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Abstract

Macroecological models for predicting species distributions usually only include abiotic environ-
mental conditions as explanatory variables, despite knowledge from community ecology that all
species are linked to other species through biotic interactions. This disconnect is largely due to the
different spatial scales considered by the two sub-disciplines: macroecologists study patterns at
large extents and coarse resolutions, while community ecologists focus on small extents and fine
resolutions. A general framework for including biotic interactions in macroecological models
would help bridge this divide, as it would allow for rigorous testing of the role that biotic interac-
tions play in determining species ranges. Here, we present an approach that combines species dis-
tribution models with Bayesian networks, which enables the direct and indirect effects of biotic
interactions to be modelled as propagating conditional dependencies among species’ presences.
We show that including biotic interactions in distribution models for species from a California
grassland community results in better range predictions across the western USA. This new
approach will be important for improving estimates of species distributions and their dynamics
under environmental change.
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INTRODUCTION

Ecological studies at different spatial scales tend to ask differ-
ent questions and use different methods. Macroecologists are
traditionally concerned with species distributions, diversity
and abundance at large spatial extents and coarse spatial reso-
lutions. They typically analyse global or continental databases
using geographic information systems and spatial statistics. By
contrast, community ecologists ask questions related to inter-
actions among species and ecosystem function at the smaller
extents and finer resolutions of individual research sites. Com-
munity ecology has a long history of using local and often
long-term experiments, the likes of which are not feasible at
larger, macroecological scales. Findings about environmental
change from these two sub-disciplines can also seem quite dif-
ferent. For example, studies of the ecological impacts of cli-
mate change at macro scales have revealed common and
predictable trends, such as pole-ward shifts in species distribu-
tions and advancement of spring events (Parmesan & Yohe
2003). However, experimental studies at individual field sites
often show more idiosyncratic responses to environmental

change, characterised by nonlinearities and feedbacks that can
be difficult to predict (Suttle et al. 2007; Tylianakis et al.
2008). There is a need to reconcile such findings at different
scales, which also offers the opportunity to deepen our under-
standing by using local scales to inform large scales and vice
versa (Paine 2010). It is therefore crucial to develop new
methodological frameworks that are able to link data across
scales and build bridges between sub-disciplines.
One area in which studies at different scales have histori-

cally been very disparate is in the use of ecological niche the-
ory. Macroecologists tend to be schooled in the niche
concepts of Grinnell (1917), who defined a species’ niche on
the basis of the abiotic environmental conditions (e.g. temper-
ature, precipitation) required to maintain a population. Com-
munity ecologists, on the other hand, tend to use the niche
concept of Elton (1929), who emphasised the functional role
of a species in a biotic community. In reality, both abiotic
environment and biotic community impact species, and recent
work has made progress integrating Grinnellian and Eltonian
niche concepts to improve knowledge of how ecological sys-
tems operate across spatial scales (Sober�on 2007; Peterson
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et al. 2011; Trainor & Schmitz 2014). Of particular interest is
the role that biotic interactions play in determining species
geographical ranges. For instance, the Eltonian Noise
Hypothesis posits that species ranges at large extents and
coarse resolutions are determined principally by abiotic fac-
tors, with little impact of local biotic interactions (Sober�on
2007; Sober�on & Nakamura 2009). Developing ways to test
this hypothesis and include biotic interactions in models of
species distributions will have great practical value across a
range of applications, from predicting range shifts under cli-
mate change to anticipating the spread of invasive species and
zoonotic diseases (Peterson et al. 2011).
Species distribution models (SDMs, also called ecological

niche models) are widely used to estimate species ranges,
typically at macroecological scales. These models use statisti-
cal associations between known occurrences and abiotic vari-
ables to project probabilities of occurrence under changed
conditions (Guisan & Thuiller 2005). Several different meth-
ods have been used for SDMs (Elith et al. 2006), and mech-
anistic approaches that incorporate physiology and life
history traits show potential for improving predictions (Kear-
ney & Porter 2009; Pearson et al. 2014). However, current
methods overwhelmingly ignore biotic interactions (Urban
2015), despite wide acknowledgement that this is a poten-
tially severe limitation of the models (Pearson & Dawson
2003; Schmitz et al. 2003; Guisan & Thuiller 2005; Ara�ujo &
Luoto 2007; Kissling et al. 2012; Ockendon et al. 2014;
Thuiller et al. 2015).
Every species, regardless of where it occurs, is linked to

