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Visual evoked potentials (VEPs) to periodic stimuli are commonly used in brain computer
interfaces for their favorable properties such as high target identification accuracy, less
training time, and low surrounding target interference. Conventional periodic stimuli can
lead to subjective visual fatigue due to continuous and high contrast stimulation. In this
study, we compared quasi-periodic and chaotic complex stimuli to common periodic
stimuli for use with VEP-based brain computer interfaces (BCIs). Canonical correlation
analysis (CCA) and coherence methods were used to evaluate the performance of the
three stimulus groups. Subjective fatigue caused by the presented stimuli was evaluated
by the Visual Analogue Scale (VAS). Using CCA with the M2 template approach,
target identification accuracy was highest for the chaotic stimuli (M = 86.8, SE = 1.8)
compared to the quasi-periodic (M = 78.1, SE = 2.6, p = 0.008) and periodic (M = 64.3,
SE = 1.9, p = 0.0001) stimulus groups. The evaluation of fatigue rates revealed that
the chaotic stimuli caused less fatigue compared to the quasi-periodic (p = 0.001)
and periodic (p = 0.0001) stimulus groups. In addition, the quasi-periodic stimuli led
to lower fatigue rates compared to the periodic stimuli (p = 0.011). We conclude that
the target identification results were better for the chaotic group compared to the other
two stimulus groups with CCA. In addition, the chaotic stimuli led to a less subjective
visual fatigue compared to the periodic and quasi-periodic stimuli and can be suitable
for designing new comfortable VEP-based BCIs.

Keywords: VEP-based BCI, chaotic stimuli, quasi-periodic stimuli, CCA, coherence

INTRODUCTION

Electroencephalogram (EEG) is commonly used for EEG-based brain computer interfaces (BCIs)
as a non-invasive and low-cost method for measuring the brain neural activities (Wolpaw
et al., 2002; Lebedev and Nicolelis, 2006). BCI applications employing EEG use visual evoked
potentials (VEPs) (Middendorf et al., 2000; Müller-Putz et al., 2005; Lee et al., 2006, 2008;
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Wang et al., 2006,Wang Y. et al., 2017; Martinez et al., 2007;
Allison et al., 2008; Guo et al., 2008; Chen et al., 2015; Xie et al.,
2017, 2018), which are responses of the visual system to visual
stimuli. Various types of visual stimuli, such as flickering LED,
can be decoded from the EEG activity of the visual cortex and
used for diverse BCI applications (Takano et al., 2009; Lee et al.,
2011; Gao et al., 2014; Kapgate and Kalbande, 2015).

In VEP-based BCIs, the target stimuli are identified by
decoding all the gazed stimuli. The stimuli are required to be
orthogonal or almost orthogonal in time-, frequency-, or code-
based BCIs (Bin et al., 2009a). The oddball paradigm is an
example of time-based BCIs, whereby the target stimuli are
presented at different times and evoke event-related potentials
(ERPs) like the P300 (Jin et al., 2005; Lee et al., 2008; McCane
et al., 2015). Frequency-based BCIs may use visual stimuli that
are modulated in time according to a sine wave with different
temporal frequencies, which also evoke EEG responses at the
same frequencies and their harmonics (Middendorf et al., 2000;
Müller-Putz et al., 2005; Wang et al., 2006). Orthogonal visual
stimuli in code-based BCIs are generated by random codes
such as m-sequences, whereby different shifts of a modulating
code have been used to evoke code-modulated VEPs (c-VEPs)
(Nakanishi et al., 2014; Riechmann et al., 2016; Wei et al., 2016,
2018; Spüler, 2017; Liu et al., 2018; Shirzhiyan et al., 2019).

Due to their high decoding accuracy, external stimuli such as
periodic flickers are commonly used in VEP-based BCIs evoking
steady-state visual evoked potentials (SSVEPs) (Vialatte et al.,
2010; Keihani et al., 2018). In SSVEP-based BCIs, the stimulus
comprises a constant frequency that varies from low to high (1–
100 Hz), which then leads to specific EEG responses that correlate
with the stimulus frequency (Vialatte et al., 2010). Therefore, the
gazed target stimuli could be identified from their EEG responses.
However, among different frequency sets, the lower (1–12 Hz)
and medium (13–16 Hz) ones lead to high subjective discomfort,
fatigue, and possible epileptic seizures (Volosyak et al., 2011).
Various dynamical approaches have also been used for improving
SSVEP-based BCIs, such as dynamic stopping methods and the
detection of SSVEP responses for higher information transfer rate
(ITR) SSVEP-based BCIs (Yin et al., 2014; Jiang et al., 2018).

Visual stimuli have diverse dynamical patterns such as
periodic, quasi-periodic, and chaotic. Biological systems also
exhibit these dynamical behaviors (Attinger et al., 1966; Petrov
et al., 1997; Suzuki et al., 2016) including non-oscillatory chaotic
behavior, which is more complex than quasi-periodic oscillation
(Camazine et al., 2003; Saha and Galic, 2018; Strogatz, 2018).
Neuronal systems exhibit both complex oscillatory behavior
(Llinás, 1988; Zhanabaev and Kozhagulov, 2013; Zhanabaev
et al., 2016; Feng et al., 2017) as well as the non-oscillatory
chaotic behavior that is seen in neurons (Aihara et al., 1984;
Hong, 2011; Lv et al., 2016; Ma and Tang, 2017) and networks
(Aihara, 1989; Freeman, 1992; Potapov and Ali, 2000; Rössert
et al., 2015; Nobukawa and Nishimura, 2016) due to various
underlying mechanisms (Hoebeek et al., 2010; Ishikawa et al.,
2015). Stimuli with dynamical patterns such as chaotic behaviors
are thus expected to be more in harmony with the visual system.

Natural visual stimuli rarely flicker at a constant rate, but
rather exhibit more complex dynamics with quasi-periodic
temporal characteristics (Kayser et al., 2003; Butts et al., 2007;

Mazzoni et al., 2011). Natural visual stimuli are efficiently
encoded by the visual system which is capable of processing
and detecting information from complex natural environments
(Blake and Lee, 2005; Mazzoni et al., 2011). These visual
stimuli have similar spatial and temporal patterns resembling
the 1/f amplitude spectrum, features that are encoded more
efficiently by the retina and other components of the visual
system (Atick and Redlich, 1992; Yoshimoto et al., 2017). In
addition, chaotic patterns also follow the 1/f spectrum observed
in natural scenes and phenomena (Relano et al., 2002; Molina
et al., 2010). Quasi-periodic visual stimuli can generate phase-
locked responses (Keitel et al., 2017; Obleser et al., 2017;
Haegens and Golumbic, 2018) and also evoke responses with
independent dynamics that correlate with their corresponding
stimuli (Keitel et al., 2017). Temporal dynamics of the presented
visual stimuli leads to adjustment of the visual system based on
its inherent characteristics (Lasley and Cohn, 1981; Correa and
Nobre, 2008). For these reasons, it is possible to assume that
complex stimuli with dynamical temporal patterns such as quasi-
periodic and chaotic may generate correlated responses which
may lead to greater visual comfort for the viewer compared to
the periodic stimuli.

One of the important issues in VEP-based BCI applications
is the subjective visual fatigue caused by the flickering stimuli
(Volosyak et al., 2011; Chang et al., 2014; Won et al., 2015).
Periodic stimuli generating SSVEPs, due to their high contrast
flashes, are not comfortable and can lead to subjective visual
fatigue (Kardan et al., 2015; Xie et al., 2016). These periodic
patterns may also lead to migraine headache (DeTommaso et al.,
1999) or even epileptic seizures (Fisher et al., 2005). Studies have
used various methods including the use of high-frequency stimuli
rather than lower frequencies (Allison et al., 2010; Sakurada et al.,
2015; Ajami et al., 2018), polychromatic stimuli (Chien et al.,
2017), motion Newton’s rings and motion checkerboards (Xie
et al., 2012, 2017; Yan et al., 2017; Han et al., 2018), and rhythmic
pattern stimuli (Keihani et al., 2018) to minimize the subjective
visual fatigue, which still remains an important problem in VEP-
based BCI applications.

Utilization of visual stimuli with quasi-periodic and chaotic
patterns that are closer to natural scenes in BCI applications
requires further research. In our previous study, we used chaotic
and pseudo-random m-sequence binary codes and found that
chaotic codes lead to comparatively less fatigue (Shirzhiyan et al.,
2019). In this study, we introduce a new kind of visual stimuli
with quasi-periodic and chaotic characteristics to evoke distinct
visual potentials in normal subjects for their possible application
in VEP-based BCIs. For comparison, we used periodic stimuli
commonly employed in SSVEP-based BCI applications and
also compared subjective visual fatigue caused by these three
groups of stimuli.

MATERIALS AND METHODS

In this study, first of all, the stimulus groups were designed
and proper setup for the experiment was prepared. The data
recording step started with EEG and behavioral data (fatigue
data) recording from normal subjects. After preprocessing of

Frontiers in Neuroscience | www.frontiersin.org 2 November 2020 | Volume 14 | Article 534619

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-534619 November 11, 2020 Time: 15:25 # 3

Shirzhiyan et al. Quasi-Periodic and Chaotic VEP-Based BCI

the EEG data, the data analysis was done to decode the
presented stimuli from their corresponding data using canonical
correlation analysis (CCA) and coherence analysis methods.
These two methods calculate the similarity of templates with
EEG signals where the stimuli could be considered as templates
(template generation approach M1) or obtained from a training
dataset (template generation approach M2). Finally, the target
identification results using the above-mentioned methods and
the fatigue data were analyzed separately. The flowchart of this
study is presented in Figure 1.

Study Participants
Our study was announced in the faculties of medicine and
biomedical engineering via notice boards as well as in students’
social media groups. Forty-eight volunteers were initially enrolled
based on the inclusion criteria (normal or corrected vision with
no history of head trauma and without current use of drugs).
All subjects were informed about the study aims and procedure
of signal recording and were allowed to leave the experiment at
any point if they wished. Thirty-eight subjects participated in all
the sessions (18 females), aged 20–33 years old (23.01 ± 4.32).
The remaining 10 subjects did not participate in all the sessions
or left the session due to urgent work, and so their data were
excluded from the study. Written informed consent was signed
by the participants before joining the study in accordance with
the Declaration of Helsinki. The study was approved by the Office
of Research Review Board and the Research Ethics Committee of
the Tehran University of Medical Sciences, with LREC protocol
number IR.TUMS.REC.1394.2110.

Stimuli
We used visual stimuli consisting of modulating the brightness
of a red color LED measuring 4 cm × 4 cm according to
three different temporal patterns: periodic, quasi-periodic, or
chaotic. Each of these three categories had four different target
stimuli that had their orthogonal characteristics. All the stimuli
were generated using MATLAB software (Release 2016b, The
MathWorks, 193 Inc., Natick, MA, United States).

Periodic Stimuli
For generating the periodic stimuli, we used four sine waves at
the target frequencies of f1 − f4 (20, 25, 35, and 40 Hz), as shown
in Equation 1 and schematically illustrated in Figure 2A. It can
be seen that the simple periodic stimulus group (P1 – P4) had
constant frequencies and that their spectrum was sparse in the
frequency domain representation.

