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Abstract 

Background:  Hepatocellular carcinoma (HCC) is the most common primary liver cancer in the world. Although great 
advances in HCC diagnosis and treatment have been achieved, due to the complicated mechanisms in tumor devel-
opment and progression, the prognosis of HCC is still dismal. Recent studies have revealed that the Warburg effect is 
related to the development, progression and treatment of various cancers; however, there have been a few explora-
tions of the relationship between glycolysis and HCC prognosis.

Methods:  mRNA expression profiling was downloaded from public databases. Gene set enrichment analysis (GSEA) 
was used to explore glycolysis-related genes (GRGs), and the LASSO method and Cox regression analysis were used 
to identify GRGs related to HCC prognosis and to construct predictive models associated with overall survival (OS) 
and disease-free survival (DFS). The relationship between the predictive model and the tumor mutation burden (TMB) 
and tumor immune microenvironment (TIME) was explored. Finally, real-time PCR was used to validate the expression 
levels of the GRGs in clinical samples and different cell lines.

Results:  Five GRGs (ABCB6, ANKZF1, B3GAT3, KIF20A and STC2) were identified and used to construct gene signa-
tures to predict HCC OS and DFS. Using the median value, HCC patients were divided into low- and high-risk groups. 
Patients in the high-risk group had worse OS/DFS than those in the low-risk group, were related to higher TMB and 
were associated with a higher rate of CD4+ memory T cells resting and CD4+ memory T cells activated. Finally, real-
time PCR suggested that the five GRGs were all dysregulated in HCC samples compared to adjacent normal samples.

Conclusions:  We identified five GRGs associated with HCC prognosis and constructed two GRGs-related gene 
signatures to predict HCC OS and DFS. The findings in this study may contribute to the prediction of prognosis and 
promote HCC treatment.
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Background
Hepatocellular carcinoma (HCC), as the most common 
primary liver cancer, causes nearly 78,000 deaths each 
year and is the fourth leading cause of cancer-related 
deaths in the world [1]. Although great advances have 
been achieved in HCC treatment, including progress 
in surgery, radiotherapy, chemotherapy and immuno-
therapy [2], the prognosis of HCC is still dismal, and it 
is estimated that the 5-year overall survival (OS) of HCC 
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remains less than 20% [3]. The rapid development of 
molecular targeted therapy has provided a new choice 
for HCC treatment. Molecular biomarkers could con-
tribute to patient survival improvement and optimize 
therapeutic strategies, and they could also be used in 
the diagnosis, prediction of prognosis and prediction of 
response to systemic therapies [4]. However, since HCC 
is a neoplasm with complicated mechanisms in develop-
ment, progression and recurrence, the biomarkers exist-
ing are far from sufficient, and there is still a requirement 
to explore more molecular biomarkers for the diagnosis 
and treatment of HCC.

Recently, advancements in the next-generation 
sequencing technology have led to a great increase in 
the identification of molecular biomarkers [5, 6]. New 
biomarkers related to tumor development, progression 
and prognosis could be identified using bioinformatic 
methods, which might contribute to revealing the com-
plex biological processes related to cancers and could be 
potential therapeutic targets. For instance, using online 
databases, Chen et  al. [7]. identified three immune-
related genes that have a potential role in immune check-
point inhibitor therapy for head and neck squamous cell 
carcinoma. In addition, using The Cancer Genome Atlas 
(TCGA) database, methylation profiling suggested that 
several biomarkers including DET (amplification), WNT 
signalling (CTNNB1 mutation) and IDH1 (mutation) 
were potential therapeutic targets for HCC [8].

Glycolysis is a series of metabolic processes that uni-
versally exist in living cells and is essential for the metab-
olism of cells [9]. Recent studies revealed that “metabolic 
reprogramming” might be a hallmark of cancer [10], and 
glycolysis, as a crucial process in cell metabolism, could 
hardly absolve itself from the blame. Tumor cells exhibit 
a characteristic of increasing glycolysis and obtaining 
their energy needs using this metabolic pathway, which 
is also known as the Warburg effect [11]. The Warburg 
effect could contribute cancer cells to a progression 
advantage [12] and was reported to be related to the 
development, progression and treatment of various can-
cers [13]. In HCC, recent studies reported that biomark-
ers involved in the Warburg effect could be therapeutic 
targets [14]. Using bioinformatic methods, several glyc-
olysis-related genes (GRGs) were identified to be related 
to the diagnosis and prognosis of HCC [15, 16]. However, 
the biochemical and molecular mechanisms of the War-
burg effect are complicated, and more GRGs need to be 
explored.

