × 105 2.4 × 106 421

3 1283−643−323 9.8 × 104 3.6 × 106 53

4 2563−1283−643−323 1.3 × 105 4.8 × 106 58

3D U‐net17 1 132 × 132 × 116 2.0 × 106 1.9 × 107 –a

V‐net18 1 128 × 128 × 64 1.0 × 106 6.6 × 107 –a

Note: The receptive field denotes the shape and size in voxels, that is used for each stage of the V‐net. The number of input voxels, number of trainable
deep learning parameters and GPU memory consumed during inference are all a consequence of the number of V‐nets and size of the receptive field. The

cascaded V‐net GPU memory had a base memory consumption of approximately 685 MB for each configuration, in the table the additional GPU memory
used per patch during inference is shown. The 3D U‐net and V‐net were included as comparison.

Abbreviation: GPU, graphical processing unit.
aNot available in the study.
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2.5 | Evaluation

2.5.1 | Segmentation analysis

Outcomes of the automatic segmentations were compared to the

manual segmentations based on four commonly used metrics35:

the Dice Similarity Coefficient (DSC), symmetric Mean Absolute

Surface Distance (MASD), Hausdorff Distance (HD) and the 95th

percentile of the Hausdorff Distance (HD95).

2.5.2 | HKA and hip morphology assessment

We used both the manual and the automatic segmentations from the

five‐fold cross‐validation to measure the HKA and the morphology of

the hip joint for use in clinical practice.

The HKA was determined from the segmentations using an

adapted version of the original protocol developed by Fürnstahl

et al.4 such that no manual steps were necessary. This ensured that

any differences in the measurements were due to differences

between the manual and automatic segmentations, and not due to

intra‐ or interrater variability. The adjusted protocol is described in‐

depth in Supporting Information Material: Appendix B.

A commercially available software tool, the Move Forward service

(Clinical Graphics, Zimmer Biomet) was used to calculate the hip

morphometry as defined by six different parameters: alpha angle, femoral

inclination, femoral version, acetabular version, Lateral Centre‐Edge (LCE)

angle and acetabular coverage. An experienced user manually placed the

five required landmarks medial and lateral femoral condyles, medial and

lateral femoral epicondyles and the pubic tubercle by indicating the points

on three orthogonal slices of the CT. As the landmarks were placed on

the CT image and not on the segmentation, the landmarks remained the

same for both the manual and automatic method. A visual representation

of the measurement of each of the parameters is shown in Appendix C.

3 | RESULTS

3.1 | Cascaded V‐net optimization

The 3D models generated from the automatic segmentations

visualized in Figure 4 show the different segmentation results for

one subject. The detailed comparison in Figure 5 shows that most

segmentation errors appear close to the joints, and in places where

unlabelled bones were present such as the spine, patella and small

bones in the feet. This example showed that a small receptive field of

the network negatively affected its ability to discern between bones.

The DSC, MASD, HD95, and HD reported for each network

configuration in Table 2 reflect these observations. One‐way analysis

of variance analysis was performed and showed that only the

network with a 323 voxel input was found to have a statistically

different mean from the other configurations for any of the metrics

(DSC: p = 8 × 10−7, MASD: p = 3.2 × 10−16, HD95: p = 3.5 × 10−17, HD:

p = 5.2 × 10−12).

The distribution of the segmentation metrics for each bone in

Figure 6 show that the networks generally performed better in

the larger and wider bones such as the femur and tibia, and worse

in the thinner bones such as the fibula or coxae. As can be seen from

F IGURE 4 3D visualization of the segmentation result of one subject using each input configuration, before postprocessing. The cubes in the
top row show the relative patch sizes, with 323 (red), 643 (green) 1283 (blue) and 1283 (yellow) voxels. The cubes are not to scale relative to the
segmentations
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the table and the figure, the input configuration with 1283−643−323

voxel FOVs attained the highest DSC and lowest MASD, HD95 and

HD, indicative of best performance. This input configuration was

used to train the network in fivefold cross validation, to provide

automatic segmentations for the final segmentation and hip

morphometry assessment.