Pi = sin
(
2πfit

)
. t = 0 : 6 sec. f = [20 Hz . 25 Hz .

35 Hz. 40 Hz] (1)

Quasi-Periodic Stimuli
A sine-circle map was used to generate four quasi-periodic
stimuli (Essl, 2006). Equation 2 models the sinusoidal oscillators
that were perturbed by non-linear function.

θn+1 = θn +�− K/2π sin(2πθn) (2)

where � is the frequency ratio and K is the coupling length of
non-linear perturbation.

If the frequency ratio � is a rational number (p/q) with p
and q ∈ N (natural numbers), the map shows periodic behavior.
For irrational numbers of � and appropriate parameters of K, the
behavior of the sine-circle map is called quasi-periodic oscillation
(Essl, 2006).

Quasi-periodic stimuli were generated using a sine-circle map
by considering the parameter K = 0.5 and then � were selected
as irrational numbers

(√
5− 1

)
/2 ,
√

3− 1,
√

3/2 , and
√

2/9,
where the sine-circle map showed quasi-periodic behaviors.
These parameters were used to generate quasi-periodic stimuli
Q1, Q2, Q3, and Q4. After that, the generated sequences from the
sine-circle maps were considered as a time series with a sampling
frequency of 90 Hz. Thus, each sample of the sequences was
applied for a duration of 1/90 ms. The waveform and spectrum of
the quasi-periodic stimuli are shown in Figure 2B. The waveform
and spectrum of the quasi-periodic stimuli were more complex
compared to the periodic stimulus group.

Chaotic Stimulus Group
For generating chaotic stimuli, we used a logistic map which
is a one-dimensional map capable of generating chaotic signals
with low cross-interferences. This map is seen in most of the
natural phenomena and population growth of biological species
(Costantino et al., 1997), as defined in Equation 3.

x (i+ 1) = A x (i) (1− x (i)) (3)

where x is in the interval of [0 1] and indicates the ratio of
an existing population to the maximum possible population,
x(0) as the initial value of x, and A is the rate of reproduction
and starvation that is in the interval of [0 4]. This simple map
could generate chaotic dynamics in some values of parameter A
generally between 3.5 and 4 (May, 1976). Parameter A was chosen
in a way that the logistic map exhibited chaotic behaviors for
generating four chaotic sequences and were then presented at the
rate of 90 Hz as A = 3.982, 3.885, 3.987, and 4, respectively. In this
way, four different chaotic stimuli, Ch1, Ch2, Ch3, and Ch4, were
generated by the logistic map.

Figure 2C shows the waveforms of four chaotic stimuli with
their amplitude spectra.

The dotted black curved line in the amplitude spectra plots
shows the 1/f line, where f is the frequency vector (horizontal
axis). It can be seen that the amplitude spectra of the stimuli in
the chaotic group are closer to the 1/f spectrum line compared to
the quasi-periodic and periodic stimulus groups. Please note that
for better illustration, only 1 s of the total 6 s duration of every
stimulus is shown in the plot.

Auto- and Cross-Correlation Function of
Target Stimuli
The auto- and cross-correlation functions of the periodic,
quasi-periodic, and chaotic stimulus groups were calculated to
investigate their individual orthogonal characteristics. This was
done to verify overlapping characteristics in order to avoid
interference between the target stimuli. The auto- and cross-
correlation functions of the periodic, quasi-periodic, and chaotic
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FIGURE 1 | Flowchart of the study roadmap.

groups are presented in Figures 3A–C, respectively. It is obvious
that the auto-correlation function of each target stimulus group is
high, while within-group cross-correlations of stimuli with others
is comparatively low.

Stimulus Presentation Paradigm
All the subjects were presented with periodic, quasi-periodic, and
chaotic stimuli in a single lab visit. They were presented with each
of the periodic (P1 – P4), quasi-periodic (Q1 – Q4), and chaotic
(Ch1–Ch4) stimuli as 12 different sessions. The total duration of
each session (for each stimulus) was 90 s consisting of 10 trials.
In each trial (6 s duration), the same stimulus was presented to
the subject with a 2 s rest time in between the trials. An initial
rest of 10 s was included in each session. After each session (90 s),
the subjective fatigue was evaluated (see below). The maximum

duration of a whole stimulus presentation paradigm including
rest time was approximately 30 min. The stimulus presentation
paradigm is shown in Figure 4.

The subjects were informed before the experiment that they
will be asked to evaluate their own visual fatigue by considering
the amount of tiredness and discomfort caused by gazing at the
stimuli. They were asked to grade their visual fatigue level by
choosing a number between 0 for no fatigue and 10 for the highest
fatigue level. After each session (90 s), the subjects were asked to
self-report the level of visual fatigue caused by stimulation. Their
fatigue rate was recorded and they were asked for permission
to start the next session. The order of presentation of stimuli
in all groups was randomly distributed for all subjects to avoid
possible bias in subjective visual fatigue caused by the order
of presentation.
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FIGURE 2 | Time duration, amplitude, and frequency spectrum of the periodic (A), quasi-periodic (B), and chaotic (C) stimulus groups. Columns 1 and 2 in each
plot show the relevant waveforms and spectra of the stimuli of each group. For better illustration of the waveforms, they are shown in a 1 s timescale, while the total
duration of stimuli was 6 s.

Fatigue Evaluation Process
The level of subjective visual fatigue was measured using graded
values of the Visual Analogue Scale (VAS), which is suitable
for grading continuous phenomena (Aitken, 1969). The VAS is
a subjective estimation method for quantifying a feeling and
attitude which is hard to estimate directly (Gift, 1989; Grant et al.,
1999; Crichton, 2001; Tseng et al., 2010; Klimek et al., 2017).
This scale is mostly used in clinical research for measuring the
intensity of various symptoms (Paul-Dauphin et al., 1999) such as
pain (Bijur et al., 2001). It is commonly used in BCI applications
for the evaluation of a patient’s motivation and mood (Holz et al.,
2013), the level of subjective fatigue (Guger et al., 2013; Käthner
et al., 2014), pain (Choi, 2017), discomfort (Verwulgen et al.,
2018), and control ability (Chumerin et al., 2012).

Signal Recording Setup
The EEG signals were recorded using g.USB Amp with a
sampling rate of 1,200 Hz. Four active g.Ladybird electrodes were
placed at Oz, O1, O2, and Pz positions on the scalp of the subjects
where the visual evoked potentials have maximum amplitude
(Bin et al., 2011; Aminaka et al., 2015). Fpz and right earlobe
were used as the ground and reference electrodes, respectively.
An online bandpass filter with cutoff frequencies of 0.05 and
120 Hz was applied.

The generated stimuli were applied to a custom-made digital-
to-analog converter (DAC) board as a stimulus presenter box
(shown in Supplementary Figure 1) for driving an LED. The
LED was placed at a distance of 70 cm from the subject. The
trigger output of g.USB Amp (start time of EEG recording) and
the output of a Texas Instruments optical sensor (visual stimuli)

were sent to National Instruments (NI) DAQ. Details of the signal
recording setup are reported in our previous studies (Keihani
et al., 2018; Shirzhiyan et al., 2019).

Data Processing
The signal analysis procedure was carried out for the recorded
responses for each stimulus group (periodic, quasi-periodic, and
chaotic) (Supplementary Figure 2) separately to compare the
results of the three different groups. Tenfold cross-validation was
used as our validation method. In this method, nine-tenths of the
trials were used as the training data and one-tenth was used as the
testing data. The training data was used for template generation
and the testing data was used for target identification.

Preprocessing
The recorded trigger from g.USB Amp and sensor output and the
presented stimuli in NI DAQ were used for the detection of the
beginning of each trial and then each trial EEG data was extracted.
A zero-phase eighth-order band pass filter with cutoff frequencies
of 1 and 50 Hz was applied for all the trials.

Processing (CCA and Coherence Analysis)
To analyze the EEG data, we used two methods that are
commonly employed in BCI studies: CCA and coherence analysis
(Zhang et al., 2013, 2014; Vaid et al., 2015). These methods
measure the amount of correlation in the time and frequency
domains, respectively.

Canonical correlation analysis is a multivariable data analysis
method that measures the underlying time domain correlation
between two multidimensional signals and attempts to reveal a
linear time domain correlation by maximizing the correlation
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FIGURE 3 | Auto- and cross-correlation functions of the three stimulus groups. Plot (A–C) Correlation functions over different time lags of the periodic (A),
quasi-periodic (B), and chaotic (C) groups. Rows 1 and 2 in each plot show the auto- and cross-correlations of the target stimuli in each category, respectively.

FIGURE 4 | Stimulus presentation paradigm. All the stimuli in each group were presented in 10 trials. After each trial, a 2 s rest time was considered. At the end of
each session, the fatigue rate was evaluated.

of the two signals (Lin et al., 2006). CCA has been successfully
used in target identification and in the analysis of visual evoked
potentials (Lin et al., 2006; Bin et al., 2009b, 2011). Equation

4 defines the CCA coefficient of variables x and y, where
E
(
xty
)

stand for the covariance of x and y and E
(
xtx
)

and
E(yty) represent the variance of x and y, respectively. This
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method finds the canonical correlation vectors Wx and Wy for
two multidimensional variables, x and y, by maximizing their
canonical covariants.

Maxρ
(
x.y
)
=

wx. wy

E
(
xty
)√

E
(
xtx
)
E(yty)

(4)

Coherence analysis has been used to investigate the
synchronization process of brain regions (Nunez et al., 1997;
Lachaux et al., 1999; La Rocca et al., 2014). In addition, it
has been used as a feature extraction and target identification
method in BCI applications (Gysels and Celka, 2004; Krusienski
et al., 2012; Liew et al., 2015). The coherence of two signals is
sometimes called magnitude-squared coherence, as shown by
Equation 5 which defines the amount of coherence of two signals
at a specific frequency.

Cxy
(
f
)
=

∣∣Sxy (f )∣∣2
Sxx

(
f
)
Syy(f )

(5)

where Sxx and Syy are the power spectral densities of variables x
and y, respectively, and Sxy

(
f
)

is the cross power spectral density
between x and y (Sanei and Chambers, 2007).

In this study, variable x is the template and y is the EEG signal.
In BCI studies, it is common to use either the presented stimuli
or the average EEG signal of the training session trials to generate
the template. Therefore, in this study, we used two approaches
for generating templates. In the first approach (M1), the stimuli
were used as templates, while in the second approach (M2), we
attempted to extract templates from the training dataset.

Template Generation
Templates were generated by using the two aforementioned
approaches as described below.

Approach 1 (M1): using the presented stimuli as templates
The target stimuli were resampled to the sampling frequency of
the EEG responses (1,200 Hz) and zero-padded the resampled
target stimulus i by lag time Di. The lag time Di represents
the systematic lag for the presented stimuli and was calculated
by cross-correlating the target stimuli with the grand averaged
EEG responses and determining the time lag that yielded the
maximum cross-correlation values.

This step was not important for coherence analysis because
the magnitude-squared coherence was not sensitive to the time
lag between templates (stimuli) and responses, while the CCA
coefficients were maximum where the lag was considered.

