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Abstract
Reconstructing EEG sources involves a complex pipeline, with the inverse problem being the most challenging. Multiple 
inversion algorithms are being continuously developed, aiming to tackle the non-uniqueness of this problem, which has been 
shown to be partially circumvented by including prior information in the inverse models. Despite a few efforts, there are 
still current and persistent controversies regarding the inversion algorithm of choice and the optimal set of spatial priors to 
be included in the inversion models. The use of simultaneous EEG-fMRI data is one approach to tackle this problem. The 
spatial resolution of fMRI makes fMRI derived spatial priors very convenient for EEG reconstruction, however, only task 
activation maps and resting-state networks (RSNs) have been explored so far, overlooking the recent, but already accepted, 
notion that brain networks exhibit dynamic functional connectivity fluctuations. The lack of a systematic comparison between 
different source reconstruction algorithms, considering potentially more brain-informative priors such as fMRI, motivates 
the search for better reconstruction models. Using simultaneous EEG-fMRI data, here we compared four different inversion 
algorithms (minimum norm, MN; low resolution electromagnetic tomography, LORETA; empirical Bayes beamformer, 
EBB; and multiple sparse priors, MSP) under a Bayesian framework (as implemented in SPM), each with three different 
sets of priors consisting of: (1) those specific to the algorithm; (2) those specific to the algorithm plus fMRI task activation 
maps and RSNs; and (3) those specific to the algorithm plus fMRI task activation maps and RSNs and network modules of 
task-related dFC states estimated from the dFC fluctuations. The quality of the reconstructed EEG sources was quantified in 
terms of model-based metrics, namely the expectation of the posterior probability P(model|data) and variance explained of 
the inversion models, and the overlap/proportion of brain regions known to be involved in the visual perception tasks that 
the participants were submitted to, and RSN templates, with/within EEG source components. Model-based metrics sug-
gested that model parsimony is preferred, with the combination MSP and priors specific to this algorithm exhibiting the best 
performance. However, optimal overlap/proportion values were found using EBB and priors specific to this algorithm and 
fMRI task activation maps and RSNs or MSP and considering all the priors (algorithm priors, fMRI task activation maps and 
RSNs and dFC state modules), respectively, indicating that fMRI spatial priors, including dFC state modules, might contain 
useful information to recover EEG source components reflecting neuronal activity of interest. Our main results show that 
providing fMRI spatial derived priors that reflect the dynamics of the brain might be useful to map neuronal activity more 
accurately from EEG-fMRI. Furthermore, this work paves the way towards a more informative selection of the optimal EEG 
source reconstruction approach, which may be critical in future studies.
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Introduction

Electroencephalography (EEG) measures the electrical 
potential differences between electrodes placed at different 
scalp sites that are generated by an ensemble of brain cells 
acting in synchrony. Because of its fairly direct relation-
ship with neuronal activity and its remarkable temporal 
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resolution at the sub-millisecond scale, EEG has proven 
pivotal for studying both healthy and abnormal human 
brain function in general, and particularly brain functional 
connectivity and its dynamics (Niedermeyer and Lopes Da 
Silva 2005). However, the spatial identification and char-
acterization of the brain networks underlying the electrical 
potentials measured at the scalp are not possible from these 
scalp signals alone, given the poor spatial resolution of the 
EEG at the centimeter scale (Michel et al. 2004). Fortu-
nately, the continuous technological advances of EEG hard-
ware and signal processing techniques now permit a reliable 
reconstruction of those brain networks (Abreu et al. 2020b), 
by localizing, taking into account prior information (e.g. 
fMRI), and estimating the strength of the neural generators 
responsible for the scalp EEG signals—the so-called EEG 
source reconstruction (Michel and Murray 2012). However, 
it is not yet established which EEG source reconstruction 
(inversion) method to use, nor which prior information is the 
most useful, considering the application and the context. So, 
this work is focused on comparing commonly used source 
reconstruction methods and evaluating the advantages (if 
any) of adding different types of fMRI information to the 
reconstruction models.

Reconstructing EEG sources involves a complex pipeline 
that can be divided into the forward and the inverse prob-
lems. The forward problem relates with the estimation of the 
impact of a given source in the brain on the scalp electrical 
potentials and is typically solved by building realistic and 
subject-specific head models from individual structural mag-
netic resonance images (MRI) using well-defined processing 
pipelines. By incorporating the 3D localization of the scalp 
electrodes on these head models, a lead field can then be 
computed, establishing the relationship between the activity 
of the different sources in the brain and the signal measured 
at each electrode (Michel and Brunet 2019). Conversely, the 
inverse problem relates with determining the sources in the 
brain that generate a given scalp distribution of electrical 
potential differences (i.e., EEG topography). Because of the 
non-uniqueness of its solution, the inverse problem is con-
sidered the most challenging, with a plethora of inversion 
algorithms being available for solving it (Michel et al. 2004). 
These can be roughly divided into current source density 
(CSD) estimates and beamformers (Grech et al. 2008; He 
et al. 2018). Despite the choice between the two types being 
application-dependent to some extent (Halder et al. 2019), 
CSD-based algorithms are the most commonly used in the 
literature; within these, the more recent distributed source 
localization algorithms are preferable over dipole source 
localization algorithms, as the latter require prior knowl-
edge regarding the number of sources to be estimated. Sev-
eral distributed source localization algorithms have been 
developed, the most common being the minimum norm 
(MN) solutions (Hämäläinen and Ilmoniemi 1994) and their 

variations: weighted minimum norm (WMN; De Peralta-
Menendez and Gonzalez-Andino, 1998), low resolution 
electromagnetic tomography (LORETA; Pascual-Marqui 
et al., 1994), local autoregressive average (LAURA; De 
Peralta-Menendez et al., 2004), among others (Michel and 
Brunet 2019). Motivated by the challenging task of defining 
a ground truth, few studies have dedicated to systematically 
compare the performance of reconstruction strategies. The 
prevalent finding is that there is no (universal) optimal solu-
tion that encompasses all the contexts and designs, with few 
studies listing a set of recommendations to guide the choice 
of the most appropriate method based on the application 
(Belardinelli et al. 2012; Hedrich et al. 2017; Hincapié et al. 
2017; Anzolin et al. 2019; Tait et al. 2021). Particularly, 
(Hedrich et al. 2017; Hincapié et al. 2017; Tait et al. 2021) 
have carried a more intensive comparison, however several 
existing methods were not addressed, e.g. the empirical 
Bayes beamformer (EBB) and the multiple sparse priors 
(MSP). Furthermore, these studies were either performed 
in simulated or resting-state data, and reported inconclusive 
results (Yao and Dewald 2005; Grova et al. 2006; Bradley 
et al. 2016; Halder et al. 2019). Similarly, in an attempt to 
prove the clinical validity of EEG-fMRI, efforts were made, 
particularly in the context of epilepsy, by using intracranial 
EEG (icEEG) recordings for validation of EEG source imag-
ing results (Thornton et al. 2010; van Houdt et al. 2013; 
Vaudano et al. 2013, 2021; Ebrahimzadeh et al. 2021). How-
ever, for the chosen reconstruction method their results were 
only partially validated, i.e., only few patients or regions 
presented concordant results with both techniques. Although 
simultaneous icEEG-fMRI can overcome the low sensitivity 
of scalp EEG and reach good spatial concordance between 
neuronal electrical and BOLD changes, it comes at the cost 
of invasive recordings only affordable in specific cases (Vul-
liemoz et al. 2011; Cunningham et al. 2012; Aghakhani et al. 
2015; Chaudhary et al. 2016, 2021; Sharma et al. 2019). 
Furthermore, these studies did not assess the quality of dif-
ferent source reconstruction algorithms and the effect on 
concordance measures, which stresses the need to perform 
systematic comparisons focusing on specific scenarios and 
considering other less explored methodologies. Moreover, 
the associated results have not been explicitly validated 
based on the brain activity of interest; instead, the localiza-
tion error, spatial spread and percentage of false positives 
are typically used, as well as the log-evidence and variance 
explained of the inversion model used when considering 
Bayesian frameworks (Michel and Brunet 2019).