Tumor mutational burden (TMB), defined as the num-
ber of mutations per megabase in tumor cells, is a predic-
tive biomarker of immunotherapy response [17]. It was 
reported that tumors with higher TMB tend to have more 
immunogenic neoantigens, making them recognized by 

immune cells [18]. In some tumor types, TMB is helpful 
to select patients who could benefit from immunotherapy 
[17]. A recent study revealed that there was a positive 
correlation between glycolysis and TMB in some types of 
cancers [19]. In addition, the tumor immune microenvi-
ronment (TIME) refers to a complex microenvironment 
that mainly contains immune cells and immune-related 
molecules [20]. The TIME plays crucial roles in immuno-
therapeutic responsiveness in various cancers [21]. It was 
reported that there was a correlation between glycolysis 
and TIME. On the one hand, glycolysis could increase 
tumor immunity in some types of cancers. For example, 
glycolysis could increase PD-L1 expression on tumor 
cells [22]. Furthermore, similar to cancer cells, immune 
cells can induce glycolysis after they are active.

In this study, using data obtained from TCGA, Gene 
Expression Omnibus (GEO) and International Cancer 
Genome Consortium Japan (ICGC) databases, we iden-
tified five GRGs related to HCC prognosis. Afterwards, 
two predictive models were constructed to predict OS 
and disease-free survival (DFS) for HCC. Finally, the 
relationship between glycolysis and tumor mutation 
burden (TMB) and the tumor immune microenviron-
ment (TIME) were explored. These results may provide 
new insight for the prediction of HCC prognosis and 
treatment.

Methods
Dataset collection
First, the transcriptome profiling data (FPKM values) of 
HCC, which included 374 HCC tissues and 50 nontu-
mor tissues, were downloaded from the TCGA database 
(https://​www.​cancer.​gov/). The related clinical informa-
tion was obtained from the online database “cBioPortal” 
(http://​www.​cbiop​ortal.​org/). Second, using the keyword 
“hepatocellular carcinoma”, we searched for datasets 
from the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
gds/), and the organism’s parameter was selected “Homo 
sapiens”. The selection criteria were as follows: 1) datasets 
with more than 200 HCC samples; 2) datasets with avail-
able mRNA expression information; and 3) datasets with 
comparisons between HCC samples and nontumor liver 
samples. Three GEO profiles, GSE25097, GSE36376 and 
GSE14520, were selected; among them, the GSE14520 
dataset contained prognostic information and was used 
for survival analysis. Third, the mRNA expression data-
set with a clinical file (LIRI-JP) was downloaded from 
the ICGC (International Cancer Genome Consortium) 
database (https://​icgc.​org/), which contained 442 tumor 
samples and 224 normal samples. Afterwards, a mRNA 
pool was constructed through overlapping genes among 
the TCGA, ICGC and GEO datasets. Furthermore, the 
TCGA dataset was used as the training dataset, and the 
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others were used as the validation dataset. This project 
was approved by the Ethics Committee of Shandong 
Provincial Hospital Affiliated to Shandong First Medi-
cal University and was performed in accordance with the 
Declaration of Helsinki. Each participant provided writ-
ten informed consent.

Gene set enrichment analysis (GSEA) and identification 
of GRGs
After the primary screening of patients in the TCGA 
dataset, thirty-three patients were excluded, includ-
ing three without related clinical information, three 
with fibrolamellar carcinoma, eight with combined 
hepatocellular-cholangiocarcinoma, and seventeen who 
received R1 and R2 resection, and a total of 343 HCC 
patients were included in the GSEA analysis. GSEA 4.1.0 
[23, 24] was used to identify glycolysis-related gene sets 
that significantly differed between tumor and nontumor 
samples. Six glycolysis-related gene sets (Table S1) were 
downloaded from the Molecular Signatures Database 
(https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp). 
For GSEA analysis, the parameter for gene sets permuta-
tions was set 1000 times, and a false discovery rate (FDR) 
< 0.05 was considered significant. Three glycolysis-related 
gene sets were found to significantly differ between HCC 
and nontumor samples, and 255 GRGs were identified 
from the three gene sets and were included in the follow-
ing analysis. Finally, we made an overlap between the 255 
GRGs and the mRNA pool constructed above, and a total 
of 203 GRGs were identified in all five datasets.

To avoid the batch effects, using the “sva” R package, 
the expression levels of GRGs in TCGA and ICGC data-
sets were standardized. Afterwards, using the “limma” 
R package, we identified GRGs differentially expressed 
between tumor and nontumor samples in the TCGA 
dataset, with an adjusted p value < 0.01 and an absolute 
log2-fold change > 1 used as selection criteria. Finally, 
83 GRGs were identified as dysregulated between tumor 
and nontumor samples and were included in the survival 
analysis.

Construction and validation of GRGs‑related gene 
signature for HCC patients
In the training set, univariate, LASSO and multivari-
ate Cox regression analyses were used to identify GRGs 
related to OS. Using the “survival” R package, univariate 
Cox regression was conducted to make a primary selec-
tion of GRGs related to OS, and those with p < 0.05 were 
considered potential candidates. Afterwards, using the 
“glmnet” R package, LASSO Cox regression [25] was 
conducted to further select the potential candidates. The 
dataset was subsampled for 1000 iterations, and GRGs 
with occurrence frequencies of more than 900 were 

selected for the following analysis. Finally, a step mul-
tivariate Cox regression analysis was used to identify 
GRGs related to OS and to construct a predictive gene 
signature. Using the regression coefficient (β) of mul-
tivariate Cox regression analysis, a risk score for each 
patient was calculated using the following formula: risk 
score = (βmRNA1 * expression level of mRNA1) + (βmRNA2 
* expression level of mRNA2) + …. + (βmRNAn * expres-
sion level of mRNAn). Using the median value of the risk 
score, HCC patients were divided into two groups: high- 
and low-risk groups. The differences in clinicopatho-
logical traits between the two groups were analysed. 
Kaplan–Meier analysis and receiver operating character-
istic (ROC) curves were employed to evaluate the predic-
tive ability of the gene signature.