Approach 2 (M2): generating templates using the training
dataset
In VEP-based BCI studies, it is also common to create templates
using the EEG signals from a subset of the data (i.e., a training
dataset) instead of the stimulus waveform itself, as this approach
allows capturing information related to the non-linear processing
of the system. Given that we had access to the training dataset, we
used this approach to generate templates by EEG data from the
training dataset.

This approach included extracting the EEG responses from
r trials in the training set, Xr×m×n

Traini , and averaging over r trials
to generate the template for stimulus i, Tm×n

i , where m is the
number of channels and n is the number of samples per trial.

Target Identification
After generating templates separately for the targets in each
group, the CCA coefficient and coherence were calculated by
Equations 4 and 5, where T was considered as variable x and
the EEG response was considered as variable y. For template
generation using the M1 approach, all the trials were separately
considered as testing trials, while 10-fold cross-validation was
considered for template generation using the M2 approach. Here,
ninefold of the dataset was considered as the training dataset
and the one remaining fold was considered as the testing trial.
Therefore, all the trials were tested once. The details of both the
approaches of target identification are given below.

For the CCA method:

(1) Extraction of testing trials Xm×n
Test , where m and n are the

channel numbers and samples in a trial, respectively.
(2) Calculation of the CCA coefficient of templates Ti and

Xm×n
Test as vector Pi

1× m .
(3) Calculation of the mean value of P1×m

i to create
the feature vector.

(4) Selection of the maximum value of feature vector.

For the coherence method:

(1) Extraction of testing trials Xm×n
Test , where m and n are the

channel numbers and samples in a trial, respectively.
(2) Calculation of the coherence function of templates Ti and

Xm×n
Test for obtaining the vector Ci (f ).

(3) Extraction of the coherence coefficient from vector of Ci(f )
in the target frequencies or a specific frequency band.

(a) Periodic group: the target frequencies in the periodic group
were the target frequencies of the presented stimuli as
shown in Figure 2A.

(b) Quasi-periodic group: the dominant frequencies of the
presented stimuli are shown in the spectra of stimuli in
Figure 2B.

(c) Chaotic group: the total frequency band of the chaotic
stimuli as shown in Figure 2C.

(4) Calculation of the mean value of Cm×f
i to create

the feature vector.
(5) Selection of the maximum value of the feature vector.

Figure 5 schematically shows the template generation and
target identification processes.

Statistical Analysis
Statistical analysis was done with SPSS software (version 16.0,
SPSS Inc., IBM Corp., Chicago, released 2011) for comparing
the analysis methods and also for evaluating the subjective visual
fatigue rate between the three groups of stimuli (periodic, quasi-
periodic, and chaotic).
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FIGURE 5 | Illustration of the two methods for (A) template generation using approaches M1 and M2. (B) Target identification using the canonical correlation analysis
(CCA) and coherence methods. (A) The templates for the CCA and coherence methods were derived by two approaches: M1 (using target stimuli) and M2 (using
training data). (B) For the target identification, the derived templates from the template generation approaches (A) were used for analysis by the CCA and coherence
methods. In this figure m, n, and r are the channel numbers, samples in a trial, and the trial numbers in a training dataset, respectively. f represents the frequency
vector in a specific frequency band in each stimulus group. XTrain are all training trials and Strain_i represents trial response to the ith stimulus in each stimulus group.

Statistical Analysis of Accuracies
Three-way repeated measures ANOVA was used to test the effects
of three factors—methods (CCA and coherence), approaches
(M1 and M2), and stimulus groups (periodic, quasi-periodic, and
chaotic)—with assumed sphericity (significance level α = 0.05).
Confidence intervals were adjusted by Bonferroni correction for
pairwise comparisons.

Statistical Analysis of Fatigue Rates
Within-group analysis of fatigue rates
To compare the VAS scores across stimuli within each
stimulus type (periodic, quasi-periodic, and chaotic), the

Friedman test (significance level α = 0.05) was used. Then,
the scores for each pair of stimuli were compared using
the Wilcoxon signed-rank test, with a Bonferroni-corrected
alpha set to 0.008.

Between-group analysis of subjective visual fatigue rates
For comparison of the subjective visual fatigue caused by
the periodic, quasi-periodic, and chaotic groups, the VAS
scores of each group were averaged for the four sessions for
each stimulus type for each subject and were then compared
using the Friedman test (significance level α = 0.05). The
Wilcoxon signed-rank test with Bonferroni correction was
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used for the comparison of each pair while α was set
at 0.0168.

RESULTS

Accuracy Analysis Results
The descriptive statistics of all accuracies of the three stimulus
groups (periodic, quasi-periodic, and chaotic) obtained from two
different methods (CCA and coherence) and template generation
approaches (M1 and M2) are reported in Table 1, and Figure 6
shows the estimated marginal means plots of accuracies.

The 2 (analysis method) × 2 (template approach) × 3
(stimulus group) ANOVA on target identification accuracy

revealed significant main effects of analysis method
[F(1,37) = 60.253, p = 0.0001, η2

p = 0.620] and template
approach [F(1,37) = 28.56, p = 0.0001, η2

p = 0.435], but not
stimulus group [F(1,37) = 1.143, p = 0.324, η2

p = 0.030], with
overall higher accuracy for the CCA method relative to coherence
and higher accuracy for the M1 template approach relative to M2.

However, these effects were qualified by significant two-
way interactions between analysis method and stimulus group
[F(2,74) = 47.0009, p = 0.0001, η2

p = 0.56] and template approach
and stimulus group [F(2,74) = 8.776, p = 0.0001, η2

p = 0.192]. The
interaction between analysis method and template approach was
not significant [F(1,37) = 3.695, p = 0.062, η2

p = 0.091]. Finally, the
three-way interaction was significant [F(2,74) = 35.74, p = 0.0001,
η2

p = 0.491]. To decompose the three-way interaction, we

TABLE 1 | Descriptive statistics of all accuracies obtained by two methods (CCA and coherence analysis) with two template generation approaches (M1 and M2) in three
different stimulus groups.

Method Approach Stimulus group Mean (%) Standard error (%) 95% Confidence interval

Lower bound (%) Upper bound (%)

CCA M1 P 79.5 2.4 74.8 84.3

Q 73.2 2.3 68.5 77.9

Ch 85.1 2.2 80.6 89.7

M2 P 64.3 1.9 60.5 68.2

Q 78.1 2.6 72.8 83.4

Ch 86.8 1.8 83.1 90.4

Coherence M1 P 75.0 2.2 70.5 79.5

Q 70.5 2.7 65.1 76.0

Ch 70.2 2.7 64.7 75.7

M2 P 74.5 2.5 69.5 79.6

Q 65.7 2.7 60.1 71.2

Ch 58.8 3.0 52.7 64.8

CCA, canonical correlation analysis; M1, using target stimuli; M2, using training data; P, periodic; Q, quasi-periodic; Ch, chaotic.

FIGURE 6 | Marginal estimated means of all accuracies. (A,B) Marginal means of the accuracies of both approaches for the CCA and coherence methods,
respectively. (C,D) Marginal means of the target identification accuracies of the stimulus groups for approaches M1 and M2, respectively.
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examined the effects of stimulus group for each analysis method
and template separately and conducted pairwise comparisons
between the stimuli groups.

For CCA and template approach M1, accuracy was higher
for the chaotic stimuli (M = 85.1, SE = 2.2) than for periodic
(M = 79.5, SE = 2.4, p = 0.0001) and quasi-periodic (M = 73.2,
SE = 2.3, p = 0.008), with quasi-periodic also being lower than
periodic (p = 0.0001). With template approach M2, CCA accuracy
was again higher for the chaotic group (M = 86.8, SE = 1.8)
compared to the other two groups, the accuracy now being better
for the quasi-periodic (M = 78.1, SE = 2.6) than for the periodic
stimuli (p = 0.0001) (Figure 6A).

For coherence analysis, using M1 template approach, multiple
comparison with α = 0.0168 did not show significant differences
between the periodic (M = 75.0, SE = 2.2), chaotic (M = 70.2,
SE = 2.7), and quasi-periodic (M = 70.5, SE = 2, p > 0.0168)
stimulus groups. Using M2 template approach, the periodic
group (M = 74.5, SE = 2.5) showed higher accuracy than did the
chaotic group (M = 58.8, SE = 3, p = 0.001), and the quasi-periodic
group (M = 65.5, SE = 2.7) did not significantly differ from the
other groups (p > 0.02) (Figure 6B).

VAS Scores Analysis Results
The subjective fatigue VAS scores for the four stimuli within each
stimulus group are shown in Figure 7 and the averaged scores for
each stimulus group are shown in Figure 8.

Results of Within-Group Analysis of the Periodic
Group
The Friedman test showed significant differences in the VAS
scores across stimuli in the periodic group [χ2(3) = 37.857,
p = 0.0001]. Participants reported on average highest subjective
fatigue scores for P1 (20 Hz) (M = 4.92, SE = 0.38) and P2
(25 Hz) (M = 4.5, SE = 0.30), which did not differ from each other
(Z = 1.99, p = 0.046). The scores for P3 (30 Hz) were significantly
lower (M = 3.2, SE = 0.22) than for P2 (p< 0.001), and P4 had the
lowest scores (M = 2.71, SE = 0.28).

Results of Within-Group Analysis of the
Quasi-Periodic Group
The Friedman test showed significant differences among the VAS
scores of stimuli in the quasi-periodic group [χ2(3) = 14.848,
p = 0.002]. Q4 (M = 3.65, SE = 0.32) caused relatively higher
fatigue scores compared to Q1 (M = 3.08, SE = 0.30, Z = 2.85,
p = 0.004) in the pairwise comparison of within-group quasi-
periodic stimuli. Q2 (M = 3.13, SE = 0.30) and Q3 (M = 3.05,
SE = 0.326) did not differ significantly from the others.

Results of Within-Group Analysis of the Chaotic
Group
The Friedman test showed significant differences in the VAS
scores for the stimuli in the chaotic group [χ2(3) = 20.125,
p = 0.0001]. Ch1 (M = 2.02, SE = 0.28) had lower fatigue scores
compared to Ch3 (M = 2.78, SE = 0.31, Z = 3.53, p = 0.0001), and
Ch4 (M = 2.84, SE = 0.30, Z = 2.79, p = 0.005). Ch2 (M = 1.78,
SE = 0.28) did not differ from Ch1 and Ch4.

FIGURE 7 | Within-group subjective fatigue evaluation. (A–C) Within-group
analysis of the fatigue rates for the periodic, quasi-periodic, and chaotic
groups, respectively. (A) In the periodic group, the pairs of (P1, P3), (P1, P4),
(P2, P4), and (P3, P4) showed significant differences. Higher frequencies led to
lower fatigue rates. (B) There was only one significant difference within Q1 and
Q4 in the quasi-periodic group. (C) The chaotic stimulus group showed
significant difference between the Ch1–Ch3 and Ch1–Ch4 pairs (*p < 0.001,
**p < 0.0001).

Details of the p-values for subjective fatigue comparisons
using the Friedman test with Bonferroni correction are presented
in Supplementary Table 1.