In addition to choosing the most appropriate inversion 
method, the choice of a priori information to integrate in 
these models is also important. This a priori information are 
assumptions and constraints (priors) that serve to guide the 
reconstruction and are needed to tackle the non-uniqueness 
of the inverse problem, which are reflected differently on 
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each inversion algorithm. Their incorporation can be per-
formed using two different approaches: by imposing pen-
alty functions (Valdés-Sosa et al. 2009), or using a Bayesian 
framework (Trujillo-Barreto et al. 2004; Friston et al. 2008), 
particularly the parametric empirical Bayesian (PEB; Hen-
son et al., 2010; Phillips et al., 2005). Although less popular, 
the PEB framework allows to describe a given assumption 
or constraint explicitly through appropriate postulated prior 
distributions, which can range from one as in the MN solu-
tions (the identity matrix) to hundreds as in the multiple 
sparse priors (MSP) algorithm (Friston et al. 2008). This 
framework is thus extremely flexible for incorporating addi-
tional priors obtained from other imaging modalities, which 
has proved to be beneficial for more efficiently tackling the 
non-uniqueness of the inverse problem (Liu and He 2006, 
2008; Lei et al. 2015). The first studies used brain activation 
maps obtained from the analyses of task-based functional 
MRI (fMRI) data (Henson et al. 2010; Lei et al. 2010, 2011, 
2012). More recently, the well-known brain networks that 
emerge from temporally correlated spontaneous fluctuations 
in the blood-oxygen-level-dependent (BOLD) fMRI signal 
(the so-called resting-state networks, RSNs) have also been 
used as spatial priors (Lei 2012). In these studies, the spatial 
priors were derived from separately acquired fMRI data, 
which may scale down their potential for guiding the recon-
struction of EEG, especially when focusing on spontaneous 
activity (Abreu et al. 2018). Additionally, task-based and 
resting-state functional networks are now known to continu-
ously reorganize in response to both internal and external 
stimuli at multiple time-scales, resulting in temporal fluc-
tuations of their connectivity—the so-called dynamic func-
tional connectivity (dFC) (Hutchison et al. 2013). From dFC 
fluctuations, a limited, but variable, number of dFC states 
have been recurrently identified in the literature as the build-
ing blocks of brain functional connectivity (dynamics) (Preti 
et al. 2017), which are hypothesized to be associated with 
different cognitive, vigilance or pathological brain states 
(Thompson 2018); however, they have not been considered 
as potential spatial priors for EEG source reconstruction so 
far.

Given the increasing relevance of EEG as a brain 
imaging tool, accurately estimating the underlying brain 
sources is critical in the study of both healthy and clinical 
populations. Importantly, no study has so far focused on 
determining the extent at which the effects of different 
source reconstruction algorithms and spatial priors differ 
between groups in clinical studies, with the spatial priors 
potentially reflecting relevant aspects of the disease under 
study. This is especially relevant in task-related fMRI stud-
ies, which are rapidly increasing in clinical research (Mari-
nazzo et al. 2019). While EEG-fMRI and source imaging 
reconstruction are highly applied in the context of epilepsy 
(Gotman and Pittau 2011; Lei et al. 2015; van Graan et al. 

2015), applying these techniques to investigate other neu-
rological and psychiatric diseases in which altered connec-
tivity is suspected can potentially result in highly useful 
clinical applications. Particularly, Multiple sclerosis (MS) 
is a disconnection disease that is due to structural damage 
but also functional connectivity alterations, with both EEG 
(with its high temporal resolution) and fMRI (with its high 
spatial resolution) representing gold-standard techniques 
to investigate it (Gschwind et al. 2016; Tahedl et al. 2018). 
By leveraging the high temporal resolution from EEG and 
spatial resolution from fMRI, the underlying temporally- 
and spatially-resolved EEG sources with fMRI-derived 
information will provide robust connectivity measures that 
might help to understand the pathophysiology of the dis-
ease and serve as a tool for reliable assessment of disease 
progression. Moreover, while it is very common to explore 
connectivity measures in patients with MS during rest-
ing state (Sbardella et al. 2015), task-designs target brain 
regions and networks that show distinct properties than in 
resting-state (Di et al. 2013). Thus, task designs may have 
a crucial role in describing the functioning of the brain, 
in highlighting specific connectivity changes, and thus in 
understanding this disease better.

Considering the present limitations described in this 
section, here we compared four different inversion algo-
rithms (MN, LORETA, empirical Bayes beamformer, 
EBB; and MSP), each with two different sets of additional 
fMRI-derived spatial priors (activation maps and RSNs, 
with and without including dFC states) on EEG data col-
lected concurrently with fMRI at 3 T from 6 multiple 
sclerosis (MS) patients and 7 healthy subjects perform-
ing visual perception tasks and during rest. The quality of 
the reconstructions was quantified through the expectation 
of the posterior probability P(model|data), obtained from 
the log-evidence, and variance explained of the associated 
models, and in terms of the overlap between EEG source 
components and brain regions of interest associated with 
the tasks and RSN templates.

Materials and Methods

Participants

Six MS patients (mean age: 30 ± 8 years; 2 males) and 
seven demographically matched healthy subjects (mean 
age: 30 ± 6 years; 3 males) were recruited. The patients were 
selected by the clinical team at the Neurology Department of 
the University Hospital of Coimbra, and met the criteria for 
MS diagnosis according to McDonald Criteria (Thompson 
et al. 2018). All participants had normal or corrected-to-
normal vision.
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Experimental Protocol

The imaging session was performed at the Portuguese Brain 
Imaging Network (Coimbra, Portugal) and consisted of four 
functional runs: first, a functional localizer of the human 
middle temporal area (hMT + /V5, a low level visual area 
well-known to respond to simple motion patterns), followed 
by two runs of biological motion (BM) perception, and one 
final resting-state run.

The localizer run consisted of 10 blocks of 18 s, with 
each block comprising three periods: the first was a fixation 
period marked by a red cross positioned at the center of the 
screen for 6 s. During the second period, a 6 s pattern of 
stationary dots was shown, followed by the third (and final) 
period during which the dots were moving towards and away 
from a central fixation cross at a constant speed (5 deg/sec) 
for 6 s.

Biological motion stimuli were built based on human 
motion capture data collected at 60 Hz, comprising 12 point-
lights placed at the main joints of a male walker. Each BM 
perception run consisted of 12 blocks of 40 s: 4 or 5 blocks 
(depending on the starting block) of the point-light walker 
facing rightwards or leftwards (body blocks), 4 or 5 blocks 
showing only the point-light located at the right ankle and 
moving rightwards of leftwards (foot blocks), and 3 blocks 
of the original 12 point-lights randomly positioned across 
the y axis, while maintaining their true trajectory across the x 
axis (random blocks). A total of 9 body, 9 foot and 6 random 
blocks were then collected during the two BM perception 
runs.

During the resting-state run, the participants were 
instructed to relax and only fixate a red cross positioned at 
the center of the screen.

EEG‑fMRI Data Acquisition

Imaging was performed on a 3 T Siemens MAGNETOM 
Prisma Fit MRI scanner (Siemens, Erlangen) using a 
64-channel RF receive coil. In order to minimize head 
motion and scanner noise related discomfort, foam cushions 
and earplugs were used, respectively. The functional images 
were acquired using a 2D simultaneous multi-slice (SMS) 
gradient-echo echo-planar imaging (GE-EPI) sequence 
(6 × SMS and 2 × in-plane GRAPPA accelerations), with 
the following parameters: TR/TE = 1000/37  ms, voxel 
size = 2.0 × 2.0 × 2.0 mm3, 72 axial slices (whole-brain cov-
erage), FOV = 200 × 200 mm2, FA = 68°, and phase encoding 
in the anterior–posterior direction. The start of each trial 
was synchronized with the acquisition of the functional 
images. A short EPI acquisition (10 volumes) with reversed 
phase encoding direction (posterior-anterior) was also per-
formed prior to each fMRI run, for image distortion correc-
tion. Whole-brain, 1 mm isotropic structural images were 

acquired using a T1-weighted 3D gradient-echo MP2RAGE 
sequence.

The EEG signal was recorded using the MR-compati-
ble 64-channel NeuroScan SynAmps2 system and the 
Maglink™ software, with a cap containing 64 Ag/AgCl 
non-magnetic electrodes positioned according to the 10/10 
coordinate system, a dedicated electrode for referencing 
placed close to the Cz position, and two electrodes placed 
on the back for electrocardiogram (EKG) recording. Elec-
trode impedances were kept below 25 kΩ. EEG, EKG and 
fMRI data were acquired simultaneously in a continuous 
way, and synchronized by means of a Syncbox (NordicNeu-
roLab, USA) device. EEG and EKG signals were recorded at 
a sampling rate of 10 kHz, synchronized with the scanner’s 
10 MHz clock. No filters were applied during the record-
ings. The helium cooling system was not turned off, as it 
may carry the associated risk of helium boil-off in certain 
systems (Mullinger et al. 2008), and thus is not permitted in 
some clinical sites as the one used in this study. Respiratory 
traces were recorded at 50 Hz with a respiratory cushion 
from the physiological monitoring unit of the MRI system.