other species through competitive, symbiotic, consumptive or
pathogenic interactions. So in all but the simplest systems,
species’ fates are woven together as networks of biotic interac-
tions. Results of early global change experiments signalled
prominent roles for interactions in moderating species’
responses (Chapin et al. 1995; Harte & Shaw 1995). This was
tested explicitly and affirmed in both laboratory (Davis et al.
1998; Petchey et al. 1999) and field experiments (Dormann
et al. 2004; Suttle et al. 2007). Empirical evidence for the
importance of biotic interactions in the context of environ-
mental changes now spans a wide diversity of habitat types
(Post & Pedersen 2008; Martin & Maron 2012; Barton & Ives
2014; Paul & Johnson 2014), and pronounced interaction
effects are evident in all manner of species’ responses to recent
environmental changes in the natural world (Edwards &
Richardson 2004; Winder & Schindler 2004; Munson et al.
2008; Ling et al. 2009).
It has been questioned whether the effects of biotic interac-

tions extend to the macroecological scales of most SDMs, and
given the disconnect in scales between empirical research and
macroecological modelling, it is important to ask whether bio-
tic interactions, which occur at scales of individuals, add pre-
dictive value at much coarser resolutions and larger extents.
Several tests from both modern and historical records suggest
that they do (Ara�ujo & Luoto 2007; Heikkinen et al. 2007;
Gotelli et al. 2010; Hellman et al. 2012; Pateman et al. 2012;
Blois et al. 2013; Mason et al. 2014) and there has been nota-
ble progress in developing frameworks to account for interac-
tions in macroecological models (Pellissier et al. 2010;
Fordham et al. 2013; Trainor et al. 2014).

Most attempts at integrating biotic interactions with SDMs
have focused on explaining patterns of species co-occurrence
rather than modelling interactions explicitly (Ara�ujo et al.
2011; Morueta-Holme et al. 2016). One study compared pre-
dictions of species occurrence from SDMs that included only
abiotic variables to those that also included recorded pres-
ences of other species in the community as additional explana-
tory variables (Giannini et al. 2013). Another study combined
a graph theoretic, trophic interaction model with an SDM to
account for differences in resource accessibility across loca-
tions when predicting the geographical distribution of a con-
sumer species (Trainor & Schmitz 2014). Other studies have
used known or expected biotic interactions to constrain the
output of SDMs (Fernandes et al. 2013; Pellissier et al. 2013).
A complementary line of work has used the output of SDMs
to infer the structure of food webs – trophic interactions – at
different locations and under different climate change scenar-
ios (Albouy et al. 2014; Morales-Castilla et al. 2015). In these
approaches, a single species is examined at a time and only it
and its interaction partners are considered in SDMs, ignoring
all other biotic interactions in a community. But the outcomes
of interspecific interactions produce ‘knock-on’ effects along
additional linkages, making it difficult to fully articulate or
bound biotic interaction networks and therefore the task of
modelling biotic interaction networks even more challenging.
Here we show how Bayesian networks (BNs, also called

belief networks, Bayesian belief networks or Bayes nets) can
be used to model biotic interactions in a manner that allows
their direct and indirect effects to propagate among species in
a community – following dynamics in nature – and, when
combined with SDMs, can result in better estimates of species
ranges. BNs have been applied to a wide range of problems
across multiple disciplines (Jensen 2001; Neapolitan 2003;
Pearl 2009) and are increasingly being used in environmental
modelling and management (Uusitalo 2007; Mantyka-Pringle
et al. 2016) and to model secondary extinctions in food webs
(Ekl€of et al. 2013). In our case, BNs offer a way to model
large numbers of interacting species simultaneously, with the
flexibility to define interactions from macro-scale presence-
absence patterning among species, from community-level
understanding of positive and negative interactions, or from a
combination of the two approaches.
First, we describe our approach to modelling biotic interac-

tions as BNs and show how to integrate this step in an exist-
ing SDM workflow. We then demonstrate our approach by
applying it to a species pool of grassland plants in the west-
ern USA for which community-level interactions are well
defined from 18 years of research in a study system where all
species co-occur (Suttle et al. 2007; Sullivan et al. 2016). This
record of community-level understanding provides an oppor-
tunity to test interactions derived from statistical associations
of species occurrences at macro scales for community-level
ecological realism. We find that many of the derived interac-
tions are ecologically realistic, and that including biotic inter-
actions in SDMs with this approach improves predictions of
species occurrence for this example system. Finally, we use
future climate scenarios to show how species’ predicted distri-
butions in 2050 are refined when biotic interactions are
included in models.
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INCORPORATING BIOTIC INTERACTIONS IN SPECIES