Between-Group Analysis of Subjective Visual Fatigue
Rate
The Friedman test showed that the subjective visual fatigue
scores differed across the three stimulus groups [χ2(2) = 28.69,
p = 0.0001]. Participants reported higher subjective fatigue for
the periodic stimuli compared to the quasi-periodic (Z = 2.931,
p = 0.003) and chaotic stimuli (Z = 4.429, p = 0.0001). In
addition, they also felt higher fatigue for the quasi-periodic
stimuli compared to the chaotic group (Z = 3.466, p = 0.001).

DISCUSSION

In this study, for the first time, we used quasi-periodic and chaotic
stimuli with different orthogonal characteristics and compared
them with periodic stimuli commonly employed in SSVEP-based
BCIs that use EEG data. We also compared the level of subjective

Frontiers in Neuroscience | www.frontiersin.org 10 November 2020 | Volume 14 | Article 534619

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-534619 November 11, 2020 Time: 15:25 # 11

Shirzhiyan et al. Quasi-Periodic and Chaotic VEP-Based BCI

FIGURE 8 | Subjective fatigue rates comparison between all the stimulus
groups. The periodic group had the highest fatigue rate compared to the other
two groups. The chaotic group had the least fatigue rate compared to the
periodic and quasi-periodic groups (**p < 0.0001, *p < 0.016).

visual fatigue caused by these three stimuli on young adult
participants. For this purpose, three groups of visual stimuli
with different temporal dynamics (periodic, quasi-periodic, and
chaotic) from simple sinusoidal frequencies to complex stimuli
were generated from sine-circle and logistic maps and used for
evoking visual potentials.

Periodic stimuli have been used for years in VEP generation
for eliciting SSVEP responses that are known for their
relatively high ITR, less training time (Parini et al., 2009),
and practical BCI applications (Lalor et al., 2005; Muller-
Putz and Pfurtscheller, 2008; Bin et al., 2009b; Yin et al.,
2015; Lin et al., 2016; Wang Y.T. et al., 2017; Wang et al.,
2018). Our results showed that the introduced dynamical visual
stimuli (quasi-periodic and chaotic stimulus groups) could also
evoke discriminative responses and can have even better target
identification accuracies than the periodic visual stimulus group
using the CCA method. In addition, compared to the other
stimulus groups (periodic and quasi-periodic), the obtained
accuracy values of target identification for the chaotic group by
employing the CCA method for template generation approaches
M1 (stimuli waveforms considered as a template) and M2
(templates generated from training EEG dataset) were the
highest, with values of M = 86.78%, SE = 1.8% and M = 85.1%,
SE = 2.2%, respectively. The results of the M1 approach for
the periodic, quasi-periodic, and chaotic stimuli indicate that
their corresponding EEG responses correlated with their stimuli
waveforms. It has been reported that the temporal structures of
quasi-rhythmic stimuli are reflected in the brain responses in the
visual cortex (Keitel et al., 2017).

Auto- and Cross-Correlation Function of
Stimulus Groups
The stimuli in the chaotic and quasi-periodic groups as well as in
the periodic group had orthogonal characteristics (Figure 3). This

was demonstrated by the fact that the pairwise cross-correlation
values between the stimuli were less than the auto-correlation
values for the target stimuli (Figure 3). The cross-correlation
functions showed that the stimuli within each stimulus group
were not correlated because their cross-correlation values were
close to zero. This meant that these stimuli were nearly
orthogonal and the interference between the stimuli would
be reduced in possible BCI applications. It is worth noting
that the chaotic group’s auto-correlation exhibited a Dirac-like
function, meaning that while these stimuli were orthogonal,
they did not correlate with themselves. This feature was absent
in the periodic and quasi-periodic groups, which required a
higher level of synchronization between the visual stimuli and
their EEG responses. The concept of Dirac-like auto-correlation
function has been used in code-modulated BCIs for generating
uncorrelated target stimuli from one code by the process of
shifting (Bin et al., 2011).

Cross-Correlation Function of Stimuli
and Responses
The cross-correlation function of the presented stimuli and their
corresponding responses suggest that the visual pathway system
serves as an input and the evoked potentials as the system
output. The lag of maximum of the cross-correlation function
is considered as a system delay, which was used in our analysis
especially in the CCA method for the M1 approach to generate
templates from the presented stimuli. Due to the periodic and
semi-periodic nature of the cross-correlation function (as seen in
Figures 9A,B), compensating for the delay in templates was not
necessary. However, compensating for the delay was vital for the
chaotic group because the chaotic stimuli correlated with their
corresponding responses in a specific time delay (Figure 9C). For
the CCA method using template generation from the training
dataset (M2 approach), the time delay compensation was not
needed as the inherent time delay was embedded in the templates
extracted from the training dataset.

Target Identification Results Comparison
The highest accuracy for the chaotic group was obtained by
CCA using the M2 approach, while the lowest accuracy was
obtained by the coherence method using the M2 approach.
The much lower accuracy seen with the chaotic stimuli using
coherence analysis may be explained by the fact that the
spectra of these stimuli are highly similar, making them
less discriminative compared to the other stimulus groups
(periodic and quasi-periodic) (column 2 in Figure 2C). As the
coherence analysis quantified the synchronization of the spectral
information of two variables, for the periodic stimuli (single
frequency) and even the quasi-periodic stimuli (containing
multiple dominant frequencies), measuring the amount of
synchronization between the narrow frequency bands (Vaid
et al., 2015) was relatively less likely to be impacted by
noise. However, as the chaotic stimulus spectra are similar
and less discriminant (column 2 in Figure 2C) compared to
the other stimulus groups, coherence analysis using the M2
approach is not recommended for chaotic stimuli. We suggest
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FIGURE 9 | Cross-correlations of the periodic, quasi-periodic, and chaotic stimuli with their corresponding EEG responses. Results of the periodic (A),
quasi-periodic (B), and chaotic (C) groups in all subjects. The lag of maximum correlation values in the plots were considered as delay time (Di , i = [1 2 . . . 4]) in
template generation using the M1 approach. X- and Y-values represent the lag black dot values where the cross-correlation function of the stimuli and their
corresponding responses are maximum, respectively.

the coherence method with the M1 approach for the analysis of
chaotic stimuli.

While using the M1 templates with the coherence method
led to a lower accuracy than with the CCA method, there is
some benefit to using the coherence method with chaotic stimuli.
Specifically, unlike CCA, coherence analysis is not sensitive to the
time lag between variables (Guevara and Corsi-Cabrera, 1996).
Therefore, using the coherence method could reduce the training
time because it removes the need to obtain training data in order
to extract the time lag needed for the time domain correlation.

The accuracy values of the M2 approach were found to be
relatively higher compared to M1 in the CCA analysis for the
quasi-periodic and chaotic stimuli (Figure 6 and Table 1). This
means that the EEG response to the chaotic and quasi-periodic
stimuli may contain not only the stimulus-locked components
but also more complex dynamics that did not correlate with the
visual stimuli while being discriminative.

Within-Group Subjective Visual Fatigue
Rate Evaluation
From Figure 7, it can be seen that the mean VAS scores of the
periodic stimulus group (P1 – P4, corresponding to frequencies
of 20, 25, 35, and 40 Hz) decreased as the frequency of the
target stimuli increased. These results confirm the fact that higher
frequencies cause a less subjective visual fatigue level compared to
lower ones (Allison et al., 2010; Volosyak et al., 2011; Yoshimoto
et al., 2017). The statistical results show significant differences
between all the pairs, except for P1 – P2 and P3 – P4 which were
close to each other compared to the other pairs.

Q4 stimulus had higher VAS scores compared to Q1. This may
be due to the fact that Q4 stimulus had dominant components
in lower frequencies (column 2 in Figure 2B) compared to Q1,
possibly leading to a more subjective visual fatigue. Ch1 stimuli
caused lower subjective visual fatigue compared to Ch3 and Ch4.
This could be due to the differences in the spectrum of Ch1
compared to those of Ch3 and Ch4 (column 2 in Figure 2C)
which tend to be in the higher frequencies.

In summary, the periodic stimulus group was less favorable
considering the higher subjective visual fatigue level compared
to the quasi-periodic and chaotic stimulus groups. For designing
homogenous BCI, it is recommended to optimize the quasi-
periodic and chaotic groups’ orthogonal stimuli by evaluating
their auto- and cross-correlation functions while at the same
time choosing appropriate frequency bandwidths to minimize
variations in the subjective visual fatigue.

Between-Group Subjective Fatigue Rate
Evaluation
The comparison of the subjective visual fatigue rates of the
periodic, quasi-periodic, and chaotic stimulus groups showed
that the chaotic group caused less visual fatigue compared to
the other two stimulus groups. The quasi-periodic group caused
lower levels of visual fatigue compared to the periodic one
(Figure 8). These results indicate the superiority of using the
chaotic group for designing new comfortable and ergonomic
VEP-based BCIs. Our recent study also showed that visual stimuli
with chaotic characteristics lead to significantly less visual fatigue
(Shirzhiyan et al., 2019).
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The visual fatigue reduction seen in the chaotic and even the
quasi-periodic stimuli group could be due to their dynamical and
complex nature which is more compatible with the visual system
compared to synthesized single frequencies. It has been shown
that the periodic stimuli that exist in nature are not very pure in
tone and have more than a single frequency as they contain quasi-
rhythmic components and have a complex dynamical structure
(Kayser et al., 2003; Butts et al., 2007; Mazzoni et al., 2011).

A simple deterministic dynamical system is also able
to generate extremely unpredictable, divergent, and fractal
behaviors (Boeing, 2016). These behaviors contain infinitely
self-similar patterns avoiding exact repetition (periodicity). It
is shown that fractal images and natural patterns are more
appealing compared to the synthesized ones (Redies, 2007;
Chapeau-Blondeau et al., 2009; Hagerhall et al., 2015; Kardan
et al., 2015), and also the chaotic patterns with high fractal
dimension and Lyapunov exponent are more aesthetically
pleasing (Aks and Sprott, 1996). The application of natural visual
stimuli that have sparse encoding can induce a resonant state
leading to the adaptation of the visual system to natural patterns
(Sekuler and Bennett, 2001; Redies, 2007) and possibly lower
visual discomfort. The results of the current study show that
visual fatigue scores are lower for quasi-periodic and chaotic
stimuli compared to periodic stimuli having one frequency. It is
speculated that this could be potentially because of the adaptation
of the visual system to the presented complex dynamical stimuli.

Additionally, the chaotic, quasi-periodic, and periodic
stimulus groups were closer to the 1/f amplitude spectrum,
with the chaotic group being the nearest (dotted black line in
the amplitude spectra plots of Figure 2). This pattern matches
our results of the VAS scores as the chaotic group had the least
visual fatigue in the same order with the other two groups. The
relevance of a comparatively less visual fatigue and nearness of
the chaotic stimuli to the 1/f amplitude spectrum is in agreement
with previous studies reporting that the visual system encodes
stimuli with 1/f amplitude spectral information (Tan and Yao,
2009; Ellemberg et al., 2012; Isherwood et al., 2017; Yoshimoto
et al., 2017).