For each participant, 197 fMRI volumes were acquired 
during the localizer run, yielding 3.20 min of duration. The 
two BM runs had approximately 8.37 min, thus comprising 
507 volumes each. The final resting-state run had approxi-
mately 8.08 min, corresponding to 485 volumes.

MRI Data Analysis

The main steps of the processing pipeline for deriving fMRI 
spatial priors (described here) and subsequently use them in 
EEG source reconstruction (described in the next section), 
as well as the metrics proposed for quantifying the quality of 
the source reconstruction, are depicted in Fig. 1.

Pre‑processing

The first 10 s of data were discarded to allow the signal to 
reach steady-state. Subsequently, slice timing and motion 
correction were performed using FSL tool MCFLIRT (Jen-
kinson et al. 2002), followed by a B0-unwarping step with 
FSL tool TOPUP (Andersson et al. 2003) using the reversed-
phase encoding acquisition, to reduce EPI distortions. The 
distortion-corrected images were then corrected for the 
bias field using FSL tool FAST (Zhang et al. 2001), and 
non-brain tissue was removed using FSL tool BET (Smith 
2002). Nuisance fluctuations (including physiological noise) 
were then removed by linear regression using the following 
regressors (Abreu et al. 2017): (1) quasi-periodic BOLD 
fluctuations related to cardiac and respiratory cycles were 
modeled by a fourth order Fourier series using RETROI-
COR (Glover et al. 2000); (2) aperiodic BOLD fluctuations 
associated with changes in the heart rate as well as in the 
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Fig. 1   Schematic diagram of the processing pipeline. The pre-pro-
cessed fMRI data is submitted to three different analyses in order to 
derive three types of fMRI spatial priors for EEG source reconstruc-
tion: (1) identification of RSNs through spatial ICA; (2) mapping of 
the task-related activity through GLM; and (3) by estimating the dFC 
fluctuations with phase coherence and the associated dFC states with 
dictionary learning, dFC state modules were obtained using the Lou-

vain modularity algorithm. The covariance components (CCs) asso-
ciated with these spatial priors were then included in several inver-
sion algorithms, whose reconstruction quality was assessed by the 
expectation of the posterior probability P(model|data) and variance 
explained of the associated models, and by the overlap of EEG source 
components (obtained through spatial ICA applied to the source 
reconstructed EEG) with ROIs and RSN templates
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depth and rate of respiration were modeled by convolution 
with the respective impulse response functions (as described 
in Chang et al. 2009); (3) the average BOLD fluctuations 
measured in white matter (WM) and cerebrospinal fluid 
(CSF) masks (obtained as described below); (4) the six 
motion parameters (MPs) estimated by MCFLIRT; and (5) 
scan nulling regressors (motion scrubbing) associated with 
volumes acquired during periods of large head motion; these 
were determined using the FSL utility fsl_motion_outliers, 
whereby the DVARS metric proposed in (Power et al. 2012) 
is first computed, and then thresholded at the 75th percentile 
plus 1.5 times the inter-quartile range. Finally, a high-pass 
temporal filtering with a cut-off period of 100 s was applied, 
and spatial smoothing using a Gaussian kernel with full 
width at half-maximum (FWHM) of 3 mm was performed.

For each subject, WM and CSF masks were obtained 
from the respective T1-weighted structural image by seg-
mentation into gray matter, WM and CSF using FSL tool 
FAST (Zhang et al. 2001). The functional images were co-
registered with the respective T1-weighted structural images 
using FSL tool FLIRT, and subsequently with the Montreal 
Neurological Institute (MNI) (Collins et al. 1994) template, 
using FSL tool FNIRT (Jenkinson and Smith 2001; Jen-
kinson et al. 2002). Both WM and CSF masks were trans-
formed into functional space and were then eroded using a 
3 mm spherical kernel in order to minimize partial volume 
effects (Jo et al. 2010). Additionally, the eroded CSF mask 
was intersected with a mask of the large ventricles from the 
MNI space, following the rationale described in (Chang and 
Glover 2009).

Each participant’s structural image was parceled into 
N = 90 non-overlapping regions of the cerebrum according 
to the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al. 2002). These parcels were co-registered to the 
participant’s functional space, and the pre-processed BOLD 
data were then averaged within each parcel.

fMRI Priors for EEG Source Reconstruction

From the pre-processed fMRI data, several potential priors 
for EEG source reconstruction were subsequently extracted 
(procedures described next), namely: resting-state networks 
for all runs, and task-related activity maps and dynamic 
functional connectivity (dFC) states for the task runs only.

Identification of Resting‑State Networks  The pre-processed 
fMRI data were submitted to a group-level probabilis-
tic spatial ICA (sICA) decomposition using the FSL tool 
MELODIC (Beckmann and Smith 2004), whereby the data 
of each run for all participants is temporally concatenated 
prior to the sICA step, as recommended in the MELOD-
IC’s guide for the identification of RSNs (https://​fsl.​fmrib.​
ox.​ac.​uk/​fsl/​fslwi​ki/​MELOD​IC). The optimal number of 

independent components (ICs) was automatically estimated 
based on the eigenspectrum of its covariance matrix (Beck-
mann and Smith 2004), with an average of approximately 
40 ICs across runs.

An automatic procedure for the identification of well-
known RSNs was then applied, in which the spatial maps of 
the ICs (thresholded at Z = 3.0) were compared with those 
of the 10 RSN templates described in (Smith et al. 2009), 
in terms of spatial overlap computed as the Dice coefficient 
(Dice 1945). For each template, the IC map yielding the 
highest Dice coefficient was determined as the correspond-
ing RSN. In the cases of non-mutually exclusive assign-
ments, the optimal assignment was determined by randomiz-
ing the order of the RSN templates (a maximum of 10,000 
possible combinations were considered, for computational 
purposes), and then sequentially, and mutually exclusively, 
assigning them to the IC maps based on their Dice coef-
ficient. The assignment with the highest average Dice coef-
ficient across all RSN templates was then deemed optimal, 
yielding the final set of RSNs: three visual networks (RSN 
1–3), the default mode network (DMN, RSN4), a cerebellum 
network (RSN5), a motor network (RSN6), an auditory net-
work (RSN7), the salience network (RSN8), a right language 
network (RSN9) and a left language network (RSN10).

These 10 subject- and run-specific RSNs were then used 
as spatial priors for the reconstruction of sources of EEG 
collected on all four runs. RSNs were considered in the task 
runs because these have been shown to be also present in 
task-based studies (Di et al. 2013; Cole et al. 2016).

hMT + and BM‑related Activity Mapping  For the purpose of 
mapping hMT + /V5 from the localizer run, and the regions 
involved in the BM perception task from the other two runs, 
a general linear model (GLM) framework was used. For 
the localizer, two regressors representing the periods show-
ing dots (stationary and moving) were considered. These 
regressors were built based on unit boxcar functions with 
ones during the respective periods, and zeros elsewhere. 
Similarly, three regressors representing the body, foot and 
random blocks of the BM runs were built for analyzing 
the BM runs, with the regressors also based on unit boxcar 
functions. All regressors were convolved with a canonical, 
double-gamma hemodynamic response function (HRF). The 
run-specific, HRF-convolved regressors were then included 
in a GLM that was subsequently fitted to the associated 
fMRI data using FSL tool FILM (Woolrich et  al. 2001). 
The hMT + /V5 regions were identified from the local-
izer run by contrasting the moving and the stationary dots 
periods, whereas the areas associated with BM perception 
were mapped according to the following contrasts: body—
random, foot—random, and body—foot. Voxels exhibiting 
significant changes within these contrasts were identified by 
cluster thresholding (voxel Z > 2.5, cluster p < 0.05).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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In this way, a single spatial prior is obtained for recon-
structing the sources of the EEG collected during the 
localizer run. In contrast, three spatial priors (one for each 
contrast) are made available for each of the two BM runs.