DISTRIBUTION MODELS

Overview

BNs are probabilistic graphical models that represent a set of
random variables as nodes and conditional dependencies
between random variables as directed edges between nodes
(Pearl 1988; Koller & Friedman 2009). Random variables in
our BNs are probabilities of species occurrence and biotic
interactions are modelled as positive and negative conditional
dependencies among random variables. In this way, the prob-
ability of species occurrence from an SDM at a particular
location can be modified up or down given the expected pres-
ence of any interaction partners and their combined effect on
the focal species. When computing modified occurrence prob-
abilities using BNs, the effects of conditional dependencies are
propagated through the entire interaction network, meaning
that new predictions reflect all biotic interactions in a commu-
nity.
Conditional dependencies can represent a variety of biologi-

cal processes and relationships among species. For example,

competition can be described by negative conditional depen-
dencies that decrease occurrence probabilities in line with how
many competitors are present at a given location. Nitrogen
fixation among plants can be described by positive conditional
dependencies that increase occurrence probabilities if nitro-
gen-fixing species are also present. Conditional dependencies
can also reflect the effects of shared and mutually exclusive
habitat suitability among species. For example, positive condi-
tional dependencies can capture environmental conditions that
are suitable for multiple species – a feature that is not possible
with conventional SDMs designed solely for individual spe-
cies. Although shared habitat suitability can hardly be consid-
ered a biotic interaction, there remains value in using
conditional dependencies in this way to leverage otherwise
ignored information about one species to improve predictions
for other species in the community.
When incorporating biotic interactions in SDMs using BNs,

we start with the output of a conventional SDM, which we
refer to as priors. Priors are then combined with a BN to give
posteriors. In the description that follows, we write the prior
of species i at location x as pi;x and the posterior as pi;x. The

Environmental layers 

(e.g., temperature and precipitation) 

Presence records for species 

A B C 

SDM 

Habitat suitability values at location  x

A,x B,x C,xPriors: 

Model biotic interactions using a Bayesian network 

DAG: State tables: A B A B C 

1 1 

1 0 

0 1 

0 0 

A B 

C 
+ A,x B,x C,x

C,x + min C,x,1 C,x{ }
C,x min C,x,1 C,x{ }
C,x

Solve Bayesian network to obtain new habitat suitability values at location  

Posteriors: pB,x = B,xpA,x = A,x pC,x = A,x B,x C,x

+ A,x 1 B,x( ) C,x + min C,x,1 C,x{ }
+ 1 A,x( ) B,x C,x min C,x,1 C,x{ }
+ 1 A,x( ) 1 B,x( ) C,x

x

Figure 1 Workflow for including biotic interactions in species distribution models (SDMs): an example with three species. In a conventional SDM

workflow (dashed box), data on environmental conditions and species presences are combined to predict habitat suitability across a geographical extent for

species A, B and C, separately. When modelling biotic interactions using a Bayesian network (BN), we refer to the output of conventional SDMs as priors.

The BN network comprises a directed acyclic graph (DAG) that describes the pattern of positive and negative conditional dependencies among species in a

community, and a corresponding set of state tables that describe how each species is affected by the presence of other species (here, the presence of C is

increased by the presence of A but decreased by the presence of B). The process of solving the BN transforms priors into posteriors, which now incorporate

the effect of biotic interactions on habitat suitability. Note that the state table entries in this example are consistent with all three AND, OR and SUM

models.
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linking of SDMs and BNs is clear and elegant when the out-
put of an SDM is the probability of occurrence of a species.
However, SDM outputs are rarely true probabilities of occur-
rence; rather, outputs are typically habitat suitability values
that are normalised between zero and one (Gotelli & Stanton-
Geddes 2015). We can still use the mechanics of BNs in such
cases, but must be careful to think in terms of conditional
dependencies as modifying habitat suitability values up or
down depending on the combined effect of multiple biotic
interactions.