Independent prognostic role of the GRGs‑related gene 
signature and establishment and validation of a predictive 
nomogram
Univariate and multivariate Cox regression analyses were 
used to explore independent prognostic factors for HCC 
in the TCGA dataset. For univariate analysis, factors 
with a p < 0.05 were considered statistically significant 
and were included in multivariate analysis. Based on the 
results of multivariate analysis, a predictive nomogram 
was established using the “rms” R package to predict the 
1-, 3- and 5-year OS for HCC [26]. Calibration curves 
were used to assess the performance of the nomogram. 
The C-index and time-dependent ROC curves were used 
to evaluate the discrimination of the nomogram. Further-
more, using the “rmda” R package, decision curve analy-
sis (DCA) was used to assess the clinical net benefit of 
the nomogram [27].

Estimation of tumor mutational burden (TMB) and immune 
cell type fractions
The somatic mutation data were downloaded from 
TCGA GDC Data Portal. Using a Perl script, the gene 
mutation rate and the TMB in different risk groups were 
calculated based on the somatic mutation data, and the 
“maftools” R package was used to visualize the results. 
Furthermore, the TMB difference between the low- and 
high-risk groups was compared using the Mann–Whit-
ney U test, and the impact of TMB on HCC prognosis 
was evaluated using Kaplan–Meier analysis. CIBERSORT 
analysis (https://​ciber​sortx.​stanf​ord.​edu/) was used to 
estimate the fraction of the 22 subtype immune cells 
in each TCGA HCC sample [28]. The Tumor Immune 
Estimation Resource (TIMER, version 2.0, http://​timer.​
cistr​ome.​org/) online database was used to evaluate the 
impact of GRGs on the infiltration of different immune 
cells [29].
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Gene set enrichment analysis
To identify signaling pathways regulated by the GRG-
related gene signature, GSEA was used, and “c2.cp.kegg.
v7.2.symbols.gmt” was employed as the reference gene 
set. Terms with a p value < 0.05 were considered statisti-
cally significant, and the results were visualized using the 
“ggplot2” R package.

Validation of the expression and prognostic ability 
and genetic alterations of GRGs
First, the expression levels of GRGs between tumor and 
nontumor samples were compared in training and vali-
dation datasets, different cell lines and the Shandong 
Provincial Hospital patient dataset. Afterwards, Kaplan–
Meier analysis was used to evaluate the predictive abil-
ity of GRGs. The Human Protein Atlas database (https://​
www.​prote​inatl​as.​org/) was used to evaluate the expres-
sion of encoded proteins of the five GRGs. Using the 
“corrplot” R package, the correlation of expression among 
GRGs was explored. Finally, using the “cBioPortal” data-
base, the genetic alterations of the GRGs were analysed.

Cell lines
LO2, HepG2, MHCC97-H, SK-HEP1 and Bel-7402 cell 
lines were purchased from the BeNa Culture Collection 
(Beijing, China). LO2 and Bel-7402 cell lines were cul-
tured in RPMI-1640 (Gibco, NYC, USA) containing 10% 
fetal bovine serum (Gibco, NYC, USA), and the other cell 
lines were cultured in DMEM (Gibco, NYC, USA) con-
taining 10% fetal bovine serum. All cell lines were culture 
at 37 °C and 5% CO2.

Real‑time PCR analysis
To validate the dysregulation of the five GRGs in in vitro 
experiments, 10 pairs of samples with the pathologi-
cal diagnosis of HCC and adjacent nontumor samples 
were prospectively collected from our hospital. Total 
RNA was extracted from HCC samples, paired adja-
cent normal samples and cell lines using TRIzol reagent 
(Invitrogen, Eugene, OR, USA) following the manufac-
turer’s instructions. Complementary DNA (cDNA) was 
synthesized using 1 μg of total RNA and HiScript III RT 
SuperMix (Vazyme, Nanjing, China). RT–PCR was per-
formed using ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, Nanjing, China), which was executed by 
a QuantStudio 3 Real-Time PCR System. The following 
primers were used in RT–PCR: ABCB6 F: GCC​TCA​TTG​
TGT​TCC​TGT​GC and R: CAC​TTC​GTA​ACT​CTC​GGC​
GT; ANKZF1 F: CTC​TGG​CCG​GTC​TTT​GTT​CT and R: 
CAC​ACG​CTG​TAG​CTC​TTG​GA; B3GAT3 F: GGG​ACC​
CAA​GGA​GTC​GTC​TA and R: CTG​TGT​GGA​AGC​CCA​
CTA​CC; KIF20A F: AAG​GGC​AGA​ACT​GGC​TCA​TC 
and R: GCA​AGG​GCT​TCA​GAT​CAG​GT; STC2 F: TGA​

AAT​GTA​AGG​CCC​ACG​CT and R: TTG​AGG​TAG​CAT​
TCC​CGC​TG.