Dynamic Functional Connectivity Analysis  The dFC 
analysis described here was only performed on the fMRI 
data collected during the task runs (localizer and two 
BM runs), since its purpose was to objectively identify a 
small set of dFC states associated with the tasks, and to 
use them as spatial priors in the subsequent reconstruction 
of EEG sources. The dFC was estimated using the phase 
coherence (PC) method, which allows to compute the dFC 
for each fMRI sample; the loss in temporal resolution and 
the ambiguous selection of a window size, both inevitable 
in conventional sliding-window correlation approaches 
(Preti et al. 2017), are thus avoided (Glerean et al. 2012). 
For the PC method, a second-order Butterworth band-
pass filter in the range of 0.01–0.1  Hz was first applied 
to the parcel-averaged BOLD signals. The instantaneous 
phase, θ, of the filtered signal, n, was then estimated using 
the Hilbert transform (Cabral et al. 2017; Figueroa et al. 
2019). One of the advantages of this method is to obtain 
a connectivity matrix for each TR (unlike Pearson cor-
relation, which requires a sliding window). Also, the real 
part of the signals does not depend on their amplitude, 
and therefore it is a measure less sensitive to the presence 
of noise, namely movement that creates large amplitude 
variations in the fMRI signal. For each participant, the 
dFC matrix C ∈ RN×N×T (N = 90 brain regions from the 
AAL atlas, and T is the number of fMRI samples, which 
depends on the run under analysis) was computed for each 
pair of parcels, n and p, and at each fMRI sample t, using 
the equation:

For each run and participant individually, the matrix 
C was then submitted to the leading eigenvector dynam-
ics analysis (LEiDA) (Cabral et al. 2017; Figueroa et al. 
2019; Lord et al. 2019), with the purpose of reducing the 
dimension of each temporal entry of C (N × N) by only 
considering the associated leading eigenvector (of dimen-
sion N), while nonetheless explaining most of the variance 
(> 50% in all cases, and up to 90%) (Lord et al. 2019). This 
step yielded the reduced dFC matrix CR ∈ RN×T , with the 
columns ct ∈ RN×1 (t = 1, …, T) representing the leading 
eigenvectors, and the rows indicating the parcels. Each 
eigenvector is composed by elements with positive and/or 
negative signs; if all positive, a global mode is governing 
the parcel-averaged BOLD signals where all the associated 
phases point in the same direction with respect to the ori-
entation defined by the eigenvector (Figueroa et al. 2019). 

(1)C(n, p, t) = cos(�(n, t) − �(p, t))

If the elements of the eigenvector have different signs, 
the parcels can be grouped into two networks according 
to their sign (positive or negative) in the eigenvector. The 
magnitude of the elements indicates how strongly the asso-
ciated parcel belongs to its assigned network (Newman 
2006).

For the identification of dFC states, an l1-norm regular-
ized dictionary learning (DL) approach was employed, fol-
lowing the methodology proposed in (Abreu et al. 2019). 
Briefly, this can be formulated as the matrix factorization 
problem CR = DA , where D = [d1,… , dk] ∈ RN×k and 
A = [a1,… , aT ] ∈ Rk×T represent the dFC states and asso-
ciated weight time-courses (i.e. contribution of each dFC 
state to reconstruct CR at each time point), respectively; and 
k is the number of dFC states. These are estimated by solving 
the optimization problem given by:

so that the reconstruction error of CR, E = ‖CR − DA‖2
F
 , is 

minimized; ‖ ⋅ ‖F denotes the Frobenius norm of a matrix. 
The estimation of D and A was performed using the algo-
rithms implemented in the MATLAB® toolbox SPArse 
Modeling Software (SPAMS, Mairal et  al., 2010). The 
sparsity of the solutions was controlled by a non-negative 
parameter λ on an l1-norm regularization framework. The 
number of dFC states k was varied between from 5 to 10 
in unit steps, and λ between ten values from 1 to 0.1259 in 
decreasing exponential steps.

The optimal k and λ values were jointly determined with 
the dFC states to be considered as spatial priors in the EEG 
source reconstruction. This was achieved by first computing 
the Pearson correlation between the contrasts defined for 
identifying the activation maps (one for the localizer run, 
and three for the BM runs) and the dFC weight time-courses 
in A, for all possible combinations of k and λ. For the local-
izer run, the dFC state exhibiting the highest correlation 
across dFC states, and combinations of k and λ, was deemed 
as task-related. For the BM runs, the dFC state exhibiting 
the highest correlation across contrasts, dFC states and com-
binations of k and λ was first identified. For the optimal 
combination of k and λ, the most correlated dFC states asso-
ciated with the remaining contrasts were then determined. 
In cases where multiple contrasts were associated with the 
same dFC state, only that state was considered for the sub-
sequent analyses.

The dFC states of interest were then finally submitted 
to a modularity analysis, with the purpose of identifying 
modular (or community) structure in those states. Because 
the dFC states are column vectors, rather than square matri-
ces representing a connectivity matrix as required for the 
modularity analysis, such connectivity matrix of a given 
dFC state di ∈ RN×1 was first reconstructed by computing 

(2)argarg‖CR − DA‖2
F
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the outer product of the dFC state, did⊤i ∈ RN×N (Cabral et al. 
2017). The Louvain algorithm as implemented in the Brain 
Connectivity Toolbox was then applied to the reconstructed 
connectivity matrices of the dFC states of interest (Rubinov 
and Sporns 2010). This algorithm considers both the posi-
tive and negative weights of the unthresholded connectivity 
matrix, thus avoiding the ambiguous selection of a threshold 
as required in conventional modularity algorithms. Each of 
the N parcels is then assigned a label indicating which mod-
ule the parcel belongs to. The network modules were then 
projected into binary 3D spatial maps to be used as spatial 
priors in the EEG source reconstruction, by identifying the 
voxels belonging to parcels (according to the AAL atlas used 
for parceling the brain) assigned to the same modules. The 
number of modules automatically identified by the Louvain 
algorithm was between 2 and 4 in all cases; in this way, 
the number of spatial priors built from this analysis var-
ied according to the number of contrasts (run) and modules 
identified, with a maximum of 1 [contrast] × 4 [modules] = 4 
for the localizer run, and 3 [contrasts] × 4 [modules] = 12 for 
the BM runs.

EEG Data Analysis

Pre‑processing

EEG data underwent gradient artifact correction on a vol-
ume-wise basis using a standard artifact template subtraction 
(AAS) approach (Allen et al. 2000) using the FMRIB tools 
implemented as a plug-in of the EEGLAB toolbox (Delorme 
and Makeig 2004). The pulse artifact was removed using the 
method presented in (Abreu et al. 2016), whereby the EEG 
data is first decomposed using independent component anal-
ysis (ICA), followed by AAS to remove the artifact occur-
rences from the independent components (ICs) associated 
with the artifact. The corrected EEG data is then obtained 
by reconstructing the signal using the artifact-corrected ICs 
together with the original non-artifact-related ICs.

After the removal of the MR-induced artifacts, EEG data 
was then submitted to some of the routines of the automatic 
pipeline (APP) for EEG pre-processing described in (da 
Cruz et al. 2018), namely: (1) re-referencing to a robust 
estimate of the mean of all channels; (2) removal and inter-
polation of bad channels; and (3) removal of bad epochs 
of 1 s (matching the TR of the fMRI data). An additional 
ICA step was then performed with the purpose of removing 
additional sources of EEG artifacts; these were identified 
using the ICLabel algorithm (Pion-Tonachini et al. 2019), 
implemented as a plug-in of the EEGLAB toolbox (Delorme 
and Makeig 2004). The classification provided by ICLabel 
is based on a previously trained model with a large EEG 
dataset collected outside the MR scanner, rendering this 
algorithm sub-optimal for our dataset. To cope with this, all 

ICs were visually inspected in order to validate, and even-
tually correct (for both false positives and negatives), the 
classification outputs of ICLabel. Finally, the EEG data was 
down-sampled to 500 Hz and band-pass filtered to 1–30 Hz.

Source Reconstruction

The pre-processed EEG data from all runs was then submit-
ted to several EEG source reconstruction procedures imple-
mented in SPM12 (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/). To 
reduce the computational load, the EEG data was further 
downsampled to a sampling rate of 60 Hz (two times the 
highest frequency component of the data) using a poly-
phase anti-aliasing FIR filter as implemented in EEGLAB 
(Delorme and Makeig 2004).