Modelling biotic interactions using Bayesian networks

In a BN, the nodes (random variables) and edges (conditional
dependencies) form a graphical structure that is a directed acyc-
lic graph (DAG), which is defined by two conditions: (1) edges
are directed; and (2) the graph is acyclic (i.e. it is not possible,
starting from a given node, to travel along a set of directed
edges and return to the starting node; Thulasiraman & Swamy
1992). Although it is common to see directed edges interpreted
as causal relationships, this is not always justified (Thulasira-
man & Swamy 1992; Spirtes et al. 2000; Dawid 2008).
In our approach, nodes are species and directed edges are

biotic interactions: nodes represent the probability of species
occurrence at a particular location and directed edges repre-
sent the effect on occurrence of one species on another
(Fig. 1). Note that we are dealing with Boolean random vari-
ables because the outcome at a particular location is either
present (1) or absent (0). By way of illustration, consider three
species: A, B and C. The presence of C is positively affected
by A but negatively affected by B, which can be represented
by A ? C 8 B; where C is referred to as the child node of
parent nodes A and B, which, as A and B have no conditional
dependencies themselves, would also be called root nodes.
This DAG indicates that the probability of occurrence of C at

a particular location is conditionally dependent on whether
species A and B are present at the location. There are 22 ¼ 4
possibilities: A and B are both absent; A is present but B is
absent; A is absent but B is present; and A and B are both
present. The conditional probabilities associated with these
four possibilities together comprise the state table for species
C. The combination of a DAG and associated state tables
(also known as conditional probability tables) for each species
is a BN. A worked example of solving this BN is in Box 1.
In practice, specifying a BN involves five main considera-

tions. (1) Inclusion: Should a biotic interaction be modelled in
the BN? (2) Direction: What is the net effect of the biotic
interaction on the two interacting species, i.e. should A ? B
or A  B be used? (3) Sign: Does the biotic interaction have
a positive or negative effect on the presence of the affected
species? (4) Strength: How much does the biotic interaction
modify the presence of the affected species? (5) Combination:
How do multiple biotic interactions combine to modify the
presence of the affected species? These five considerations sort
into two main tasks: specifying the graphical structure of the
BN (considerations 1, 2 and 3) and specifying rules for filling
the state table entries defined by the graphical structure (con-
siderations 4 and 5).

Specifying the graphical structure of a Bayesian network

The graphical structure of a BN is the particular arrangement
of nodes and edges used to represent biotic interactions. The
arrangement must be a DAG for the BN to be solvable; and
although feedback cycles are common in ecology, it is often
straightforward to organise conditional dependencies in such
a way as to avoid cycles in BNs without sacrificing too much
biological realism. There are two general approaches for
determining which biotic interactions to include in a BN: a
computer-aided optimisation process that considers all

Box 1 A worked example of solving a Bayesian network with three species

Consider the following Bayesian network: A ? C 8 B; where the presence of species C is positively affected by A but nega-
tively affected by B.
At location x = 1, assume that the prior probability of occurrence of C is pC;1 ¼ 0:4 and its conditional probabilities are 0.4

when A and B are both absent; 0.8 when A is present but B is absent; 0 when A is absent but B is present; and 0.4 when A and B are
both present, i.e. the positive influence of A balances the negative influence of B. As species A has no conditional dependencies, we
can assume it has a single probability of occurrence at the location, say, pA;1 ¼ 0:7; similarly, we can assume B also has a single
probability of occurrence, say, pB;1 ¼ 0:2. The probability of occurrence of C including the effect of biotic interactions is then
pC;1 ¼ ð1 � 0:7Þ � ð1 � 0:2Þ � 0:4 þ 0:7 � ð1 � 0:2Þ � 0:8 þ ð1 � 0:7Þ � 0:2 � 0:0þ 0:7 � 0:2 � 0:4 ¼ 0:096 þ 0:448þ
0 þ 0:056 ¼ 0:6. In this example, the prior probabilities of occurrence pA;1 ¼ 0:7, pB;1 ¼ 0:2 and pC;1 ¼ 0:4 combine with the
BN to give new, posterior probabilities of occurrence pA;1 ¼ 0:7, pB;1 ¼ 0:2 and pC;1 ¼ 0:6.
If the effects of A and B are switched, i.e. A 9 C  B, then the posterior for C becomes

pC;1 ¼ 0:096 þ 0:7� ð1 � 0:2Þ � 0 þ ð1 � 0:7Þ � 0:2 � 0:8 þ 0:056 ¼ 0:096 þ 0 þ 0:048 þ 0:056 ¼ 0:2, which is lower
than before because the negative effect on C is now associated with A, which is more likely to be present than B.
As an example of propagating conditional dependencies, now assume that the presence of A positively affects the presence of