Statistical analysis
Continuous variables are displayed as the mean ± stand-
ard deviation (SD), and categorical variables are shown 
as numbers (n) and percentages (%). The Mann–Whit-
ney U test was used to compare the difference between 
continuous variables, and the categorical variables were 
compared by using the chi-squared test or Fisher’s 
test. Kaplan–Meier analysis and the log-rank test were 
employed to analyse OS and DFS. Cox regression analy-
sis was used to identify independent factors for progno-
sis, and factors with p < 0.05 in univariate analysis were 
included in multivariate analysis. The hazard ratio (HR) 
and 95% confidence interval (CI) were recorded. R soft-
ware (Version 4.0.3) was used for the statistical analysis. 
All tests were two sides, and p < 0.05 was considered sta-
tistically significant.

Results
Identification of GRGs in HCC
GSEA revealed that three of the six glycolysis-related 
gene sets, including hallmark glycolysis (p < 0.001), Reac-
tome glycolysis (p = 0.007) and glycolysis and Reactome 
regulation of glycolysis by fructose 2,6-bisphosphate 
metabolism (p = 0.026), were significantly enriched in 
tumor samples (Fig.  1A-C). Subsequently, 255 GRGs 
were identified in the TCGA dataset. After an overlap-
ping analysis with the mRNA pool, a total of 203 GRGs 
were identified in all five datasets. Finally, 83 GRGs were 
differentially expressed in HCC samples compared with 
nontumor samples in the TCGA dataset (Fig. 1D-E). The 
overall study design and workflow was shown in Fig. S1.

Identification of GRGs related to OS and construction 
of a gene signature for prediction of OS
After removing patients with unknown survival informa-
tion, those with less than 3 months of survival and those 
without clinicopathological information (including sex, 
age at diagnosis, TNM stage, grade, weight and height), 
a total of 273 HCC patients in the TCGA dataset were 
included in the survival analysis. We first performed uni-
variate Cox regression analysis to explore GRGs related 
to OS, and 50 GRGs were found to be statistically sig-
nificant (p < 0.05). Afterwards, LASSO Cox regression 
analysis was performed, and the optimal tuning param-
eters related to the minimum generalization error were 
determined from 10-fold cross-validation. Ten genes 
were identified with a repetition frequency greater than 
900 times in 1000 substitution samplings (Fig.  1F-G). 
Finally, step multivariate Cox regression analysis was 
performed, and 5 GRGs, ABCB6, ANKZF1, B3GAT3, 
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KIF20A and STC2 (Table S2), were found to be inde-
pendently associated with OS. Using the β of multivari-
ate analysis, we constructed a prognostic gene signature 
containing the five GRGs to predict the OS for each HCC 
patient as follows: risk score = (0.134 * expression level of 
ABCB6) + (0.072 * expression level of ANKZF1) + (0.031 
* expression level of B3GAT3) + (0.150 * expression level 
of KIF20A) + (0.034 * expression level of STC2).

Using the median value of the risk score, we divided 
HCC patients in the TCGA dataset into two groups: 
low- and high-risk groups. Figure 2A shows the distri-
bution of the risk score and survival status correspond-
ing to the expression of each gene. The Kaplan–Meier 
analysis showed that patients in the high-risk group 
had significantly poorer OS than those in the low-risk 
group (Fig.  2C). The areas under the curve (AUCs) of 

Fig. 1  GSEA, heatmap, volcano and LASSO Cox regression identified the GRGs associated with prognosis in HCC. A, B, C Enrichment plots of three 
glycolysis-related gene sets between HCC and normal samples identified by GSEA. D, E Gene expression levels in the TCGA dataset. F, G LASSO Cox 
regression analysis for the exploration of GRGs related to HCC prognosis. GSEA, Gene set enrichment analysis; HCC, hepatocellular carcinoma; GRGs, 
glycolysis-related genes
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the time-dependent ROC curves at 1, 3 and 5 years 
were 0.851, 0.727 and 0.691, respectively, which sug-
gests a high sensitivity and specificity of the gene sig-
nature for predicting OS (Fig.  2E). The relationship 
between the gene signature and clinicopathological fac-
tors in the TCGA dataset is shown in Table S3. We also 
validated the performance of gene We also validated 
the performance of the gene signature in predicting 
OS in the validation set. The distribution of risk score 
and survival status corresponding to gene expression 
levels are shown in Fig.  2B. The Kaplan–Meier analy-
sis also suggested that patients in the high-risk group 
had a worse OS than those in the low-risk group in the 
ICGC dataset (Fig. 2D). The AUCs of the ROC curves 
for the prediction of 1-, 3- and 5-year survival in the 
ICGC dataset were 0.601, 0.638 and 0.649, respectively 
(Fig. 2F).