3.2 | Fivefold cross‐validation

The results of the fivefold cross validation were compared to the best

results of other automatic segmentation methods for which the

MASD or HD was reported in the literature.11,33,36‐44 The proposed

method achieved lower MASD than other methods for most bones

except the coxae (Table 3). The MASD was also lower for most bones

when compared to the interobserver MASD for manual segmenta-

tions that were reported by Audenaert et al.11 Furthermore, The HD

of the proposed method was also lower than those reported in the

literature, in general, except for the coxae and talus. The average

DSC over all bones was 0.98 ± 0.01 and the HD95 was

0.65 ± 0.13mm.

3.3 | Comparison to nnU‐net

Figure 7 shows the results of the comparison of proposed cascaded

network and the cascaded version of nnU‐net run on the UMCU

dataset. The two‐tailed paired t test was performed for each metric

to check for significant differences between the average results of

nnU‐net and the proposed method. Bonferroni correction was

applied to compensate for multiple testing, resulting in p < 0.0125

to be considered significant. The proposed method performed

significantly better than nnU‐net for the mean DSC (p = 9 × 10−4),

MASD (p = 7.8 × 10−5) and HD95 (p = 0.0048). For the HD no

significant difference was found (p = 0.34).

The two stage cascaded nnU‐net necessitated separate training

for both stages of the network. Each iteration took on average 514 s,

for an average of 143 h of training for each of the fivefolds on our

F IGURE 5 Detailed view of the differences in segmentation before postprocessing when using a small, 323‐voxel receptive field and a larger,
1283‐voxel receptive field

TABLE 2 Image analysis metrics for
the different input configurations of the
network after training

Input
Dice MASD HD95 HD
Mean SD Mean SD Mean SD Mean SD

32 0.958 0.024 0.97 1.31 5.64 11.04 19.5 20.2

64 0.969 0.014 0.41 0.13 1.15 0.91 11.2 8.5

128 0.967 0.015 0.46 0.17 1.38 1.37 12.7 8.2

64–32 0.968 0.014 0.40 0.09 1.00 0.26 8.1 9.7

128–32 0.970 0.014 0.37 0.05 0.90 0.12 5.5 7.1

128–64 0.970 0.015 0.38 0.10 0.95 0.33 5.9 10.0

128–64–32 0.971 0.013 0.36 0.06 0.87 0.12 5.3 8.0

256–128–64–32 0.969 0.014 0.40 0.11 0.98 0.45 7.2 10.4

Note: The best performing input configuration is shown in bold for each metric.

Abbreviations: HD, Hausdorff Distance; MASD, Mean Absolute Surface Distance.
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system, resulting in a total of approximately 60 days of GPU time.

The training of the proposed network on the same system took only

24 h per fold, and as all stages of the cascaded V‐net were imbedded

in one network, the total training for all folds took approximately 5

days of GPU time. Inference using nnU‐net took on average 55min

per scan, whereas the proposed network only needed 20min per

scan. For inference, nnU‐net requires at least 4GB of GPU memory,

while the proposed approach requires less than 1GB.

F IGURE 6 Segmentation similarity metrics calculated on the automatic segmentation versus the manual segmentation for each bone, for
each network architectures. Average values indicate the metric averaged over the bones. The 323 input configuration was left out as its results
deviated too much to be able to represent them clearly in the figure

TABLE 3 Comparison of the MASD and HD between the automatic and segmentations performed on the UMCU and NMDID datasets with
the best automatic segmentation methods found in the literature

Proposed method UMCU dataset Proposed method NMDID dataset Literature Literature interobserver11

MASD (mm) HD (mm) MASD (mm) HD (mm) MASD (mm) HD (mm) MASD (mm) HD (mm)

Tibia 0.23 ± 0.04 2.91 ± 1.53 0.48 ± 0.05 5.08 ± 2.36 0.63 ± 0.1111 4.07 ± 2.1511 0.39 ± 0.19 1.88 ± 0.47

Fibula 0.25 ± 0.05 2.04 ± 1.59 0.43 ± 0.05 3.96 ± 2.17 0.76 ± 0.7611 3.76 ± 1.1711 0.61 ± 0.08 2.25 ± 0.71