B, which, in turn, positively affects the presence of C: A ? B ? C. Assume that the presence of A doubles the probability of
occurrence of B, and similarly for the effect of B on C. As above, let the priors at the given location be pA;1 ¼ 0:7, pB;1 ¼ 0:2
and pC;1 ¼ 0:4. With this new BN, the posteriors are pA;1 ¼ 0:7, pB;1 ¼ 0:7 � ð2 � 0:2Þ þ ð1 � 0:7Þ � 0:2 ¼ 0:34 and
pC;1 ¼ 0:34 � ð2 � 0:4Þ þ ð1 � 0:34Þ � 0:4 ¼ 0:536. Although the principle remains the same for communities with a greater
number of species and more complex pattern of interactions, solving BNs by hand quickly becomes unwieldy. Fortunately, BNs
can be solved numerically very efficiently (Thulasiraman & Swamy 1992). Example R code for solving BNs is in Appendix S1.
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possible species pairings based on macroecological occurrence
data, or direct selection of interactions using data from com-
munity ecology.
The optimisation approach involves trialling multiple com-

binations of biotic interactions in order to find the combina-
tion that maximises an objective function. The area under the
receiver operator curve (AUC) statistic is a familiar option for
an objective function as it is widely used to measure the abil-
ity of an SDM to discriminate between known presences and
absences (with presence-only data, absences are random loca-
tions drawn from the geographical extent under investigation;
Phillips et al. 2006). Once an objective function has been cho-
sen, a variety of algorithms can be used for optimisation,
ranging from simple Hill-Climbing searches (Skiena 2008) to
more involved genetic algorithms (Holland 1975). Note that
exhaustive searches are impractical as the number of distinct
DAG topologies can be large even when there are few nodes
(Robinson 1973).
Alternatively, interactions can be specified based on commu-

nity-level understanding, although suitable data sets are rare
given the effort, time and cost required to collect comprehensive
community data. If such data are available, however, then the
first step is to identify a set of candidate biotic interactions for
inclusion in the BN. A subset can then be selected based on
each candidate interaction’s perceived importance for the study
region of interest. Among this subset, a direction and sign must
be associated with each interaction (strictly, sign is not neces-
sary for specifying the graphical structure, but as the effect of a
biotic interaction is closely linked with its type then it makes
sense for the decision about sign to be made at this stage). Note
that decisions about sign and direction are not always straight-
forward. With a trophic interaction in which B eats A, for
example, on the one hand the presence of B has a negative effect
on A but on the other hand the presence of A has a positive
effect on B; in such cases, to avoid directed cycles (i.e. A ⇌ B)
it is necessary to pick the direction and sign combination that is
expected to have the greatest impact on species occurrence.
After a DAG has been specified, the size of state tables is fixed
and the next task is to fill table entries with values.

Specifying rules for filling state table entries

A comprehensive but time-consuming approach to filling state
table entries involves determining biologically motivated val-
ues for each state table entry individually. We refer to this
approach as the FULL model. This model is unlikely to be
practically feasible for all but the smallest systems because a
species with N conditional dependencies has 2N entries in its
state table. One must therefore devise rules for simplifying the
process of filling state table entries. Here, we propose three
models, which we refer to as AND, OR and SUM (Box 2).
The main question when deciding whether to simplify or

not is ‘Does species identity matter?’ Or put in more accom-
modating terms: ‘Can we reasonably assume that the effects
of biotic interactions are in some ways substitutable with one
another?’ If species identity truly matters then the effect of
each state must be determined individually, and only the
FULL model is justified. But if there is some flexibility then a
simpler model can be used to fill state table entries.