Construction and validation of a nomogram for OS 
prediction cooperating with GRGs‑related gene signature
Cox regression analysis was used to explore whether 
the gene signature was an independent prognostic fac-
tor when clinicopathological traits (including age, sex, 
grade, TNM stage and BMI) were included in the analy-
sis. The results of the Cox regression analysis are shown 
in Fig.  3A. We found that the GRG-related gene sig-
nature and TNM stage were independently associated 
with OS. Based on the results of multivariate analysis, 
a nomogram containing the gene signature and TNM 
stage was established to predict the 1-, 3- and 5-year 
OS for HCC (Fig.  3B). The C-index of the nomogram 
was 0.749 (95% CI, 0.633-0.865). The calibration curves 
of the nomogram for predicting the 1-, 3- and 5-year 
OS suggested a high consistency between actual obser-
vations and prediction of OS (Fig. 3C).

We then performed ROC curve analysis to assess the 
discrimination ability of the nomogram, and the results 
showed that the AUCs for the prediction of 1-, 3- and 
5-year OS were 0.863, 0.784 and 0.712, respectively, 
which were higher than those of using the gene signa-
ture or TNM stage alone (Fig. 3D-F). Afterwards, DCA 
analysis was performed to evaluate the value of the 
nomogram in guiding clinical decision making, and the 
results showed that the nomogram could obtain bet-
ter net benefit than that of using the gene signature or 
TNM stage alone (Fig. 3G-I).

Construction and validation of a GRGs‑related gene 
signature for predicting DFS
After removing patients with less than 3 months of sur-
vival, with unknown DFS status and with unknown clin-
icopathological information (including age, TNM stage, 
grade, height and weight), a total of 234 HCC patients in 
the TCGA dataset were included in the analysis. Using 
the five GRGs, a gene signature was constructed based on 
the results of multivariate analysis: risk score = (0.063 * 
expression level of ABCB6) + (0.046 * expression level of 
ANKZF1) + (0.014 * expression level of B3GAT3) + (0.084 
* expression level of KIF20A) + (0.059 * expression level 
of STC2). Using the median value of the risk score, HCC 
patients were divided into low- and high-risk groups. The 
distribution of the risk score and DFS status corresponding 
to gene expression is shown in Fig. 4A. The Kaplan–Meier 
analysis suggested that patients in the high-risk group had 
a higher recurrence rate than those in the low-risk group 
(p = 0.003, Fig.  4B). The ROC curve analysis showed that 
the gene signature had a relatively high accuracy for pre-
dicting DFS, with 1-, 3- and 5-AUC values of 0.716, 0.627 
and 0.611, respectively (Fig. 4C).

Construction and validation of a nomogram for predicting 
DFS in cooperation GRGs‑related gene signature
Univariate and multivariate Cox regression analyses were 
performed, and two factors (gene signature and TNM 
stage) were found to be independently associated with 
DFS (Fig.  5A). Afterwards, a nomogram was constructed 
integrating the two factors to predict 1-, 3- and 5-DFS for 
HCC (Fig.  5B). The C-index of the nomogram was 0.695 
(95% CI 0.579-0.811). The calibration curves of the nomo-
gram suggested that it performed well (Fig. 5C). The AUCs 
of the ROC curve analysis for 1-, 3- and 5-year recurrence 
were 0.741, 0.700 and 0.654, respectively, which displayed a 
larger AUC than that of the gene signature or TNM stage 
alone and showed that the nomogram had a high discrimi-
nation ability (Fig.  5D-F). Finally, DCA also showed that 
the nomogram had a higher clinical net benefit than that 
of using the gene signature or TNM stage alone (Fig. 5G-I).

Comparison of the TMB and TIME of HCC patients 
between low‑ and high‑risk groups and GSEA
Considering the positive relationship between glycolysis 
and TMB and TIME, we made a further comparison of 
TMB and TIME between the low- and high-risk groups. 
Figure 6A and B show the differences in TMB in somatic 

(See figure on next page.)
Fig. 2  Risk score distribution, Kaplan-Meier analysis and time-dependent ROC analysis of a prognostic model for OS in HCC patient cohort from 
training (A, D, G) and validation datasets. A, B The distribution of risk score and survival status corresponding to the expression of each gene. C, 
D Kaplan-Meier analysis suggested that patients in high-risk group had shorter OS than those in low-risk group. E, F Time-dependent ROC curves 
to assess the performance of gene signature. ROC, receiver operating characteristic; OS, overall survival; HCC, hepatocellular carcinoma; ICGC, 
International Cancer Genome Consortium Japan
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Fig. 2  (See legend on previous page.)
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cells in the high- and low-risk groups. As displayed in 
Fig.  6C and D, we found that patients in the high-risk 
group had higher TMB than those in the low-risk group, 
and patients in the high-risk group with high TMB had a 
worse OS than those in the low-risk group with low TMB 
(p < 0.001). Figure 7A shows the distributions of 22 tumor-
infiltrating immune cell types obtained from 273 HCC 
patients which were selected in the GSEA analysis. Fur-
thermore, as shown in Fig.  7C, patients in the high-risk 
group had a higher rate of CD4+ memory T cell resting 
and CD4+ memory T cell activation.