Calcaneus 0.21 ± 0.03 2.73 ± 1.32 0.60 ± 0.06 5.48 ± 1.99 0.53 ± 0.1611 2.90 ± 0.7711,17 0.40 ± 0.12 1.67 ± 0.34

Talus 0.23 ± 0.03 3.00 ± 1.95 0.63 ± 0.11 5.47 ± 3.16 0.57 ± 0.1211 2.97 ± 0.5911 0.44 ± 0.08 2.21 ± 0.41

Femur 0.14 ± 0.06 3.54 ± 5.54 0.58 ± 0.07a 5.03 ± 3.20a 0.2 ± 0.133 4.34 ± 0.8639 0.41 ± 0.15 2.30 ± 0.98

Coxae 0.31 ± 0.10 9.22 ± 8.56 0.56 ± 0.13 9.17 ± 5.43 0.30 ± 0.533 5.541,b 0.41 ± 0.20 3.74 ± 2.68

Note: Values are shown as mean ± standard deviation. Values performing better than found in the literature are shown in bold.

Abbreviations: CT, computerized tomography; HD, Hausdorff Distance; MASD, Mean Absolute Surface Distance; NMDID, New Mexico Decedent Image
Database; UMCU, University Medical Center Utrecht.
aMean and standard deviation of combined torso and lower leg CT.
bStandard deviation unknown.
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3.4 | HKA measurement

The agreement between measurements on manual and automatic

segmentations was calculated using the two‐way mixed effects,

absolute agreement, single measurement Intraclass Correlation

Coefficient, or ICC(3,1).45,46 For the HKA, the ICC was 0.976,

indicating excellent reliability (ICC >0.90), and the mean absolute

difference (MAD) was 0.18 ± 0.36°. These values are comparable

with the interrater agreements reported by Jud et al.,28 who reported

an ICC of 0.988 and a MAD of 0.4 ± 0.5°. The difference in landmark

placement in the hip was 0.19 ± 0.16mm, in the knee 1.2 ± 1.6 mm

and in the ankle 0.50 ± 0.49mm.

3.5 | Hip morphology assessment

Table 4 shows the mean and standard deviations of all hip

morphometric parameters compared to the mean and standard

deviation of each parameter as they are found in the healthy adult

population according to Toogood et al.32 (alpha angle, femoral neck

inclination, femoral version), Dandachli et al.29 (acetabular coverage),

Tannast et al.31 (LCE angle) and Hingsammer et al.47 (acetabular version).

Comparison shows that the results correspond closely to the healthy

population, for both the manual and automatic segmentation.

In Table 5 the mean and MAD of all hip parameters are shown.

The ICC(3,1) for the alpha angle was 0.822 indicating good reliability

(0.75 < ICC < 0.90), while the other parameters had an ICC of over

0.967, indicating excellent reliability (ICC >0.90).49 Furthermore, in

Table 5 the differences were compared to the results of the studies

of Zeng et al.33 and Chu et al.,37 who performed similar automatic

segmentations for hip morphological parameter measurements. The

proposed method achieved comparable or lower differences in

measurement between manual and automatic workflows. Finally,

comparison of the ICC with the manual interrater ICC by Harris‐

Hayes et al.50 showed that the proposed method also performed

comparable or better.

Figure 8 shows the Bland‐Altman plots of all hip morphometry

parameters. The femoral inclination and femoral version passed the

Kolmogorov–Smirnov test for normality. In this case, the Limits of

Agreement (LoA) were calculated as the mean +1.96 and −1.96 times

the standard deviation. The alpha angle, acetabular version, acetabu-

lar coverage and LCE angles did not pass the test for normality and

thus the 2.5th and 97.5th percentile were used to indicate the

nonparametric LoA. These plots show that although the correlation

F IGURE 7 Segmentation similarity metrics calculated on the fivefold cross‐validated automatic segmentation versus the manual
segmentation for each bone, for the 128–64–32 implementation of the proposed network, compared with nnU‐net
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between measurements was generally high, a few large outliers did

occur, especially in the alpha angle measurements.