The Forward Problem  A realistic head model was built by 
first segmenting each participant’s structural image into 3 
tissue labels (brain, scalp and skull), and computing the 
deformation field needed to co-register the structural images 
into an MNI template. The individual meshes were then 
obtained by applying the inverse of this deformation field 
to the canonical meshes derived from the MNI template; 
meshes with 8196 vertices were considered. The electrode 
positions were co-registered to the scalp compartment by 
first considering their standard positions (in the 10/10 coor-
dinate system), and then manually adjusting them to match 
the distortions clearly observed on the structural images. 
A realistically shaped volume conduction model was esti-
mated using a boundary element model (BEM) with three 
layers (scalp, inner skull and outer skull). 8196 source 
dipoles were placed at the vertices of a cortical surface also 
derived from the MNI template and transformed into the 
structural image. The leadfield matrix was then estimated, 
mapping each possible dipole configuration onto a scalp 
potential distribution.

The Inverse Problem  The inverse problem was solved using 
a Parametric Empirical Bayesian (PEB) framework as 
implemented in SPM12, which can be formulated as (López 
et al. 2014):

where Y ∈ RC×T is the EEG data with C channels (64 in 
this case) and T time samples (depends on the run under 
analysis); L ∈ RC×D is the leadfield matrix (D is the number 
of dipoles, 8196 in this case); and S ∈ RD×T is the unknown 
source dynamics at each dipole. N(⋅) represents the multi-
variate Gaussian probability distribution, and T the temporal 
correlations (known and fixed). The terms �1 and �2 denote 
the noise at the channel and source spaces, with covariance 

(3)
Y = L ⋅ S + �1 ⋅ �1 ∼ N

(
0, T ,CC

)

S = 0 + �2 ⋅ �2 ∼ N
(
0, T ,CD

)

https://www.fil.ion.ucl.ac.uk/spm/
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matrices CC∈ RC×C and CD∈ RD×D , respectively. Channel 
noise is typically assumed to be uniform across channels, 
and therefore can be defined as CC = hCIC , with hC the chan-
nel noise variance and IC∈ RC×C the identity matrix. The 
source space covariance matrix CD assumes the form:

where Vp∈ RD×D represents different types of covariance 
components (CCs) reflecting prior knowledge on the sources 
to be reconstructed, and �p the unknown hyperparameter 
denoting its relative importance. These hyperparameters 
work as regularization parameters in ill-posed problems such 
as the EEG inverse problem, and were estimated using a 
restricted maximum likelihood (ReML) algorithm that uses 
as cost function the log-evidence of the model. Commonly 
used source inversion algorithms can then be derived from 
Eq. 3 by defining the CCs that appropriately reflect their 
assumptions. For instance, MN solutions assume that all 
dipoles have the same variance and no covariance; there-
fore, only one CC is defined as V1 = hDID , with hD the source 
noise variance and ID∈ RD×D the identity matrix.

In this work, we tested four source inversion algorithms: 
MN, LORETA, EBB and MSP; their derivations from Eq. 3 
and associated CCs are thoroughly presented in (López et al. 
2014). Additionally to those specific to a given algorithm, 
other CCs estimated from the fMRI-derived spatial priors 
(RSNs, activation maps and task-based dFC states) were 
considered (the procedures for their estimation are briefly 
described below). Specifically, all four inversion algorithms 
were tested using three different sets of CCs: the simplest set 
S1, with only CCs specific to the algorithm: (2) a larger set 
S2 comprising S1 and CCs from RSNs and activation maps 
(the latter for task runs only); and (3) the largest set S3 com-
prising S2 and CCs from the modules of the task-related dFC 
states (hence only tested on EEG collected from task runs). 
A total of 4 [inversion algorithms] × 3 [sets of CCs] = 12 
reconstructions of EEG sources S were then performed for 
each subject and run (only 8 for the resting-state runs).

Estimation of  Covariance Components from  fMRI‑Derived 
Spatial Priors  CCs were estimated from the fMRI-derived 
spatial priors by first transforming them into binary priors. 
These 3D binary spatial priors were then projected onto 
the 2D cortical surface using nearest-neighbor interpola-
tion (Henson et al. 2010), and smoothed using the Green’s 
function G of the cortical mesh adjacency matrix M∈ RD×D , 
G = �M (Harrison et al. 2007). The entries of M, mij, are 
1 if vertices i and j of the cortical surface are neighbors 
(within a defined radius) and 0 otherwise; here, a radius of 8 
vertices and a smoothing parameter of � = 0.6 were selected 
according to (Friston et al. 2008). The CCs of the smoothed 

(4)CD =

P∑

p=1

�pVp

(and projected) spatial priors are then obtained by comput-
ing their covariance matrices, i.e., their outer product. These 
procedures are illustrated in Fig. 2.

Source Reconstruction Quality

EEG Source Components

Following the rationale of previous studies (Liu et al. 2017, 
2018; Abreu et al. 2020b), a spatial ICA step similar to that 
applied to the fMRI data for identifying RSNs was then 
performed on the reconstructed source dynamics S, with 
the purpose of separating those potentially associated with 
RSNs and/or other regions of interest in our tasks. This can 
be formulated as:

where U ∈ RT×I is the mixing matrix, with each column 
ui ∈ RT×1 the time-course of the source component (SC) 
i; and SIC ∈ RI×D represents the spatial maps in the source 
space associated to each of the I SCs. Because the EEG data 
is submitted to a temporal reduction step prior to solving 
the inverse problem in order to reduce noise while guar-
anteeing a temporally continuous estimation of sources 
(López et al. 2014), the rank of S is reduced accordingly, 
being then defined an upper bound on the number of SCs to 
be estimated. Such maximum allowed number of SCs was 
then estimated, which was between 50 and 60 in all cases. 
Finally, the SCs were converted into z-scores, and the defor-
mation field estimated while solving the forward problem 
was applied to transform them from the source space into 
the MNI space.

Quality Metrics

Model-based quality metrics were first considered, namely 
the variance explained (VE) of the reconstructed EEG data 
Ỹ = L ∙ S relative to the actual EEG data Y (see Eq. 3), and 
the expectation of the posterior probability P(model | data) 
of the inversion models. The latter is obtained from the asso-
ciated log-evidence values of all models, for all subjects, as 
described in (Rigoux et al. 2014), and reflects the probabil-
ity of obtaining a given model when randomly selecting a 
subject. These probability values were normalized to sum to 
one, over the models under analysis. Other quality metrics 
reflecting more directly the presence of neuronal activity of 
interest in the SCs were also considered, as described next.

First, because the perception of motion in general, and 
of biological motion in particular, is known to elicit certain 
brain regions (Chang et al. 2018), the following four spheri-
cal regions of interest (ROIs) of 10 mm centered at specific 

(5)S⊤ = U ⋅ SIC
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Fig. 2   Deriving covariance components (CCs) from fMRI spatial 
priors. The 3D fMRI spatial priors are first binarized, projected onto 
the 2D cortical surface using nearest-neighbor interpolation and 
smoothed using the Green’s function. The associated CCs are then 

obtained by computing the outter product. For visualization purposes, 
the temporally reduced CCs are illustrated, by applying the same tem-
poral projector considered when reducing the EEG data prior to its 
reconstruction



292	 Brain Topography (2022) 35:282–301

1 3

MNI coordinates (indicated in square brackets) were consid-
ered: anterior insula (aINS) at [± 36, 24, 2], extrastriate body 
area (EBA) at [left –46, –75, –4; right 47, –71, –4], fusiform 
body area (FBA) at [left –38, –38, –27; right 43, –43, –28], 
and fusiform gyrus (FFG) at [± 42, –56, –14]. Four addi-
tional task-related brain regions (Chang et al. 2018) were 
obtained from FSL atlases (threshold applied to the prob-
ability maps is indicated in square brackets), namely: infe-
rior frontal gyrus (IFG) [0.25], posterior superior temporal 
sulcus (pSTS) [0.25], visual area V3 [0.25] and visual area 
hMT + /V5 [0.10]. After binarizing the ROIs and the SC 
maps, the Dice coefficient d, and the proportion of the ROIs 
contained in the SC maps pRS, were then quantified accord-
ing to (Dice 1945):

where NROI and NSC denote the number of non-zero voxels in 
the ROIs and SC maps, respectively, and Nov the number of 
overlapping non-zero voxels between the two images; both 
measures range from 0 (no overlap) to 1. These same two 
measures, d and pRS, were also computed between the SC 
maps and 10 RSN templates described in (Smith et al. 2009), 
in order to assess which, if any, SCs represented RSNs (simi-
lar to the identification of RSNs on fMRI data described 
previously).