GSEA was conducted to identify the biological pro-
cesses and signaling pathways in which the GRGs were 
enriched. The results showed that GRGs in the high-risk 

group were mainly enriched in base excision repair, the 
cell cycle, DNA replication and pyrimidine metabolism. 
GRGs in the low-risk group were significantly enriched in 
complement and coagulation cascades, fatty acid metab-
olism, primary bile acid biosynthesis, retinol metabolism, 
spliceosome and tryptophan metabolism (Fig. 7B).

Validation of the expression, prognostic ability and genetic 
alterations of GRGs
To validate the expression levels of GRGs between 
tumor and nontumor samples, we first explored the 
expression of the five GRGs in public datasets, and the 
results showed that the five GRGs were significantly 
dysregulated in HCC samples compared with normal 

Fig. 3  Establishment and validation of a nomogram to predict OS for HCC. A Univariate and multivariate Cox regression analysis to explore factors 
independently associated with OS. B The nomogram for predicting the 1-, 3- and 5-year OS for HCC. C Calibration curves of the nomogram for 
predicting the 1-, 3- and 5-year OS for HCC. D, E, F ROC curves to evaluate the performance of the nomogram in predicting the 1-, 3- and 5-year OS, 
respectively. G, H, I DCA to assess the clinical net benefit of the nomogram in predicting the 1-, 3- and 5-year OS, respectively. OS, overall survival; 
HCC, hepatocellular carcinoma; ROC, receiver operating characteristic; DCA, decision curve analysis
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samples (Fig. S2). We also explored the expression level 
of the five GRGs in our own samples, and the results 
showed that the five GRGs were highly expressed 
in tumor tissues compared with nontumor samples 
(Fig.  8A). Meanwhile, the expression profiles of the 
five GRGs in hepatoma cell lines and normal cell lines 
are shown in Fig.  8B. Using the Human Protein Altas 
database, we also explored the immunohistochemistry 
results of the five GRGs. The patient immunochemis-
try data are shown in Table S3, and we found that the 
intensity of the encoded proteins of the five GRGs in 
HCC samples was stronger than that in nontumor sam-
ples (Fig.  8C). We also tried to explore the relation-
ship of expression levels among the five GRGs, and 

the results suggested that there is a strong correlation 
between ANKZF1 and KIF20A as well as ABCB6 (Fig. 
S3).

Using the TIMER online database, the relationship 
between the five GRGs and immune infiltration was 
explored, which is shown in Fig. 9A-E. In addition, using 
the survival data in the TCGA dataset, we attempted to 
explore the prognostic ability for each GRG. Kaplan–
Meier analysis showed that the high expression of the 
five GRGs was significantly associated with poorer OS 
(P < 0.05, Fig. S4A-E), while those with high expression 
of the five GRGs also had poorer DFS (P < 0.05, Fig. S4F-
J). Finally, we evaluated the genetic alterations of the five 
GRGs, and the results suggested that the proportions of 

Fig. 4  Risk score distribution, Kaplan-Meier analysis and time-dependent ROC analysis of a prognostic model for DFS. A The distribution of risk 
score and survival status corresponding to the expression of each gene. B Kaplan-Meier analysis suggested that patients in high-risk group had 
shorter DFS than those in low-risk group. C Time-dependent ROC curves to assess the performance of gene signature. ROC, receiver operating 
characteristic; DFS, disease-free survival; HCC, hepatocellular carcinoma
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the genetic alterations for the five GRGs were 0.8, 1.4, 1.1, 
1.4 and 2.5% (Fig. 9F).

Discussion
HCC, as a medical problem for society, still has a dis-
mal prognosis. There is an urgent need to explore core 
molecular biomarkers that are related to HCC develop-
ment and prognosis and could be used as therapeutic tar-
gets. In this study, using data obtained from TCGA, GEO 
and ICGC databases, we aimed to explore GRGs related 
to the prognosis of HCC using bioinformatic methods, 
Cox regression analysis and LASSO methods. Five GRGs 
(ABCB6, ANKZF1, B3GAT3, KIF20A and STC2) were 
dysregulated in tumor samples and were independently 

associated with the prognosis of HCC. Afterwards, two 
gene signatures containing the five GRGs were estab-
lished to predict OS and DFS for HCC. The calibration 
curves and ROC curves showed that the gene signatures 
had good predictive efficiencies. Finally, combining the 
gene signatures and clinicopathological traits, two pre-
dictive nomograms were constructed, and the C-index, 
calibration curves, ROC curves and DCA analysis all 
indicated the good performance of the nomograms in 
predicting the prognosis of HCC.