3.6 | NMDID dataset

Results of the best performing network retrained on all 50 scans from

the UMCU dataset and evaluated on the 10 scans of the NMDID

dataset are shown in Table 3. The mean DSC was 0.95 ± 0.016 and

the HD95 was 1.29 ± 0.25mm.

4 | DISCUSSION

The aim of this study was to develop a fast, lightweight algorithm for

semantic bone segmentation from CT images and assess its

applicability to automatic 3D hip morphometry parameters. Segmen-

tation of the bones from CT images has widespread use in the

orthopaedic clinic, especially for the measurement of hip morphome-

try parameters. Therefore, many methods have been developed to

segment the proximal femur and coxae.33,37‐42,51 However, only few

studies have attempted to semantically segment larger parts of the

human body with a single method,11,44 which brings unique

challenges such as computing time and memory constraints. In this

study, we have shown that by using a cascaded network with a large

receptive field we were able to achieve competitive semantic bone

segmentation results while minimizing the time and memory

requirements.

Our lightweight implementation of the V‐net, with a lower

number of convolutional layers, a smaller number of filters, and less

down sampling layers and thus depth of the network, resulted in

strongly reduced number of parameters. A single lightweight V‐net

without cascades had over 15 times less parameters than a similar

V‐net as described by Çiçek et al.17 This allowed the network to run

training and inference quickly and with relatively low memory

consumption. The implementation of cascaded V‐nets allowed the

TABLE 4 Comparison of the mean
morphometric parameters found using the
automatic and manual segmentations

Parameters
Manual segmentation Automatic segmentation Literature
Mean SD Mean SD Mean SD

Alpha angle (°) 46.2 13.9 46.3 14.0 45.632 10.532

Femoral
inclination (°)

129.5 5.2 129.7 5.4 129.232 6.232

Femoral version (°) 10.2 10.1 9.7 10.1 9.732 9.332

Acetabular
version (°)

17.8 7.3 17.6 6.7 1947 447

Acetabular
coverage (%)

74.9 6.2 74.5 6.1 7329 429

LCE angle (°) 32.0 8.5 31.3 8.2 33.648 18.1–48.0a,48

Note: The interobserver variability is also shown to compare the range between observers and the
manual and automatic segmentations.
a95% Confidence interval.

TABLE 5 Differences and ICC(3,1) between hip morphometry parameters when calculated from manual and automatic segmentations

Parameters
Automatic and manual difference

Automatic and manual differences
from literature

Manual interrater
reliability

Mean SD Abs. Mean Abs. SD ICC Abs. Mean Abs. SD ICC(2,1)49

Alpha angle (°) −0.27 8.1 2.5 7.2 0.822 – – 0.78‐0.8650,a

Femoral inclination (°) −0.3 1.2 0.72 0.95 0.986 233,a – 2.137 233,a – 1.637 0.9650,a

Femoral version (°) −0.1 0.9 0.55 0.71 0.998 133,a – 2.037 133,a – 1.537 0.9750,a

Acetabular version (°) 0.02 1.8 0.95 1.5 0.983 – – 0.9450,a

Acetabular coverage (%) 0.4 1.5 0.94 1.1 0.986 233,a – 3.537 133,a – 2.337 –

LCE angle (°) 0.7 2.1 1.4 1.6 0.967 233,a 233,a 0.8650,a

Note: The right side of the table shows the differences.

Abbreviations: CT, computerized tomography; MRI, magnetic resonance imaging.
aBased on MRI instead of CT segmentations.
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F IGURE 8 Bland‐Altman plots showing the difference between automatic and manual segmentations for all hip morphometry
measurements. The dotted lines indicated the Limits of Agreement, calculated as ±1.96 times the standard deviation in case the values are
normally distributed, or the 2.5th and 97.5th percentile otherwise
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volume of the receptive field of the network to increase cubically

with patch size, while only increasing the number of parameters and

input voxels linearly.