The two simplest models are AND and OR. Analogous to
Boolean logic, all species must be present for conditional depen-
dencies to have an effect with the AND model, but only one
species must be present with the OR model. Formally, we can
fill state table entries for the AND and OR models using the fol-
lowing rules. For species i, let the total number of positive con-
ditional dependencies be nmax

þ;i and the total number of negative
conditional dependencies be nmax

�;i . Given a particular state table
entry, let the number of species present with positive condi-
tional dependencies be nþ;i and with negative conditional
dependencies be n�;i. With the AND model, fill the entry as

pi;x þminfpi;x; 1� pi;xg if nþ;i ¼ nmax
þ;i and n�;i ¼ 0

pi;x �minfpi;x; 1� pi;xg if nþ;i ¼ 0 and n�;i ¼ nmax
�;i

pi;x otherwise

ð1Þ

With the OR model, fill the entry as

pi;x þminfpi;x; 1� pi;xg if nþ;i � n�;i [ 0

pi;x �minfpi;x; 1� pi;xg if nþ;i � n�;i \ 0

pi;x if nþ;i � n�;i ¼ 0

ð2Þ

These two sets of rules make three important assumptions: (1)
the identity of a species does not alter the effect of a biotic inter-
action, only whether the conditional dependency is positive or
negative; (2) positive and negative conditional dependencies have

Box 2 Simple models for filling Bayesian network state table

entries

Consider a Bayesian network with four species that has a
graphical structure with two positive and one negative biotic
interactions: A ? D, B ? D and C 9 D. The state table
for D has 23 ¼ 8 entries that must be filled individually
when using the FULL model. We can simplify the process of
filling state table entries by using an AND, OR or SUM
model. With the AND model (eqn 1), species A and B must
both be present to increase the presence of D. With the OR
model (eqn 2), either A or B must be present to increase the
presence of D. With the SUM model (eqn 3), the effect of
positive conditional dependencies increases with the number
of species that are present, which means there are more dis-
tinct state table entries compared to AND and OR models.
Schematically, we can illustrate the differences among the
three models using the state table (also known as a condi-
tional probability table) for species D, with no change in the
expected presence of D represented by ‘� ’, small increases
and decreases by ‘↑’ and ‘↓’, respectively, and large increases
and decreases by ‘↑↑’ and ‘↓↓’:

A B C DAND DOR DSUM

1 1 1 � ↑↑ ↑
1 1 0 ↑↑ ↑↑ ↑↑
1 0 1 � � �
1 0 0 � ↑↑ ↑
0 1 1 � � �
0 1 0 � ↑↑ ↑
0 0 1 ↓↓ ↓↓ ↓
0 0 0 � � �
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the same magnitude of effect but in opposite directions, i.e. one
positive conditional dependency cancels out one negative condi-
tional dependency; and (3) the net number of positive or negative
conditional dependencies is in itself unimportant, only whether
the net value is at a maximal number (AND model) or whether
there is a majority of positive or negative conditional dependen-
cies (OR model). The term minfpi;x; 1 � pi;xg ensures that the
effect of biotic interactions is bound from above and below. For
example, with the OR model if pi;x ¼ 0:4 then the entry for net
positive conditional dependencies is 0.4 + 0.4 = 0.8 and for net
negative conditional dependencies is 0.4 � 0.4 = 0, while if
pi;x ¼ 0:75 then likewise entries are 0.75 + 0.25 = 1 and
0.75 � 0.25= 0.5, respectively.
The next level up in complexity is the SUM model, in which

the effect of conditional dependencies increases with the
number of species that are present. Let us introduce for

clarity two new variables: gþ;i ¼ nþ;i
maxfnmax

þ;i ;n
max
�;i g and g�;i ¼

n�;i
maxfnmax

þ;i ;n
max
�;i g. With the four-species system, the state (A,B,

C) = (1,1,1) has gþ;D ¼ 2
2 ¼ 1 and g�;D ¼ 1

2 ¼ 0:5, while the

state (1,0,0) has gþ;D ¼ 1
2 ¼ 0:5 and g�;D ¼ 0

2 ¼ 0. For a

given state, we can model the combined effect of multiple bio-
tic interactions by using the cumulative distribution function
of a beta distribution to map values for gþ;i and g�;i to an

aggregate effect on species i (Ekl€of et al. 2013). With the
SUM model, fill the entry as

pi;xþminfpi;x; 1� pi;xgBðgþ;i ; a; bÞBða; bÞ
�minfpi;x; 1� pi;xgBðg�;i ; a; bÞBða; bÞ