Five GRGs were finally upregulated in HCC samples 
and were independently associated with the prognosis of 
HCC. ABCB6, a member of the lysosomal ATP-binding 
cassette (ABC) transporters, is widely expressed in many 

Fig. 5  Establishment and validation of a nomogram to predict DFS for HCC. A Univariate and multivariate Cox regression analysis to explore factors 
independently associated with DFS. B The nomogram for predicting the 1-, 3- and 5-year DFS for HCC. C Calibration curves of the nomogram 
for predicting the 1-, 3- and 5-year DFS for HCC. D, E, F ROC curves to evaluate the performance of the nomogram in predicting the 1-, 3- and 
5-year DFS, respectively. G, H, I DCA to assess the clinical net benefit of the nomogram in predicting the 1-, 3- and 5-year DFS, respectively. DFS, 
disease-free survival; HCC, hepatocellular carcinoma; ROC, receiver operating characteristic; DCA, decision curve analysis



Page 11 of 17Kong et al. BMC Cancer          (2022) 22:142 	

tissues, including liver, heart and skeletal muscles [30]. 
The main function of ABCB6 is regulating porphyrin bio-
synthesis; recently, it has been reported to be associated 
with multidrug resistance and the development and pro-
gression of various cancers [31–33]. In HCC, Polireddy 
et  al. [34] discovered that ABCB6 was upregulated in 
tumor samples and was related to tumor development 
and progression by regulating the cell cycle. Further-
more, Tsunedomi et al. [35] proved that the dysregulation 
of ABCB6 was associated with intrahepatic recurrence 
and poor prognosis of HCC. However, due to the con-
troversial role of ABCB6, the mechanisms of ABCB6 in 
HCC development, progression and recurrence remain 

unclear. Among the other four GRGs, ANKZF1 had the 
strongest correlation with ABCB6. ANKZF1, also known 
as ankyrin repeat and zinc-finger domain-containing 1, 
can combine with p97 and thus regulate the function of 
p97, including the cell cycle, apoptosis and autophagy 
[36]. The upregulation of ANKZF1 has been reported 
to be related to poor OS and DFS in colon cancer. Fur-
thermore, Chen et  al. [37] proved that ANKZF1 was a 
GRG related to the prognosis of colon adenocarcinoma. 
In HCC, the prognostic ability of ANKZF1 has not been 
reported, and further explorations are needed. Beta-
1,3-glucuronyltransferase 3, encoded by the B3GAT3 
gene, is crucial for proteoglycan (PG) biosynthesis [38]. 

Fig. 6  Correlation between gene signature and TMB and the predictive performance of TMB on OS. A, B The differences in TMB in somatic cells in 
high- and low-risk groups. C Patients in high-risk group had higher TMB than those in low-risk group. D Patients in high-risk group with high TMB 
had a worse OS than those in low-risk group with low TMB. TMB, tumor mutational burden; OS, overall survival
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Since PG could affect the cell cycle and was related to 
tumor cell invasion and metastasis [39, 40], the poten-
tial role of B3GAT3 in tumor development, progression 
and prognosis was explored [41]. Recently, Zhang et  al. 
[42] found that B3GAT3 was upregulated in HCC sam-
ples, and the dysregulation of B3GAT3 was associated 
with poorer pathological characteristics, tumor invasion, 
migration and a more adverse prognosis. Unlike the three 
GRGs above, the potential role of KIF20A and STC2 in 
tumor development, progression and prognosis has been 
widely studied. Kinesin family member 20A (KIF20A), a 
member of the kinesin superfamily of proteins [43], plays 
a crucial role in cytokinesis [44]. A recent study found 
that KIF20A was upregulated in the lactate-enriched 
tumor microenvironment and could regulate microtu-
bule dynamics and cell motility and thus contribute to 
cancer progression and metastasis [45]. In HCC, KIF20A 

was also discovered to be upregulated in tumor samples, 
which could contribute to tumor cell proliferation and 
was associated with poorer tumor characteristics and 
shorter OS and DFS [46, 47]. Stanniocalcin 2 (STC2) 
is associated with phosphate metabolism and glucose 
homeostasis [48, 49]. In addition, it was also found to 
be associated with angiogenesis, tumor progression and 
metastasis [48]. Previous studies showed that STC2 was 
upregulated in HCC samples, and in  vitro experiments 
suggested that the dysregulation of STC2 could promote 
tumor cell proliferation and migration [48]. In addition, 
Cheng et al. [50] proved that upregulation of STC2 could 
mediate drug resistance in HCC cells, which provided 
a potential strategy for HCC treatment. In this study, 
GSEA showed that the GRG-related gene signature was 
associated with several cell cycle-related pathways, which 
was consistent with the functions of the five GRGs.