All these measures were computed for each subject, run, 
inversion algorithm, set of covariance components (CCs), 
SC maps and maps of interest (8 ROIs and 10 RSN tem-
plates). Because only a subset of the SC maps is expected 
to be associated with those maps of interest, the SC map 
yielding the highest dice coefficient for each map was iden-
tified, and the associated d∗ and p∗

RS
 maximum values kept 

(6)d =
2 × Nov

NROI + NSC

andpRS =
Nov

NROI

for subsequent analyses. The d∗ and p∗
RS

 values were further 
summarized by computing their average within each map 
type (ROIs and RSN templates), thus yielding the final set of 
13 [subjects] × 4 [runs] × 4 [inversions] × 3 [sets of CCs] × 2 
[map types] = 1440 values of d∗ and p∗

RS
.

Statistical Analysis

The main effects of the population group (MS patients and 
healthy subjects), inversion algorithm, the set of CCs and the 
type of map of interest, as well as interaction effects, were 
evaluated by means of a 4-way repeated measures Analy-
sis of Variance (ANOVA) for the VE, d∗ and p∗

RS
 measures 

treated separately as the dependent variables. Multiple com-
parisons between the inversion algorithms, sets of CCs and 
interactions between the two were performed by means of a 
post-hoc statistical test with the Tukey–Kramer correction. 
A level of statistical significance p < 0.05 was considered.

Results

In this work, the quality of EEG source reconstruction pro-
vided by the different combinations of (four) inversion algo-
rithms and (three) sets of CCs, was first evaluated in terms of 
the posterior P(model|data) and VE of the associated mod-
els, which are commonly considered in PEB frameworks. 
Because no significant differences were observed between 
population groups (healthy subjects and MS patients) the 
VE values shown in Table 1 were averaged across partici-
pants; the values associated with the three visual percep-
tion task runs (hMT + /V5 functional localizer and two 
BM runs) were also averaged. The combination MSP + S1 
(with S1 containing only CCs specifically associated with 

Table 1   Posterior 
P(model|data) and average VE 
values across participants, and 
across three visual perception 
task runs, for all combinations 
of inversion algorithms and sets 
of covariance components

Values in bold represent the best across inversion algorithms for each CC set, and values in bold italics rep-
resent the overall best (across inversion algorithms and CC sets)

Sets of CCs Inversion algorithms Task runs (Localizer + BMs) Resting-state runs

P [%] VE [%] (± std) P [%] VE [%] (± std)

S1 MN 4.0 79.7 ± 14.6 4.8 84.1 ± 11.2
LORETA 4.0 79.5 ± 14.5 4.8 83.9 ± 11.3
EBB 4.0 79.4 ± 14.6 4.8 83.2 ± 11.8
MSP 56.0 84.5 ± 10.5 66.4 87.6 ± 8.3

S2 MN 4.0 81.8 ± 13.7 4.8 85.6 ± 10.6
LORETA 4.0 81.9 ± 13.7 4.8 85.5 ± 10.6
EBB 4.0 79.4 ± 14.7 4.8 83.2 ± 11.8
MSP 4.0 63.9 ± 20.4 4.8 74.9 ± 19.5

S3 MN 4.0 80.7 ± 13.7 NA NA
LORETA 4.0 80.7 ± 13.7 NA NA
EBB 4.0 78.2 ± 14.8 NA NA
MSP 4.0 60.3 ± 15.5 NA NA
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the inversion algorithm) yielded the highest P(model|data) 
and the highest VE, only followed by LORETA + S2 and 
LORETA + S3. The ANOVA of the VE values revealed sig-
nificant main effects of the inversion algorithms and sets of 
CCs, as well as a significant interaction. The post-hoc test 
showed no statistically significant differences between inver-
sion algorithms, and the set S1 was significantly better than 

the sets S2 and S3; as expected, the combination MSP + S1 
performed significantly better than other five combinations 
using the MN or EBB as inversion algorithms and sets S2 
or S3.

In order to directly reflect the presence of neuronal activ-
ity of interest in the EEG source components (SCs), the 
reconstruction quality was then quantified in terms of the 
overlap of SCs with the 8 ROIs and the 10 RSN templates 
from (Smith et al. 2009). This is illustrated in Fig. 3, show-
ing a considerable overlap (in terms of d∗ and p∗

RS
 ) of two 

SCs with the EBA mask and the visual RSN1 template, for 
the first BM run of a given healthy subject. Consistently 
with the P(model|data) and VE values, the d∗ and p∗

RS
 values 

were not statistically significantly different between popula-
tion groups, and thus were averaged across participants and 
across task runs; these are depicted in Table 2. When consid-
ering only the CCs specific to the inversion algorithms (set 
S1), EBB yields the best results in all cases, and is the overall 
best (across sets of CCs) in terms of p∗

RS
 for the resting-state 

run. However, by combining S1 with RSNs and activation 
maps (set S2), MN achieves the highest d∗ and p∗

RS
 values for 

both types of runs, and the overall highest values (across sets 
of CCs) in terms of d∗ for the resting-state run. For the task 
runs, the largest set of CCs including the dFC state mod-
ules (set S3) exhibits the overall best source reconstruction. 
Similarly to the statistical analysis of VE, the ANOVA of 
the d∗ and p∗

RS
 values revealed significant main effects of the 

inversion algorithms and sets of CCs, as well as a significant 
interaction. For the d∗ values, the post-hoc statistical tests 
showed that MN and EBB inversion algorithms performed 
significantly better than LORETA and MSP, and that using 
the sets S2 or S3 was significantly better than only consider-
ing the set S1. The latter observation was also true for the 
p∗
RS

 values, although in this case it was the MN and MSP 

Fig. 3   Illustration of the overlap between two EEG SCs (in red-yel-
low) and A the EBA mask (in blue) and B a visual RSN (in blue-light 
blue) from (Smith et al. 2009). The dice coefficient d and the propor-
tion of the ROIs contained in the respective SCs are also depicted

Table 2   Average d∗ and p∗
RS

 
values across participants, and 
across three visual perception 
task runs, for all combinations 
of inversion algorithms and sets 
of covariance components

Values in bold represent the best across inversion algorithms for each CC set, and values in bold italics rep-
resent the overall best (across inversion algorithms and CC sets)

Sets of CCs Inversion algorithms Task runs (Localizer + BMs) Resting-state runs

d* (± std) p∗
RS

(± std) d* (± std) p∗
RS

(± std)

S1 MN 0.15 ± 0.05 0.22 ± 0.10 0.15 ± 0.05 0.22 ± 0.10
LORETA 0.12 ± 0.05 0.14 ± 0.07 0.12 ± 0.04 0.15 ± 0.06
EBB 0.15 ± 0.05 0.24 ± 0.11 0.16 ± 0.06 0.25 ± 0.11
MSP 0.14 ± 0.05 0.18 ± 0.09 0.12 ± 0.04 0.16 ± 0.09

S2 MN 0.15 ± 0.05 0.24 ± 0.12 0.16 ± 0.05 0.24 ± 0.11
LORETA 0.15 ± 0.05 0.23 ± 0.12 0.15 ± 0.04 0.22 ± 0.12
EBB 0.15 ± 0.05 0.21 ± 0.10 0.15 ± 0.05 0.23 ± 0.11
MSP 0.14 ± 0.05 0.23 ± 0.11 0.14 ± 0.05 0.22 ± 0.09

S3 MN 0.15 ± 0.05 0.24 ± 0.12 NA NA
LORETA 0.16 ± 0.05 0.24 ± 0.12 NA NA
EBB 0.15 ± 0.05 0.23 ± 0.11 NA NA
MSP 0.12 ± 0.07 0.35 ± 0.10 NA NA
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inversion algorithms that yielded significantly better results 
than LORETA and EBB. The combinations EBB + S2 and 
MSP + S3 exhibited significantly higher d∗ and p∗

RS
 values, 

respectively, than a subset of combinations including the 
MN and LORETA algorithms, and the set S1. 