Limitations and Plans for Future Studies
Our study has several limitations. Within-group analysis of the
subjective visual fatigue rates shows significant differences in all
the three groups. In practice, it is not favorable that different
target stimuli have different discomfort levels. To avoid possible
within-group differences, the parameters of the stimulus-
generated maps for each stimulus group could be selected in
order to have similar stimulus spectra while at the same time
preferring a higher frequency range instead of a lower one.

In this research, we did not study the optimization process for
selecting the appropriate parameters of the quasi-periodic and
chaotic stimuli. For future studies, optimization of the parameters
with the aim of having a sharper and greater auto-correlation
function of the target stimuli and a lower cross-correlation
function with other stimuli should be considered. It is possible
that such optimization can lead to better accuracy results.

The calculated lag times from the cross-correlation functions
in three different stimulus groups represent interesting patterns.

As can be seen from Figure 9, the obtained delay for each target
stimulus group differed from each other mainly in the periodic
stimulus group, while this delay was almost constant among the
target stimuli in the quasi-periodic and chaotic stimulus groups.
The diversity in the delay lags could potentially be due to the non-
linear behavior of the visual system to the presented input. We
plan to investigate this effect in a future project and study the
reasons leading to differential system delays for different stimulus
characteristics.

In our previous study, we have shown that using binary
chaotic codes versus m-sequences could decrease the subjective
visual fatigue, and this could be used as a modulating code in
c-VEP-based BCIs. Additionally, in this study, we found that
the chaotic stimulus group provided very high discrimination
between its individual stimuli, Ch1–Ch4, and could reduce the
fatigue rate better when compared to the traditional stimuli for
VEP generation (periodic stimuli). For further studies, it would
be probably feasible to attempt using chaotic stimuli generated
from other chaotic maps (such as Hanon map) and as short as
codes commonly used in c-VEP studies. This could lead to the
design of more comfortable and ergonomic c-VEP-based BCIs.

CONCLUSION

In this study, we introduced for the first time quasi-periodic
and chaotic visual stimuli for evoking VEPs in order to use
them in VEP-based BCIs and compared them with traditional
periodic stimuli used in SSVEP-based studies. The presented
complex stimuli (quasi-periodic and chaotic stimuli) satisfy the
necessities for use as visual stimuli in VEP-based BCIs. The
best target identification accuracy was obtained for the chaotic
stimuli. Potentially due to the more natural-like characteristics of
the chaotic and quasi-periodic stimuli, they led to less subjective
visual fatigue compared to the periodic stimulus group.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the office of research review board and the research
ethics committee of the Tehran University of Medical Sciences
with the LREC protocol number IR.TUMS.REC.1394.2110. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

ZS: data acquisition, analysis and interpretation, and first draft of
manuscript. AK: data acquisition and analysis and contribution
to manuscript writing. MF: hardware design and data acquisition.
ES and MG: data acquisition and analysis. AM: study design,

Frontiers in Neuroscience | www.frontiersin.org 13 November 2020 | Volume 14 | Article 534619

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-534619 November 11, 2020 Time: 15:25 # 14

Shirzhiyan et al. Quasi-Periodic and Chaotic VEP-Based BCI

hardware, data interpretation, and supervision. MH: data
interpretation, design, overall supervision, and manuscript
review. AJ: study design, funding, project supervision, and
principal investigator. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by Tehran University of Medical
Sciences (grant no. 30946).

ACKNOWLEDGMENTS

The authors would like to thank all subjects of this study for their
cooperation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.534619/full#supplementary-material

REFERENCES
Aihara, K. (1989). Chaotic neural networks (Bifurcation phenomena in nonlinear

systems and theory of dynamical systems). Res. Instit. Math. Analys. 710,
145–163.

Aihara, K., Matsumoto, G., and Ikegaya, Y. (1984). Periodic and non-periodic
responses of a periodically forced Hodgkin-Huxley oscillator. J. Theoret. Biol.
109, 249–269. doi: 10.1016/s0022-5193(84)80005-3

Aitken, R. C. (1969). A growing edge of measurement of feelings [Abridged]
measurement of feelings using visual analogue scales. J. R. Soc. Med. 62,
989–993.

Ajami, S., Mahnam, A., and Abootalebi, V. (2018). Development of a practical
high frequency brain-computer interface based on steady-state visual evoked
potentials using a single channel of EEG. Biocybernet. Biomed. Eng. 38, 106–114.
doi: 10.1016/j.bbe.2017.10.004

Aks, D. J., and Sprott, J. C. (1996). Quantifying aesthetic preference for chaotic
patterns. Empir. Stud. Arts 14, 1–16. doi: 10.2190/6v31-7m9r-t9l5-cdg9

Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., and Graser, A.
(2010). BCI demographics: how many (and what kinds of) people can use an
SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 18, 107–116. doi: 10.1109/
tnsre.2009.2039495

Allison, B. Z., McFarland, D. J., Schalk, G., Zheng, S. D., Jackson, M. M., and
Wolpaw, J. R. (2008). Towards an independent brain-computer interface using
steady state visual evoked potentials. Clin. Neurophysiol. 119, 399–408. doi:
10.1016/j.clinph.2007.09.121

Aminaka, D., Makino, S., and Rutkowski, T. M. (2015). “Eeg filtering optimization
for code-modulated chromatic visual evoked potential-based brain-computer
interface,” in Proceedings of the International Workshop on Symbiotic
Interaction, Berlin.

Atick, J. J., and Redlich, A. N. (1992). What does the retina know about natural
scenes? Neural Comput. 4, 196–210. doi: 10.1162/neco.1992.4.2.196

Attinger, E., Anne, A., and McDonald, D. (1966). Use of fourier series for the
analysis of biological systems. Biophys. J. 6:291. doi: 10.1016/s0006-3495(66)
86657-2

Bijur, P. E., Silver, W., and Gallagher, E. J. (2001). Reliability of the visual analog
scale for measurement of acute pain. Acad. Emerg. Med. 8, 1153–1157. doi:
10.1111/j.1553-2712.2001.tb01132.x

Bin, G., Gao, X., Wang, Y., Hong, B., and Gao, S. (2009a). VEP-based
brain-computer interfaces: time, frequency, and code modulations [Research
Frontier]. IEEE Comput. Intellig. Magaz. 4, 22–26. doi: 10.1109/mci.2009.
934562

Bin, G., Gao, X., Yan, Z., Hong, B., and Gao, S. (2009b). An online multi-channel
SSVEP-based brain-computer interface using a canonical correlation analysis
method. J. Neural Eng. 6:046002. doi: 10.1088/1741-2560/6/4/046002

Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., and Gao, S. (2011). A high-speed BCI
based on code modulation VEP. J. Neural Eng. 8:025015. doi: 10.1088/1741-
2560/8/2/025015

Blake, R., and Lee, S.-H. (2005). The role of temporal structure in human vision.
Behav. Cogn. Neurosci. Rev. 4, 21–42. doi: 10.1177/1534582305276839

Boeing, G. (2016). Visual analysis of nonlinear dynamical systems: chaos, fractals,
self-similarity and the limits of prediction. Systems 4:37. doi: 10.3390/
systems4040037

Butts, D. A., Weng, C., Jin, J., Yeh, C.-I., Lesica, N. A., Alonso, J.-M., et al. (2007).
Temporal precision in the neural code and the timescales of natural vision.
Nature 449:92. doi: 10.1038/nature06105

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Bonabeau, E., and
Theraula, G. (2003). Self-Organization in Biological Systems. Princeton, NJ:
Princeton University Press.

Chang, M. H., Baek, H. J., Lee, S. M., and Park, K. S. (2014). An amplitude-
modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-
computer interfaces. Clin. Neurophysiol. 125, 1380–1391. doi: 10.1016/j.clinph.
2013.11.016

Chapeau-Blondeau, F., Chauveau, J., Rousseau, D., and Richard, P. (2009). Fractal
structure in the color distribution of natural images. Chaos Solitons Fract. 42,
472–482. doi: 10.1016/j.chaos.2009.01.008

Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T.-P., and Gao, S. (2015). High-
speed spelling with a noninvasive brain-computer interface. Proc. Natl. Acad.
Sci. U.S.A. 112, E6058–E6067.

Chien, Y.-Y., Lin, F.-C., Zao, J. K., Chou, C.-C., Huang, Y.-P., Kuo, H.-Y., et al.
(2017). Polychromatic SSVEP stimuli with subtle flickering adapted to brain-
display interactions. J. Neural Eng. 14:016018. doi: 10.1088/1741-2552/aa550d

Choi, I. (2017). A Sensorimotor Rhythm (SMR)-Based Brain-Computer Interface
(BCI) Controlled Functional Electrical Stimulation (FES) for Restoration of Hand
Grasping and Extension Functions. Raleigh, CA: NC State University Libraries.

Chumerin, N., Manyakov, N. V., van Vliet, M., Robben, A., Combaz, A., and
Van Hulle, M. M. (2012). Steady-state visual evoked potential-based computer
gaming on a consumer-grade EEG device. IEEE Trans. Comput. Intellig. Games
5, 100–110. doi: 10.1109/tciaig.2012.2225623

Correa, A., and Nobre, A. C. (2008). Neural modulation by regularity and passage
of time. J. Neurophysiol. 100, 1649–1655. doi: 10.1152/jn.90656.2008

Costantino, R., Desharnais, R., Cushing, J., and Dennis, B. (1997). Chaotic
dynamics in an insect population. Science 275, 389–391. doi: 10.1126/science.
275.5298.389

Crichton, N. (2001). Visual analogue scale (VAS). J. Clin. Nurs. 10:706.
DeTommaso, M., Sciruicchio, V., Guido, M., Sasanelli, G., and Puca, F. (1999).

Steady-state visual-evoked potentials in headache: diagnostic value in migraine
and tension-type headache patients. Cephalalgia 19, 23–26. doi: 10.1046/j.
1468-2982.1999.1901023.x

Ellemberg, D., Hansen, B. C., and Johnson, A. (2012). The developing visual system
is not optimally sensitive to the spatial statistics of natural images. Vis. Res. 67,
1–7.

Essl, G. (2006). Circle Maps as Simple Oscillators for Complex Behavior: I. Basics.
Available online at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.129.5143&rep=rep1&type=pdf doi: 10.1016/j.visres.2012.06.018 (accessed
January 2, 2020).