Fig. 7  The landscape of immune infiltration and GSEA analysis for HCC patients in different risk groups. A, C The relationships between gene 
signature and immune infiltration of 22 immune cell types in HCC patients. B GSEA analysis for HCC patients in low- and high-risk groups. GSEA, 
Gene set enrichment analysis; HCC, hepatocellular carcinoma
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We further explored the relationship between the risk 
groups and TMB and TIME. TMB refers to the number 
of mutations per megabase in tumor cells [51], and it 
was reported that tumor cells with high TMB were more 
likely to contain neoantigens to be targets of immune 
cells; thus, TMB was regarded as a biomarker for predict-
ing immunotherapy response and prognosis [18]. In this 
study, we found that high-risk group was related to higher 
TMB, and patients in high-risk group with high TMB had 
poorer OS than those in low-risk group with low TMB. 
In addition, the TIME is a complex microenvironment 
that mainly contains immune cells and immune-related 
molecules. TIME is closely related to tumor progression, 
prognosis and antitumor immunotherapy [52, 53]. We 
further found that patients in the high-risk group had a 
high rate of resting CD4+ memory T cells and activated 
CD4+ memory T cells. It was reported that memory 
CD4+ T cells were related to tumor growth and the 
effects of chemotherapy [54, 55]. Our results suggested 
that the TIME in the high-risk group might be associated 
with the poor prognosis of these patients. These findings 

suggested that HCC patients in the high-risk group might 
have a higher response to immune therapy than those in 
the low-risk group, which might provide new insight into 
HCC immunotherapy.

Apart from our study, several studies have been pub-
lished to explore glycolysis-related genes (GRGs) associ-
ated with HCC prognosis [56, 57]. However, the methods 
used to screen GRGs varied in these studies. For exam-
ple, in Hamaguchi’s study [56], they explored GRGs 
based on the overlap between the glycolysis module 
genes and their own pooled transcriptome data. In Lu’s 
study [57], they explored GRGs based on the expression 
level of glycolytic components (glucose transporter and 
glycolytic enzymes). Each TCGA sample obtained a gly-
colysis score, and these samples were divided into high 
and low glycolysis score groups. Afterwards, genes dif-
ferentially expressed between the two groups were iden-
tified and regarded as GRGs. In our study, GSEA was 
used to identify GRGs: all glycolysis-related gene sets 
were obtained from the Molecular Signatures Database 
v4.0, and using GSEA, gene sets that significantly differed 

Fig. 8  Expression validation of the five GRGs. A Real-time PCR analysis of the mRNA expression levels of the five GRGs in HCC and normal samples 
in Shandong Provincial Hospital patient cohort. B Real-time PCR analysis of the mRNA expression levels of the five GRGs in different cell lines. C 
Expression patterns of the five GRGs in HCC and normal samples. GRGs, glycolsis-related genes; HCC, hepatocellular carcinoma
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Fig. 9  Correlations between GRGs and the density of the immune infiltrate and the genetic alterations analysis for the five GRGs. A-E The influence 
of the expression of ABCB6 (A), ANKZF1 (B), B3GAT3 (C), KIF20A (D) and STC2 (E) on infiltration by different immune cells. F Genetic alteration 
analysis of the five GRGs. GRGs, glycolysis-related genes; HCC, hepatocellular carcinoma



Page 15 of 17Kong et al. BMC Cancer          (2022) 22:142 	

between HCC and nontumor samples were identified. 
Genes in these gene sets were regarded as the “primary” 
GRGs. Afterwards, using the “limma” R package and uni-
variate, LASSO and multivariate Cox regression analy-
ses, we finally obtained GRGs related to HCC prognosis. 
Obviously, the various methods used in different studies, 
combined with the heterogeneity in data processing and 
patient selection, could all cause the difference in identifi-
cation of GRGs. In our study, using comprehensive bioin-
formatic analysis, we obtained five GRGs associated with 
HCC prognosis. We also performed external validation 
using HCC samples from GEO and ICGC datasets and 
our own data. All of these efforts could make our results 
more reliable.

Many gene signatures have been constructed to pre-
dict HCC patient survival [58–61]. Compared to these 
gene signatures, our gene signature had the following 
features: first, our gene signature was established based 
on five GRGs that were independently associated with 
HCC prognosis. Considering the vital role of glycolysis in 
tumor development and progression, our gene signature 
is surely to have a better predictive performance than the 
previous predictive models [58–61]; second, some of the 
previous gene signatures lacked external validation using 
other datasets [60], consequently, we used the ICGC-
LIRI—JP as an external validation cohort to verify the 
results of this study, which showed that the gene signa-
ture had good predictive performance.

There are some limitations in this study. First, this is a 
study using public datasets for different patient cohorts, 
and the results could be somewhat heterogeneous in 
data processing and patient selection. Although we vali-
dated our gene signature in external datasets, prospective 
cohorts with more HCC patients are needed to validate 
our risk models. Second, we downloaded all available 
clinical information of TCGA patients from the online 
database; however, several important factors, such as 
AFP level, portal hypertension and postoperative com-
plications, were missing, and the incorporation of these 
factors might greatly improve the predictive ability of our 
nomogram. Finally, the complicated interactions between 
GRGs and the TMB and TIME need further exploration.

Conclusions
To summarize, we identified five GRGs related to survival 
between HCC and nontumor samples. Two prognostic 
models containing the five GRGs were constructed to 
predict OS and DFS for HCC, and the C-index, calibra-
tion curves, ROC analysis and DCA analysis all showed 
good performance of the two risk models. In addition, 
HCC patients in high-risk groups were also found to have 
higher proportions of TMB and immune cell infiltration, 
which may be more sensitive to immunotherapy.
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