Discussion

In this work, we aimed at optimizing the reconstruction of 
EEG sources by considering spatial priors derived from 
concurrently acquired fMRI data when solving the inverse 
problem, coupled with a systematic comparison of differ-
ent inversion algorithms and sets of covariance compo-
nents (CCs) reflecting those spatial priors, on a parametric 
empirical Bayesian (PEB) framework. The quality of the 
source reconstructions was quantified in terms of PEB-
based metrics (the expectation of the posterior probability, 
P(model|data); and the variance explained of the respective 
inversion models, VE), and physiologically-based metrics 
(the overlap of EEG source components with ROIs and RSN 
templates representative of brain activity of interest), the 
latter directly reflecting the presence of neuronal activity.

EEG Source Reconstruction Quality

Under a PEB framework, four inversion algorithms were 
tested here (MN, LORETA, EBB and MSP) for reconstruct-
ing sources from real EEG data collected from participants 
performing visual perception tasks and during rest and con-
sidering three different sets of CCs. We found that depend-
ing on the type of quality metric (PEB- or physiologically-
based), different conclusions could be taken, in line with 
the notion that these metrics carry qualitatively distinct 
information. In terms of the PEB-based metrics (P(model | 
data) and VE), using the set consisting only of CCs specific 
to the inversion algorithms (S1) always yielded significantly 
better results than the CC sets including fMRI spatial priors 
(S2 and S3, comprising activation maps and RSNs, with or 
without dFC state modules, respectively). In contrast, by 
considering S2 and S3, the overlap of EEG source compo-
nents (SCs) with the ROIs and RSN templates (measured by 
the dice coefficient d, and the proportion of the ROIs/RSNs 
contained in the SC maps, pRS) significantly surpassed that 
of S1. On the one hand, these contrasting results evidence 
the underlying optimization procedure used here, combin-
ing the PEB framework with the restricted maximum like-
lihood (ReML) algorithm for estimating the hyperparam-
eters associated with each CC (Phillips et al. 2005; Henson 
et al. 2010). In fact, adding fMRI spatial priors drastically 
increases model complexity, which is penalized by ReML, 
and thus may explain the best PEB-based metrics when con-
sidering the more parsimonious inversion models (López 

et al. 2014). On the other hand, assessing the source recon-
struction quality with metrics reflecting more directly the 
presence of neuronal activity of interest revealed that the 
information contained on the fMRI spatial priors is pivotal, 
suggesting that increasing model complexity in this way is 
needed for EEG SCs to contain such activity of interest, 
which is of the utmost interest for any subsequent analyses. 
Accordingly, the usefulness of fMRI spatial priors on EEG 
source reconstruction has already been shown in previous 
studies, with the addition of task-based activation maps 
(Henson et al. 2010; Lei et al. 2010, 2011, 2012) or RSNs 
(Lei 2012) similar to those considered here improving the 
reconstructions. These however have only been compared in 
terms of conventional quality metrics, without taking explic-
itly into account the neuronal activity of interest. These 
observations highlight the relevance of using multiple qual-
ity metrics expressing different aspects of the reconstructed 
sources for more appropriately characterizing them, and 
consequently better informing and improving the selection 
of the reconstruction approach.

Regarding the optimal inversion algorithm, we found that 
no statistical differences were observed when comparing the 
P(model|data) and VE values, whereas MN and EBB yielded 
significantly higher d values than LORETA and MSP; MN 
and MSP achieved significantly higher pRS values than EBB 
and LORETA. In contrast with the remaining inversion 
algorithms, LORETA is known for its low-resolution solu-
tions (Michel and Murray 2012; Michel and Brunet 2019), 
which may render it inappropriate for localizing sources 
specifically associated with the limited number of rather 
small brain regions known to be involved in the tasks used 
in this study, and thus explaining its poorest performance 
(Halder et al. 2019). Concordant observations have been 
reported on previous comparison studies on simulated data 
(Yao and Dewald 2005; Grova et al. 2006; Bradley et al. 
2016; Halder et al. 2019), although no differences in per-
formance were shown between MN and LORETA on real 
magnetoencephalography (MEG) or high-density EEG data 
(Hedrich et al. 2017). Similarly to MN, MSP has also been 
shown to provide solutions with high resolution (measured 
by the focal activation, for instance; Friston et al., 2008), 
despite potentially failing to fully recover the spatial extent 
of the sources (Grova et al. 2006). The same was observed 
for inversion algorithms of the family of beamformers as the 
EBB used here, namely the dynamic imaging of coherent 
sources (DICS) and linearly constrained minimum variance 
(LCMV), exhibiting higher focal activation and lower spatial 
extent than those of LORETA (Halder et al. 2019). Interest-
ingly, our post-hoc interaction analyses showed that by com-
bining EBB with S2 or MSP with S3, the best performance 
in terms of d and pRS, respectively, is achieved, suggesting 
that by coupling inversion algorithms designed for providing 
focal solutions with information derived from fMRI data, an 
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improved balance between specificity and sensitivity can be 
found. Furthermore, this type of comparison studies usually 
doesn’t reveal the “ground truth”, thus using simulated data 
can be useful to establish the appropriateness and optimality 
of the different methods. However, here we consider having 
a proxy for the ground truth accounting for the behavior 
of real data. fMRI priors would help improve EEG source 
imaging results if and where the fMRI activation and EEG 
sources are consistent. These are the anatomical ROIs where 
task-specific activations are expected but do not depend on 
the data being used for the reconstruction. Localizing in the 
brain the sources responsible for generating scalp EEG sig-
nals has been critical for determining the underpinnings of 
brain function in general, and those associated with multi-
ple neurological disorders. Here, we compared for the first 
time EEG source reconstruction methods within a group of 
healthy subjects and MS patients.

Reconstructing Sources from EEG Data Collected 
Simultaneously with fMRI

The accurate reconstruction of EEG sources is not only 
related with the appropriateness of the inversion models 
used, but also with the overall quality of the EEG signal 
(Liu et al. 2018). EEG data simultaneously acquired with 
fMRI is known to suffer from severe artifact contamina-
tion (Abreu et al. 2018), but state-of-the-art pre-processing 
pipelines as the one used here can now bring data quality 
to sufficiently high levels. Despite the potentially inevita-
ble loss in data quality relative to EEG collected outside 
the MR scanner, the feasibility of reconstructing sources of 
EEG data acquired simultaneously with fMRI has already 
been demonstrated (Groening et al. 2009; Vulliemoz et al. 
2009, 2010a, b; Siniatchkin et al. 2010), particularly using 
EEG caps with a conventional spatial coverage (32 or 64 
channels) as the one used in this study. Moreover, a direct 
relationship between EEG sources and fMRI networks has 
already been established first for data collected separately 
(Liu et al. 2017), and then validated on data collected simul-
taneously (Abreu et al. 2020b), supporting the feasibility of 
these procedures on this more challenging scenario. More 
importantly, analyzing EEG and fMRI data collected simul-
taneously is especially critical when studying spontaneous 
brain activity as the one associated with RSNs, for instance 
(Abreu et al. 2018).

Another important aspect is that fMRI and EEG record 
very different neuronal activity, so it is reasonable to think 
that fMRI-derived spatial priors will likely have an impact 
on source modelled neuronal activity (Goense et al. 2012). 
Also, fMRI is thought to reflect well high-frequency gamma 
activity but to be anticorrelated with alpha oscillations so 
one may think that using fMRI as prior will thus lead to a 
biased view where high-frequency activity is emphasized, 

and low-frequency activity dampened (Goense et al. 2012; 
Magri et al. 2012). Nevertheless, mapping high-frequency 
EEG oscillations with fMRI is not recommended due to 
contamination from residual artifacts, and in a worst-case 
scenario gamma activity could simply be muscle activity 
(Muthukumaraswamy 2013). Here, we addressed this issue 
by filtering out frequencies higher than 30 Hz from the EEG 
spectrum.

This further motivates the procedures performed here and 
suggest that deriving spatial priors from fMRI data sepa-
rately acquired from EEG data may be suboptimal, which in 
turn could scale down their potential for guiding the recon-
struction of EEG. Future studies would need to be conducted 
to confirm this observation.

Spatial Priors and Their Relationship with EEG 
(Sources)

In agreement with previous literature, in this work we found 
that including fMRI task activation maps and RSNs as addi-
tional CCs in the inversion models yielded significantly bet-
ter EEG source reconstructions. This observation may be 
easily explained by the already known relationship between 
EEG and fMRI task activation and resting-state networks. In 
fact, source-reconstructed EEG data has already been used 
for mapping task-related fluctuations (Custo et al. 2014; 
Gonçalves et al. 2014), as well as for identifying RSNs (Liu 
et al. 2017, 2018; Abreu et al. 2020b), with recent stud-
ies showing a substantial overlap between these EEG maps 
and those typically obtained from fMRI data (Abreu et al. 
2020b). Additionally, a relationship between fMRI RSNs 
and EEG has also been demonstrated in the sensor space, 
considering particularly the EEG rhythms extracted from the 
frequency domain (Goldman et al. 2002; Moosmann et al. 
2003; Laufs et al. 2006; Scheeringa et al. 2008), which fur-
ther supports the hypothesis that EEG carries in fact infor-
mation that is also mapped with fMRI.