Feng, P., Wu, Y., and Zhang, J. (2017). A Route to chaotic behavior of single neuron
exposed to external electromagnetic radiation. Front. Comput. Neurosci. 11:94.
doi: 10.3389/fncom.2017.00094

Fisher, R. S., Harding, G., Erba, G., Barkley, G. L., and Wilkins, A. (2005). Photic-
and pattern-induced seizures: a review for the epilepsy foundation of america
working group. Epilepsia 46, 1426–1441. doi: 10.1111/j.1528-1167.2005.31
405.x

Freeman, W. J. (1992). Tutorial on neurobiology: from single neurons to brain
chaos. Intern. J. Bifurc. Chaos 2, 451–482. doi: 10.1142/s0218127492000653

Frontiers in Neuroscience | www.frontiersin.org 14 November 2020 | Volume 14 | Article 534619

https://www.frontiersin.org/articles/10.3389/fnins.2020.534619/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.534619/full#supplementary-material
https://doi.org/10.1016/s0022-5193(84)80005-3
https://doi.org/10.1016/j.bbe.2017.10.004
https://doi.org/10.2190/6v31-7m9r-t9l5-cdg9
https://doi.org/10.1109/tnsre.2009.2039495
https://doi.org/10.1109/tnsre.2009.2039495
https://doi.org/10.1016/j.clinph.2007.09.121
https://doi.org/10.1016/j.clinph.2007.09.121
https://doi.org/10.1162/neco.1992.4.2.196
https://doi.org/10.1016/s0006-3495(66)86657-2
https://doi.org/10.1016/s0006-3495(66)86657-2
https://doi.org/10.1111/j.1553-2712.2001.tb01132.x
https://doi.org/10.1111/j.1553-2712.2001.tb01132.x
https://doi.org/10.1109/mci.2009.934562
https://doi.org/10.1109/mci.2009.934562
https://doi.org/10.1088/1741-2560/6/4/046002
https://doi.org/10.1088/1741-2560/8/2/025015
https://doi.org/10.1088/1741-2560/8/2/025015
https://doi.org/10.1177/1534582305276839
https://doi.org/10.3390/systems4040037
https://doi.org/10.3390/systems4040037
https://doi.org/10.1038/nature06105
https://doi.org/10.1016/j.clinph.2013.11.016
https://doi.org/10.1016/j.clinph.2013.11.016
https://doi.org/10.1016/j.chaos.2009.01.008
https://doi.org/10.1088/1741-2552/aa550d
https://doi.org/10.1109/tciaig.2012.2225623
https://doi.org/10.1152/jn.90656.2008
https://doi.org/10.1126/science.275.5298.389
https://doi.org/10.1126/science.275.5298.389
https://doi.org/10.1046/j.1468-2982.1999.1901023.x
https://doi.org/10.1046/j.1468-2982.1999.1901023.x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.5143&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.5143&rep=rep1&type=pdf
https://doi.org/10.1016/j.visres.2012.06.018
https://doi.org/10.3389/fncom.2017.00094
https://doi.org/10.1111/j.1528-1167.2005.31405.x
https://doi.org/10.1111/j.1528-1167.2005.31405.x
https://doi.org/10.1142/s0218127492000653
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-534619 November 11, 2020 Time: 15:25 # 15

Shirzhiyan et al. Quasi-Periodic and Chaotic VEP-Based BCI

Gao, S., Wang, Y., Gao, X., and Hong, B. (2014). Visual and auditory brain-
computer interfaces. IEEE Trans. Biomed. Eng. 61, 1436–1447. doi: 10.1109/
tbme.2014.2300164

Gift, A. G. (1989). Visual analogue scales: measurement of subjective phenomena.
Nurs. Res. 38, 286–288.

Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., Mc Murray, J., et al.
(1999). A comparison of the reproducibility and the sensitivity to change of
visual analogue scales, Borg scales, and Likert scales in normal subjects during
submaximal exercise. Chest 116, 1208–1217. doi: 10.1378/chest.116.5.1208

Guevara, M. A., and Corsi-Cabrera, M. (1996). EEG coherence or EEG correlation?
Intern. J. Psychophysiol. 23, 145–153. doi: 10.1016/s0167-8760(96)00038-4

Guger, C., Allison, B., and Edlinger, G. (2013). “State of the art in bci research: BCI
award 2011,” in Brain-Computer Interface Research, ed. R. Fazel-Rezai (London:
IntechOpen), 1–5. doi: 10.1007/978-3-642-36083-1_1

Guo, F., Hong, B., Gao, X., and Gao, S. (2008). A brain-computer interface using
motion-onset visual evoked potential. J. Neural Eng. 5:477. doi: 10.1088/1741-
2560/5/4/011

Gysels, E., and Celka, P. (2004). Phase synchronization for the recognition of
mental tasks in a brain-computer interface. IEEE Trans. Neural Syst. Rehabil.
Eng. 12, 406–415. doi: 10.1109/tnsre.2004.838443

Haegens, S., and Golumbic, E. Z. (2018). Rhythmic facilitation of sensory
processing: a critical review. Neurosci. Biobehav. Rev. 86, 150–165. doi: 10.1016/
j.neubiorev.2017.12.002

Hagerhall, C. M., Laike, T., Kuller, M., Marcheschi, E., Boydston, C., and Taylor,
R. (2015). Human physiological benefits of viewing nature: EEG responses to
exact and statistical fractal patterns. Nonlinear Dyn. Psychol. Life Sci. 19, 1–12.

Han, C., Xu, G., Xie, J., Chen, C., and Zhang, S. (2018). Highly interactive brain-
computer interface based on flicker-free steady-state motion visual evoked
potential. Sci. Rep. 8:5835.

Hoebeek, F. E., Witter, L., Ruigrok, T. J., and De Zeeuw, C. I. (2010). Differential
olivo-cerebellar cortical control of rebound activity in the Cerebellar nuclei.
Proc. Natl. Acad. Sci. U.S.A. 107, 8410–8415. doi: 10.1073/pnas.0907118107

Holz, E. M., Höhne, J., Staiger-Sälzer, P., Tangermann, M., and Kübler, A. (2013).
Brain-computer interface controlled gaming: evaluation of usability by severely
motor restricted end-users. Artif. Intellig. Med. 59, 111–120. doi: 10.1016/j.
artmed.2013.08.001

Hong, K.-S. (2011). Synchronization of coupled chaotic FitzHugh-Nagumo
neurons via lyapunov functions. Math. Comput. Simul. 82, 590–603. doi: 10.
1016/j.matcom.2011.10.005

Isherwood, Z. J., Schira, M. M., and Spehar, B. (2017). The tuning of human visual
cortex to variations in the 1/fα amplitude spectra and fractal properties of
synthetic noise images. Neuroimage 146, 642–657. doi: 10.1016/j.neuroimage.
2016.10.013

Ishikawa, T., Shimuta, M., and Häusser, M. (2015). Multimodal sensory integration
in single cerebellar granule cells in vivo. eLife 4:e12916.

Jiang, J., Yin, E., Wang, C., Xu, M., and Ming, D. (2018). Incorporation of
dynamic stopping strategy into the high-speed SSVEP-based BCIs. J. Neural
Eng. 15:046025. doi: 10.1088/1741-2552/aac605

Jin, J., Sellers, E. W., Zhou, S., Zhang, Y., Wang, X., and Cichocki, A. (2005). A P300
brain-computer interface based on a modification of the mismatch negativity
paradigm. Intern. J. Neural Syst. 25:1550011. doi: 10.1142/s0129065715500112

Kapgate, D., and Kalbande, D. (2015). “A review on visual brain computer
interface,” in Advancements of Medical Electronics. Lecture Notes in
Bioengineering, eds S. Gupta, S. Bag, K. Ganguly, I. Sarkar, and P. Biswas
(New Delhi: Springer), 193–206.

Kardan, O., Demiralp, E., Hout, M. C., Hunter, M. R., Karimi, H., Hanayik, T.,
et al. (2015). Is the preference of natural versus man-made scenes driven by
bottom-up processing of the visual features of nature? Front. Psychol. 6:471.
doi: 10.3389/fncom.2017.00471

Käthner, I., Wriessnegger, S. C., Müller-Putz, G. R., Kübler, A., and Halder, S.
(2014). Effects of mental workload and fatigue on the P300, alpha and theta
band power during operation of an ERP (P300) brain-computer interface. Biol.
Psychol. 102, 118–129. doi: 10.1016/j.biopsycho.2014.07.014

Kayser, C., Salazar, R. F., and Konig, P. (2003). Responses to natural scenes in cat
V1. J. Neurophysiol. 90, 1910–1920. doi: 10.1152/jn.00195.2003

Keihani, A., Shirzhiyan, Z., Farahi, M., Shamsi, E., Mahnam, A., Makkiabadi, B.,
et al. (2018). Use of sine shaped high-frequency rhythmic visual stimuli patterns

for SSVEP response analysis and fatigue rate evaluation in normal subjects.
Front. Hum. Neurosci. 12:201. doi: 10.3389/fnhum.2018.00201

Keitel, C., Thut, G., and Gross, J. (2017). Visual cortex responses reflect temporal
structure of continuous quasi-rhythmic sensory stimulation. Neuroimage 146,
58–70. doi: 10.1016/j.neuroimage.2016.11.043

Klimek, L., Bergmann, K.-C., Biedermann, T., Bousquet, J., Hellings, P., Jung,
K., et al. (2017). Visual analogue scales (VAS): measuring instruments for the
documentation of symptoms and therapy monitoring in cases of allergic rhinitis
in everyday health care. Allergo J. Intern. 26, 16–24. doi: 10.1007/s40629-016-
0006-7

Krusienski, D. J., McFarland, D. J., and Wolpaw, J. R. (2012). Value of amplitude,
phase, and coherence features for a sensorimotor rhythm-based brain-
computer interface. Brain Res. Bull. 87, 130–134. doi: 10.1016/j.brainresbull.
2011.09.019

La Rocca, D., Campisi, P., Vegso, B., Cserti, P., Kozmann, G., Babiloni, F.,
et al. (2014). Human brain distinctiveness based on EEG spectral coherence
connectivity. IEEE Trans. Biomed. Eng. 61, 2406–2412. doi: 10.1109/tbme.2014.
2317881

Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring
phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208. doi: 10.1002/
(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c

Lalor, E. C., Kelly, S. P., Finucane, C., Burke, R., Smith, R., Reilly, R. B., et al. (2005).
Steady-state VEP-based brain-computer interface control in an immersive 3D
gaming environment. EURASIP J. Adv. Signal. Process. 2005:706906.

Lasley, D. J., and Cohn, T. (1981). Detection of a luminance increment: effect of
temporal uncertainty. JOSA 71, 845–850. doi: 10.1364/josa.71.000845

Lebedev, M. A., and Nicolelis, M. A. (2006). Brain-machine interfaces: past, present
and future. Trends Neurosci. 29, 536–546. doi: 10.1016/j.tins.2006.07.004

Lee, P.-L., Hsieh, J.-C., Wu, C.-H., Shyu, K.-K., Chen, S.-S., Yeh, T.-C., et al.
(2006). The brain computer interface using flash visual evoked potential and
independent component analysis. Ann. Biomed. Eng. 34, 1641–1654. doi: 10.
1007/s10439-006-9175-8

Lee, P.-L., Hsieh, J.-C., Wu, C.-H., Shyu, K.-K., and Wu, Y.-T. (2008). Brain
computer interface using flash onset and offset visual evoked potentials. Clin.
Neurophysiol. 119, 605–616. doi: 10.1016/j.clinph.2007.11.013

Lee, P.-L., Yeh, C.-L., Cheng, J. Y.-S., Yang, C.-Y., and Lan, G.-Y. (2011). An
SSVEP-based BCI using high duty-cycle visual flicker. IEEE Trans. Biomed. Eng.
58, 3350–3359. doi: 10.1109/tbme.2011.2162586

Liew, S.-H., Choo, Y.-H., Low, Y. F., and Yusoh, Z. I. M. (2015). Identifying visual
evoked potential (VEP) electrodes setting for person authentication. Int. J. Adv.
Soft Comput. Appl. 7, 85–99.