The proposed method achieved a low MASD and HD on the

UMCU dataset compared to other studies, with on average sub‐voxel

accuracy. The proposed method did perform worse on the HD metric

for the coxae. Qualitative inspection of the segmentation of the

coxae showed that the HD was especially influenced by segmenta-

tion errors on the border of the image, in scans where only part of the

coxae were visible. A comparison to the cascaded nnU‐net applied to

our dataset showed that our network was able to attain better or

comparable results with lower training and inference time, and lower

GPU memory requirements.

Our method performed slightly worse on the NMDID dataset,

but still outperformed the MASD results found in the literature on

the tibia and fibula. The decreased accuracy can probably be

attributed to significant differences between the UMCU and NMDID

dataset. The subjects of the NMDID dataset were purposely chosen

to be different in age than the UMCU patients, to test the robustness

of the algorithm to different population demographics. Additionally,

UMCU patients were alive while the NMDID dataset consists of

recently deceased subjects, which may have introduced postmortem

effects such as gas build‐up in the lower abdomen.52 The NMDID

patients were also mostly scanned clothed, which introduced

artefacts due to interference with objects on the body. Finally, the

scanner and scanner settings differed. In future research, using a

more diverse dataset for training might improve the robustness and

thus general applicability of the network.

Excellent correspondence was found between the measurement

of the HKA on the manual and automatic segmentations. A good or

excellent correlation was also found for the hip morphometry

parameters between the manual and automatic segmentations.

Moreover, the correlation was higher than the manual interrater

reliability reported by Harris‐Hayes et al.50 This is in accordance with

the results of Zeng et al.,33 who also used a deep learning method to

automatically segment the hip and calculate the morphometry

parameters. In contrast to their study, however, we segmented six

bones instead of two, with a larger field of view that comprised the

complete lower extremities. It should be noted that the studies by

Zeng et al. and Harris‐Hayes et al., with which our results were

compared, were performed on MRI scans instead of CT scans.

However, these represented the best results that could be found in

the literature for comparison of automatic and manual hip morphom-

etry assessment interrater reliability.

5 | LIMITATIONS

While the proposed methodology, just like nnU‐net, is in principle

generically applicable to other segmentation tasks, it has been

evaluated on the specific challenge of bone segmentation in 3D CT,

albeit with a large variety of osseous structures. Future work

warrants more extensive evaluations to investigate the potential

benefits of this approach to other segmentation challenges in

different applications and on different data. In addition, this study

focused on optimizing the number of U‐nets in a cascaded approach

with a fixed combination of other hyperparameters. An investigation

of the optimal hyperparameters for each of the different network

topologies might yield different results than presented here.

Although our segmentation method achieved good results

relative to other state‐of‐the art methods in the literature, care

should be taken when comparing different studies. Each study

reported on separate datasets with differing parameters such as

inclusion criteria, scanner settings and voxel sizes.

We assumed that the morphological parameters that were

calculated using the commercial software tool gave the correct

results when presented with the manual segmentation. However, in

some cases the manual segmentations included small spurious bone

voxels on the femoral head, which increased the alpha angle more

than would be clinically expected. An example of this is shown in

Figure 9. These erroneous morphometry measurements were a

limitation caused by our automatic approach, as these would

normally be corrected manually when using the commercial software.

6 | CONCLUSION

In this study, we introduced a method for fully automatic lower

extremity segmentation from CT. By using a cascaded V‐net

approach, it was possible to use information from a large receptive

field, while maintaining a comparatively low computation time and

GPU memory footprint. Comparison to state‐of‐the‐art methods

found in other studies showed that the segmentation accuracy also

performed competitively. Furthermore, this study was the first to

apply cascaded V‐net based segmentation on lower extremity CT

data, and validate the applicability to orthopaedic diagnosis using

clinical implementations, i.e., HKA and hip joint measurements.

Comparing the HKA and hip morphology between automatic and

manual segmentations, the metrics showed good or excellent

correlation, indicating that this method could be a valuable addition

F IGURE 9 Example of 12 o' clock alpha angle
calculation that is highly influenced by a small
change in segmentation
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to many orthopaedic applications that benefit from accurate bone

segmentation.
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