We then extended the exploration of fMRI spatial priors 
by also considering, for the first time, priors reflecting the 
fluctuations in the functional connectivity of task-related 
networks (dynamic functional connectivity, dFC). This was 
accomplished by estimating dFC fluctuations using phase 
coherence, followed by a dictionary learning step for find-
ing the most recurrent dFC states, and a modularity analysis 
for identifying the network modules of the task-related dFC 
states. The rationale underlying our motivation for testing 
these spatial priors was based on recent literature show-
ing that dFC fluctuations (Tagliazucchi et al. 2012; Chang 
et al. 2013; Preti et al. 2014; Korhonen et al. 2014; Taglia-
zucchi and Laufs 2015; Grooms et al. 2017; Omidvarnia 
et al. 2017), and dFC states in particular (Allen et al. 2018; 
Abreu et al. 2020a), have distinct EEG correlates, which 
could also be reflected on source reconstructed EEG data. 
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Our results evidence this because by adding the task-related 
dFC state modules as spatial priors, the quality of the source 
reconstruction further increased for the task runs, in terms 
of the overlap with the ROIs and RSN templates. Notewor-
thy, other than task-related dFC states were not considered 
here, because otherwise all dFC states would have to be 
included given the lack of criteria for selecting a subset of 
them, which would be necessary to control for the poten-
tially increasing complexity of the models.

Importantly, spatial priors of different natures have 
already been suggested (Lei et al. 2015). Knowing the struc-
tural connectome by analyzing diffusion MRI (dMRI) data 
may inform functional connectivity measures in the EEG 
source space in terms of the strength of the underlying struc-
tural connections, by weighting those measures accordingly 
(Knösche et al. 2013). Moreover, the fiber tracking between 
regions of interest allows to estimate the time lag between 
their functional connections, which is of particular interest 
when considering distantly located regions (Chu et al. 2015). 
Effective functional connectivity estimates obtained through 
Granger causality in the EEG source space can also be 
informed by connectivity priors also derived from Granger 
causality analyses of the fMRI data, despite its much lower 
temporal resolution compared to that of EEG (Roebroeck 
et al. 2005). Dynamic causal modeling (DCM) also esti-
mates effective functional connectivity by incorporating 
information at the meso-scale (described by neural mod-
els whose parameters are typically defined based on animal 
studies) and the macro-scale (Friston et al. 2019). The latter 
has parameters reflecting forward, backward and lateral con-
nections between sources, which can be defined from dMRI 
and/or structural MRI data. Similarly to Granger causality, 
DCM can also be applied to fMRI data, and the results used 
as connectivity priors for EEG source reconstruction (Lei 
et al. 2015). Naturally, these connectivity priors may be 
more crucial for studying EEG functional connectivity in 
the source space, which was not the case in the present study.

An alternative to the PEB framework for incorporat-
ing priors is the use of penalty functions (Lei et al. 2015). 
This constraint the inverse solutions using different types 
of norms and weight matrices that indirectly reflect a given 
prior, from which the MN and LORETA algorithms used 
here can be defined. Penalty functions have the advantage 
of easily balancing between sparse and smooth solutions by 
simply adjusting the norm accordingly, or combining mul-
tiple terms with different norms for intermediate solutions 
(Valdés-Sosa et al. 2009). However, the ability of explic-
itly incorporating spatial priors as covariance components 
in the inversion models designed under a PEB framework 
render it more interpretable, and therefore potentially more 
suitable for testing different types of fMRI spatial priors as 
it was performed here (López et al. 2014). Also, connec-
tivity analysis in source space, which is a very promising 

approach in the context of MS, benefits from leveraging the 
advantages of both modalities. By leveraging simultaneous 
EEG-fMRI recordings, the incorporation of fMRI priors 
reveals its value by allowing to spatially and accurately 
locate brain activity captured by EEG, and to extract con-
nectivity measures with a high temporal resolution. Notably, 
as MS is a disconnection disease in which the dynamics 
of the brain are altered, the information provided by the 
dFC state priors makes the reconstruction more reliable, 
by reflecting true neural mechanisms. On the other hand, 
the method might be useful from the point of view of the 
identification of unexpected sources, if these emerge from 
smaller signal generators that maybe associated with rela-
tively weaker BOLD signal. Furthermore, it is also possible 
that unexpected sources arise from the solution of highly 
temporally resolved sources. This might be the case, e.g., 
if two spatially close neuronal populations would activate 
differentially in time in response to different task conditions, 
within the time scale of the EEG but not fMRI. However, if 
priors are not used, unexpected sources might be associated 
with a less reliable reconstruction, since EEG alone has poor 
spatial resolution to map brain task-activated regions. This 
yields a review of the applied methodology and a validation 
of the sources, particularly in cases in which the sources are 
unexpected regarding the task at hand. Therefore, this study 
also systematically compares different inversion algorithms 
without fMRI-priors while relying on the anatomical ROIs 
(where task-specific activations are expected) as a proxy for 
the ground truth. Thus, the investigation of the most appro-
priate or accurate inversion algorithm, even in the absence 
of fMRI priors in other studies, might be beneficial for the 
EEG/MEG connectivity community.

EEG Source Imaging in MS

The rationale for including patients with Multiple sclerosis 
(MS) in this study is that MS is a disconnection disease that 
is due to structural damage but also functional connectiv-
ity alterations. By leveraging the high temporal resolution 
from EEG and spatial resolution from fMRI, we can derive 
robust temporally- and spatially-resolved connectivity meas-
ures that might inform us better about the functional altera-
tions. However, the reliability of the connectivity metrics 
depends on the reliability of the source reconstruction, in 
which fMRI-derived information can help improve source 
imaging solutions. Particularly, performing a task that elicits 
a specific known set of connected brain regions can high-
light specific connectivity changes and thus help to better 
understand the pathophysiology of the disease. Moreover, 
more reliable, and informative connectivity measures, espe-
cially in longitudinal studies, might be the key to develop 
a tool for reliable disease progression assessment, which 
might improve the management of this condition and have 
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a great impact in clinical needs. To reach this goal it is cru-
cial to first test the kind of methodologies here presented, 
namely, to investigate the effect of the disease on the choice 
of method and set of priors.

The ANOVA test results revealed that the main effect of 
the group was not significant, which motivated us to proceed 
with the analyses with one group including all participants. 
Our rationale is that the quality of the sources’ reconstruc-
tion was irrespective of the presence of disease. We acknowl-
edge the limited sample size; thus, these results should be 
seen as suggestive regarding the recommendations to future 
studies. As to our knowledge, there are no EEG-fMRI stud-
ies with focus on MS to identify connectivity biomarkers, so 
this work is a first and crucial step towards this goal. As MS 
can cause alterations to brain activity, which could influence 
the results, validation of these results is needed in future 
studies, namely in other healthy/patient cohorts alone with 
more data and considering other task designs. Nevertheless, 
this study represents a first step towards a more standard 
procedure for fMRI-informed EEG analyses in this context.

Conclusions

In this study, we systematically compared the quality of the 
source reconstruction of EEG data performed using differ-
ent combinations of four inversion algorithms and three sets 
of covariance components incorporating different types of 
spatial priors derived from concurrently acquired fMRI data. 
We found that according to the quality metrics reflecting the 
presence of neuronal activity, combining the EBB or MSP 
algorithms with CC sets including fMRI task activation 
maps and RSNs yields the overall best source reconstruc-
tion, and that by further including dFC state modules as 
spatial priors, the quality of EEG sources from the task runs 
is optimal. We show that incorporating fMRI spatial priors 
in general, and for the first time dFC state modules in par-
ticular, plays a positive role in improving the reconstruction 
of EEG sources (and consequently any subsequent analyses). 
By providing a clear recommendation on the best approach 
for tackling the challenging inverse problem supported by 
our comprehensive analyses, we believe that future studies, 
particularly using real EEG data, may then be more infor-
matively guided on this intricate research field.
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