Lin, K., Cinetto, A., Wang, Y., Chen, X., Gao, S., and Gao, X. (2016). An online
hybrid BCI system based on SSVEP and EMG. J. Neural Eng. 13:026020. doi:
10.1088/1741-2560/13/2/026020

Lin, Z., Zhang, C., Wu, W., and Gao, X. (2006). Frequency recognition based on
canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng.
53, 2610–2614. doi: 10.1109/tbme.2006.886577

Liu, Y., Wei, Q., and Lu, Z. (2018). A multi-target brain-computer interface based
on code modulated visual evoked potentials. PLoS One 13:e0202478. doi: 10.
1371/journal.pone.202478

Llinás, R. R. (1988). The intrinsic electrophysiological properties of mammalian
neurons: insights into central nervous system function. Science 242, 1654–1664.

Lv, M., Wang, C., Ren, G., Ma, J., and Song, X. (2016). Model of electrical activity
in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490. doi:
10.1007/s11071-016-2773-6

Ma, J., and Tang, J. (2017). A review for dynamics in neuron and neuronal network.
Nonlinear Dyn. 89, 1569–1578. doi: 10.1007/s11071-017-3565-3

Martinez, P., Bakardjian, H., and Cichocki, A. (2007). Fully online multicommand
brain-computer interface with visual neurofeedback using SSVEP paradigm.
Comput. Intellig. Neurosci. 94561. doi: 10.1155/2007/94561

May, R. M. (1976). Simple mathematical models with very complicated dynamics.
Nature 261:459. doi: 10.1038/261459a0

Mazzoni, A., Brunel, N., Cavallari, S., Logothetis, N. K., and Panzeri, S. (2011).
Cortical dynamics during naturalistic sensory stimulations: experiments and
models. J. Physiol. Paris 105, 2–15. doi: 10.1016/j.jphysparis.2011.07.014

McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., Sellers,
E. W., et al. (2015). P300-based brain-computer interface (BCI) event-related

Frontiers in Neuroscience | www.frontiersin.org 15 November 2020 | Volume 14 | Article 534619

https://doi.org/10.1109/tbme.2014.2300164
https://doi.org/10.1109/tbme.2014.2300164
https://doi.org/10.1378/chest.116.5.1208
https://doi.org/10.1016/s0167-8760(96)00038-4
https://doi.org/10.1007/978-3-642-36083-1_1
https://doi.org/10.1088/1741-2560/5/4/011
https://doi.org/10.1088/1741-2560/5/4/011
https://doi.org/10.1109/tnsre.2004.838443
https://doi.org/10.1016/j.neubiorev.2017.12.002
https://doi.org/10.1016/j.neubiorev.2017.12.002
https://doi.org/10.1073/pnas.0907118107
https://doi.org/10.1016/j.artmed.2013.08.001
https://doi.org/10.1016/j.artmed.2013.08.001
https://doi.org/10.1016/j.matcom.2011.10.005
https://doi.org/10.1016/j.matcom.2011.10.005
https://doi.org/10.1016/j.neuroimage.2016.10.013
https://doi.org/10.1016/j.neuroimage.2016.10.013
https://doi.org/10.1088/1741-2552/aac605
https://doi.org/10.1142/s0129065715500112
https://doi.org/10.3389/fncom.2017.00471
https://doi.org/10.1016/j.biopsycho.2014.07.014
https://doi.org/10.1152/jn.00195.2003
https://doi.org/10.3389/fnhum.2018.00201
https://doi.org/10.1016/j.neuroimage.2016.11.043
https://doi.org/10.1007/s40629-016-0006-7
https://doi.org/10.1007/s40629-016-0006-7
https://doi.org/10.1016/j.brainresbull.2011.09.019
https://doi.org/10.1016/j.brainresbull.2011.09.019
https://doi.org/10.1109/tbme.2014.2317881
https://doi.org/10.1109/tbme.2014.2317881
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
https://doi.org/10.1364/josa.71.000845
https://doi.org/10.1016/j.tins.2006.07.004
https://doi.org/10.1007/s10439-006-9175-8
https://doi.org/10.1007/s10439-006-9175-8
https://doi.org/10.1016/j.clinph.2007.11.013
https://doi.org/10.1109/tbme.2011.2162586
https://doi.org/10.1088/1741-2560/13/2/026020
https://doi.org/10.1088/1741-2560/13/2/026020
https://doi.org/10.1109/tbme.2006.886577
https://doi.org/10.1371/journal.pone.202478
https://doi.org/10.1371/journal.pone.202478
https://doi.org/10.1007/s11071-016-2773-6
https://doi.org/10.1007/s11071-016-2773-6
https://doi.org/10.1007/s11071-017-3565-3
https://doi.org/10.1155/2007/94561
https://doi.org/10.1038/261459a0
https://doi.org/10.1016/j.jphysparis.2011.07.014
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-534619 November 11, 2020 Time: 15:25 # 16

Shirzhiyan et al. Quasi-Periodic and Chaotic VEP-Based BCI

potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) vs. age-
matched controls. Clin. Neurophysiol. 126, 2124–2131. doi: 10.1016/j.clinph.
2015.01.013

Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. S. (2000). Brain-
computer interfaces based on the steady-state visual-evoked response. IEEE
Trans. Rehabil. Eng. 8, 211–214. doi: 10.1109/86.847819

Molina, R., Relaño, A., Retamosa, J., Muñoz, L., Faleiro, E., and Gómez, J. (2010).
“Perspectives on 1/f noise in quantum chaos,” in Proceedings of the Journal of
Physics: Conference Series, Volume 239, XXXIII Symposium on Nuclear Physics
5–8 January 2010, Morelos.

Muller-Putz, G. R., and Pfurtscheller, G. (2008). Control of an electrical prosthesis
with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55, 361–364. doi: 10.1109/
tbme.2007.897815

Müller-Putz, G. R., Scherer, R., Brauneis, C., and Pfurtscheller, G. (2005).
Steady-state visual evoked potential (SSVEP)-based communication: impact of
harmonic frequency components. J. Neural Eng. 2:123.

Nakanishi, M., Wang, Y., Wang, Y. T., Mitsukura, Y., and Jung, T. P. (2014). A
high-speed brain speller using steady-state visual evoked potentials. Intern. J.
Neural Syst. 24:1450019. doi: 10.1142/s0129065714500191

Nobukawa, S., and Nishimura, H. (2016). Chaotic resonance in coupled inferior
olive neurons with the Llinás approach neuron model. Neural Comput. 28,
2505–2532. doi: 10.1162/neco_a_00894

Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M.,
Silberstein, R. B., et al. (1997). EEG coherency: I: statistics, reference electrode,
volume conduction, Laplacians, cortical imaging, and interpretation at multiple
scales. Electroencephalogr. Clin. Neurophysiol. 103, 499–515.

Obleser, J., Henry, M. J., and Lakatos, P. (2017). What do we talk about when we
talk about rhythm? PLoS Biol. 15:e2002794. doi: 10.1371/journal.pbio.2002794

Parini, S., Maggi, L., Turconi, A. C., and Andreoni, G. (2009). A robust and self-
paced BCI system based on a four class SSVEP paradigm: algorithms and
protocols for a high-transfer-rate direct brain communication. Comput. Intellig.
Neurosci. 2009:864564.

Paul-Dauphin, A., Guillemin, F., Virion, J.-M., and Briançon, S. (1999). Bias
and precision in visual analogue scales: a randomized controlled trial. Am. J.
Epidemiol. 150, 1117–1127. doi: 10.1093/oxfordjournals.aje.a009937

Petrov, V., Ouyang, Q., and Swinney, H. L. (1997). Resonant pattern formation in
achemical system. Nature 388:655. doi: 10.1038/41732

Potapov, A., and Ali, M. (2000). Robust chaos in neural networks. Phys. Lett. A 277,
310–322.

Redies, C. (2007). A universal model of esthetic perception based on the
sensory coding of natural stimuli. Spat. Vis. 21, 97–117. doi: 10.1163/
156856808782713780

Relano, A., Gómez, J., Molina, R., Retamosa, J., and Faleiro, E. (2002). Quantum
chaos and 1/f noise. Phys. Rev. Lett. 89:244102.

Riechmann, H., Finke, A., and Ritter, H. (2016). Using a cVEP-based brain-
computer interface to control a virtual agent. IEEE Trans. Neural Syst. Rehabil.
Eng. 24, 692–699. doi: 10.1109/tnsre.2015.2490621

Rössert, C., Dean, P., and Porrill, J. (2015). At the edge of chaos: how cerebellar
granular layer network dynamics can provide the basis for temporal filters. PLoS
Comput. Biol. 11:e1004515. doi: 10.1371/journal.pone.1004515

Saha, T., and Galic, M. (2018). Self-organization across scales: from molecules
to organisms. Philos. Trans. R. Soc. B 373:20170113. doi: 10.1098/rstb.2017.
0113

Sakurada, T., Kawase, T., Komatsu, T., and Kansaku, K. (2015). Use of high-
frequency visual stimuli above the critical flicker frequency in a SSVEP-based
BMI. Clin. Neurophysiol. 126, 1972–1978. doi: 10.1016/j.clinph.2014.12.010

Sanei, S., and Chambers, J. A. (2007). EEG Signal Processing. New York, NY: Wiley.
Sekuler, A. B., and Bennett, P. J. (2001). Visual neuroscience: resonating to natural

images. Curr. Biol. 11, R733–R736.
Shirzhiyan, Z., Keihani, A., Farahi, M., Shamsi, E., GolMohammadi, M., Mahnam,

A., et al. (2019). Introducing chaotic codes for the modulation of code
modulated visual evoked potentials (c-VEP) in normal adults for visual fatigue
reduction. PLoS One 14:e0213197. doi: 10.1371/journal.pone.0213197

Spüler, M. (2017). A high-speed brain-computer interface (BCI) using dry EEG
electrodes. PLoS One 12:e0172400. doi: 10.1371/journal.pone.0172400

Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos: with Applications to Physics,
Biology, Chemistry, and Engineering. Boca Raton, FL: CRC Press.

Suzuki, Y., Lu, M., Ben-Jacob, E., and Onuchic, J. N. (2016). Periodic, quasi-
periodic and chaotic dynamics in simple gene elements with time delays. Sci.
Rep. 6:21037.

Takano, K., Komatsu, T., Hata, N., Nakajima, Y., and Kansaku, K. (2009). Visual
stimuli for the P300 brain-computer interface: a comparison of white/gray and
green/blue flicker matrices. Clin. Neurophysiol. 120, 1562–1566. doi: 10.1016/j.
clinph.2009.06.002

Tan, Z., and Yao, H. (2009). The spatiotemporal frequency tuning of LGN receptive
field facilitates neural discrimination of natural stimuli. J. Neurosci. 29, 11409–
11416. doi: 10.1523/jneurosci.1268-09.2009

Tseng, B. Y., Gajewski, B. J., and Kluding, P. M. (2010). Reliability, responsiveness,
and validity of the visual analog fatigue scale to measure exertion fatigue
in people with chronic stroke: a preliminary study. Stroke Res. Treat. 2010:
412964.

Vaid, S., Singh, P., and Kaur, C. (2015). “EEG signal analysis for BCI interface: a
review,” in Proceedings of the 2015 Fifth International Conference on Advanced
Computing & Communication Technologies, Haryana.

Verwulgen, S., Lacko, D., Justine, H., Kustermans, S., Moons, S., Thys, F., et al.
(2018). “Determining comfortable pressure ranges for wearable EEG headsets,”
in Proceedings of the International Conference on Applied Human Factors and
Ergonomics, Cham.

Vialatte, F.-B., Maurice, M., Dauwels, J., and Cichocki, A. (2010). Steady-
state visually evoked potentials: focus on essential paradigms and future
perspectives. Prog. Neurobiol. 90, 418–438. doi: 10.1016/j.pneurobio.2009.
11.005

Volosyak, I., Valbuena, D., Luth, T., Malechka, T., and Graser, A. (2011). BCI
demographics II: how many (and what kinds of) people can use a high-
frequency SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 19, 232–239.
doi: 10.1109/tnsre.2011.2121919

Wang, Y., Wang, R., Gao, X., Hong, B., and Gao, S. (2006). A practical VEP-based
brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 234–240.
doi: 10.1109/tnsre.2006.875576

Wang, Y.-T., Nakanishi, M., Wang, Y., Wei, C.-S., Cheng, C.-K., and Jung, T.-
P. (2017). An online brain-computer interface based on SSVEPs measured
from non-hair-bearing areas. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 14–21.
doi: 10.1109/tnsre.2016.2573819

Wang, Y., Chen, X., Gao, X., and Gao, S. (2017). A benchmark dataset for SSVEP-
based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 25,
1746–1752. doi: 10.1109/tnsre.2016.2627556

Wang, Z., Yu, Y., Xu, M., Liu, Y., Yin, E., and Zhou, Z. (2018). Towards a Hybrid
BCI gaming paradigm based on motor imagery and SSVEP. Intern. J. Hum.
Comput. Interact. 35, 197–205. doi: 10.1080/10447318.2018.1445068

Wei, Q., Feng, S., and Lu, Z. (2016). Stimulus specificity of brain-computer
interfaces based on code modulation visual evoked potentials. PLoS One
11:e0156416. doi: 10.1371/journal.pone.0156416

Wei, Q., Liu, Y., Gao, X., Wang, Y., Yang, C., Lu, Z., et al. (2018). A novel c-VEP
BCI paradigm for increasing the number of stimulus targets based on grouping
modulation with different codes. IEEE Trans. Neural Syst. Rehabil. Eng. 26,
1178–1187. doi: 10.1109/tnsre.2018.2837501

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain-computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791.

Won, D.-O., Hwang, H.-J., Dähne, S., Müller, K.-R., and Lee, S.-W. (2015). Effect
of higher frequency on the classification of steady-state visual evoked potentials.
J. Neural Eng. 13:016014. doi: 10.1088/1741-2560/13/1/016014

Xie, J., Xu, G., Luo, A., Li, M., Zhang, S., Han, C., et al. (2017). The role of
visual noise in influencing mental load and fatigue in a steady-state motion
visual evoked potential-based brain-computer interface. Sensors 17:1873. doi:
10.3390/s17081873

Xie, J., Xu, G., Wang, J., Li, M., Han, C., and Jia, Y. (2016). Effects of mental load and
fatigue on steady-state evoked potential based brain computer interface tasks:
a comparison of periodic flickering and motion-reversal based visual attention.
PLoS One 11:e0163426. doi: 10.1371/journal.pone.00163426

Xie, J., Xu, G., Wang, J., Zhang, F., and Zhang, Y. (2012). Steady-state motion
visual evoked potentials produced by oscillating newton’s rings: implications
for brain-computer interfaces. PLoS One 7:e39707. doi: 10.1371/journal.pone.
039707

Frontiers in Neuroscience | www.frontiersin.org 16 November 2020 | Volume 14 | Article 534619

https://doi.org/10.1016/j.clinph.2015.01.013
https://doi.org/10.1016/j.clinph.2015.01.013
https://doi.org/10.1109/86.847819
https://doi.org/10.1109/tbme.2007.897815
https://doi.org/10.1109/tbme.2007.897815
https://doi.org/10.1142/s0129065714500191
https://doi.org/10.1162/neco_a_00894
https://doi.org/10.1371/journal.pbio.2002794
https://doi.org/10.1093/oxfordjournals.aje.a009937
https://doi.org/10.1038/41732
https://doi.org/10.1163/156856808782713780
https://doi.org/10.1163/156856808782713780
https://doi.org/10.1109/tnsre.2015.2490621
https://doi.org/10.1371/journal.pone.1004515
https://doi.org/10.1098/rstb.2017.0113
https://doi.org/10.1098/rstb.2017.0113
https://doi.org/10.1016/j.clinph.2014.12.010
https://doi.org/10.1371/journal.pone.0213197
https://doi.org/10.1371/journal.pone.0172400
https://doi.org/10.1016/j.clinph.2009.06.002
https://doi.org/10.1016/j.clinph.2009.06.002
https://doi.org/10.1523/jneurosci.1268-09.2009
https://doi.org/10.1016/j.pneurobio.2009.11.005
https://doi.org/10.1016/j.pneurobio.2009.11.005
https://doi.org/10.1109/tnsre.2011.2121919
https://doi.org/10.1109/tnsre.2006.875576
https://doi.org/10.1109/tnsre.2016.2573819
https://doi.org/10.1109/tnsre.2016.2627556
https://doi.org/10.1080/10447318.2018.1445068
https://doi.org/10.1371/journal.pone.0156416
https://doi.org/10.1109/tnsre.2018.2837501
https://doi.org/10.1088/1741-2560/13/1/016014
https://doi.org/10.3390/s17081873
https://doi.org/10.3390/s17081873
https://doi.org/10.1371/journal.pone.00163426
https://doi.org/10.1371/journal.pone.039707
https://doi.org/10.1371/journal.pone.039707
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-534619 November 11, 2020 Time: 15:25 # 17

Shirzhiyan et al. Quasi-Periodic and Chaotic VEP-Based BCI

Xie, J., Xu, G., Zhao, X., Li, M., Wang, J., Han, C., et al. (2018). Enhanced Plasticity
of Human Evoked Potentials by Visual Noise During the Intervention of
Steady-State Stimulation Based Brain-Computer Interface. Front. Neurorobot.
12:82. doi: 10.3389/fnbot.2018.00082

Yan, W., Xu, G., Li, M., Xie, J., Han, C., Zhang, S., et al. (2017). Steady-
state motion visual evoked potential (SSMVEP) based on equal luminance
colored enhancement. PLoS One 12:e0169642. doi: 10.1371/journal.pone.001
69642

Yin, E., Zhou, Z., Jiang, J., Yu, Y., and Hu, D. (2014). A dynamically optimized
SSVEP brain-computer interface (BCI) speller. IEEE Trans. Biomed. Eng. 62,
1447–1456. doi: 10.1109/tbme.2014.2320948

Yin, E., Zhou, Z., Jiang, J., Yu, Y., and Hu, D. (2015). A dynamically optimized
SSVEP brain-computer interface (BCI) speller. IEEE Trans. Biomed. Eng. 62,
1447–1456.

Yoshimoto, S., Garcia, J., Jiang, F., Wilkins, A. J., Takeuchi, T., and Webster, M. A.
(2017). Visual discomfort and flicker. Vis. Res. 138, 18–28. doi: 10.1016/j.visres.
2017.05.015

Zhanabaev, Z. Z., Grevtseva, T. Y., and Kozhagulov, Y. (2016). Nonlinear
characteristics of neural signals. arXiv [Preprint]. Available online at:
https://arxiv.org/abs/1610.01147#:~:text=We%20have%20shown%20that%
20time,%2Dsimilarity%20and%20self%2Daffinity (accessed January 13, 2020).

Zhanabaev, Z. Z., and Kozhagulov, Y. T. (2013). A generic model for scale-invariant
neural networks. J. Neurosci. Neuroeng. 2, 267–271. doi: 10.1166/jnsne.2013.
1057

Zhang, Y., Zhou, G., Jin, J., Wang, M., Wang, X., and Cichocki, A. (2013). L1-
regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE
Trans. Neural Syst. Rehabil. Eng. 21, 887–896. doi: 10.1109/tnsre.2013.2279680

Zhang, Y., Zhou, G., Jin, J., Wang, X., and Cichocki, A. (2014). Frequency
recognition in SSVEP-based BCI using multiset canonical correlation analysis.
Intern. J. Neural Syst. 24:1450013. doi: 10.1142/s0129065714500130

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Shirzhiyan, Keihani, Farahi, Shamsi, GolMohammadi, Mahnam,
Haidari and Jafari. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 November 2020 | Volume 14 | Article 534619

https://doi.org/10.3389/fnbot.2018.00082
https://doi.org/10.1371/journal.pone.00169642
https://doi.org/10.1371/journal.pone.00169642
https://doi.org/10.1109/tbme.2014.2320948
https://doi.org/10.1016/j.visres.2017.05.015
https://doi.org/10.1016/j.visres.2017.05.015
https://arxiv.org/abs/1610.01147#:~:text=We%20have%20shown%20that%20time,%2Dsimilarity%20and%20self%2Daffinity
https://arxiv.org/abs/1610.01147#:~:text=We%20have%20shown%20that%20time,%2Dsimilarity%20and%20self%2Daffinity
https://doi.org/10.1166/jnsne.2013.1057
https://doi.org/10.1166/jnsne.2013.1057
https://doi.org/10.1109/tnsre.2013.2279680
https://doi.org/10.1142/s0129065714500130
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Toward New Modalities in VEP-Based BCI Applications Using Dynamical Stimuli: Introducing Quasi-Periodic and Chaotic VEP-Based BCI
	Introduction
	Materials and Methods
	Study Participants
	Stimuli
	Periodic Stimuli
	Quasi-Periodic Stimuli
	Chaotic Stimulus Group

	Auto- and Cross-Correlation Function of Target Stimuli
	Stimulus Presentation Paradigm
	Fatigue Evaluation Process
	Signal Recording Setup
	Data Processing
	Preprocessing
	Processing (CCA and Coherence Analysis)
	Template Generation
	Approach 1 (M1): using the presented stimuli as templates
	Approach 2 (M2): generating templates using the training dataset

	Target Identification

	Statistical Analysis
	Statistical Analysis of Accuracies
	Statistical Analysis of Fatigue Rates
	Within-group analysis of fatigue rates
	Between-group analysis of subjective visual fatigue rates



	Results
	Accuracy Analysis Results
	VAS Scores Analysis Results
	Results of Within-Group Analysis of the Periodic Group
	Results of Within-Group Analysis of the Quasi-Periodic Group
	Results of Within-Group Analysis of the Chaotic Group
	Between-Group Analysis of Subjective Visual Fatigue Rate


	Discussion
	Auto- and Cross-Correlation Function of Stimulus Groups
	Cross-Correlation Function of Stimuli and Responses
	Target Identification Results Comparison
	Within-Group Subjective Visual Fatigue Rate Evaluation
	Between-Group Subjective Fatigue Rate Evaluation
	Limitations and Plans for Future Studies

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