ð3Þ

where Bða; bÞ is the beta function, Bðgþ;i ; a; bÞ and
Bðg�;i ; a; bÞ are incomplete beta functions, and a and b are
shape parameters. In eqn 3, the additive effect of biotic inter-
actions can be linear (a = b = 1), sigmoidal (a > 1, b > 1),
inverse sigmoidal (a < 1, b < 1), concave (a ≤ 1, b > 1) or
convex (a > 1, b ≤ 1). Furthermore, values for shape parame-
ters could be set based on priors, i.e. ai;x ¼ fðpi;xÞ and
bi;x ¼ fðpi;xÞ, as well as separately for positive and negative
conditional dependencies. Even with this extra flexibility,
notice that the SUM model in eqn 3 still assumes that species
identity does not matter.
An intermediate option that retains some notion of species

identity but is less empirically demanding than the FULL
model involves assigning a heuristic ‘strength’ to each biotic
interaction. For example, we could propose three classifica-
tions: ‘weak’ = 1, ‘medium’ = 2 and ‘strong’ = 3. Each biotic
interaction is assigned one of the classifications, then the asso-
ciated numbers are summed to determine new values for nþ;i,
n�;i, nmax

þ;i and nmax
�;i . These values, through gþ;i and g�;i, can be

used in eqn 3 as a modified SUM model. It would be straight-
forward to extend this heuristic-based approach to model fur-
ther biological realism, including systematic differences
between different types of biotic interaction (e.g. trophic, seed
dispersal, pollination or parasitism). Of course, there are
many other ways and potential rules for filling state table
entries, and with small communities it may even be possible
to empirically parameterise entries for all species.

APPLICATION TO SPECIES FROM A CALIFORNIA

GRASSLAND COMMUNITY

Species pool

The species pool for modelling was defined by plant species
detection in a California (USA) grassland over 18 years of
field research, plus the most abundant shared consumer of
these species at the study site, a generalist grasshopper. Since
1999, occurrences and abundances of plant species have been
monitored in a grassland at the Angelo Coast Range Reserve
in Mendocino County (39�44017:700 N, 123�37048:400 W). We
downloaded presence records for the 53 plant species
detected over this study period and the generalist grasshop-
per Melanoplus devastator from the Global Biodiversity
Information Facility (http://GBIF.org). We used only records
that had a known year and known basis (e.g. human obser-
vation or herbarium specimen). To align with the climate
data (see below), we used records from the years 1970–2000
and, for each species, classified as ‘present’ any
800 m 9 800 m grid cell that contained one or more occur-
rence records. To make our demonstration of the method
more computationally tractable, and because many of the
presence records were in California and the surrounding
region, we restricted our analysis to the western USA (32� N
to 49:1� N and 125� W to 115� W). Across this geographical
extent, 37 species had fewer than 30 presence records, so we
focused on the 14 species with the most presence records
(36–94 occurrences; Table 1) when validating model perfor-
mance and assessing range changes because model perfor-
mance is better with more records (Pearson et al. 2007;
names and functional groups of all 54 species are listed in
Table S1 in Supporting Information).

Characterising community-level interactions

We characterised community-level interactions from a series
of transplant and competitor-removal experiments (Thomsen
et al. 2006; Suttle & Thomsen 2007), consumer addition and
removal experiments (Suttle et al. 2007), and monitoring of
species’ composition, production, and population abundances
in replicate 70m2 plots over 16 years under ambient climate
variability and experimental forcings in rainy season intensity
and duration (Suttle et al. 2007; Sullivan et al. 2016).
A major point of context for understanding community-

level interactions in the study system is the phenological
diversity of plant species in California grasslands. Any consid-
eration of interspecific interactions among plant species must
account for the different seasonal periods in which species are
active. To this end, we categorised the 53 plant species into
eight functional groups according to phenology and basic life
history traits, then used these categories to summarise
expected conditional dependencies for plant-plant interactions,
along with herbivore plant interactions between the generalist
grasshopper Melanoplus devastator (species ID 37) and plants
in each of the eight functional groups (Table 2).
Annual grasses are the most notable competitors in Califor-

nia grasslands, but their early phenology means their activity
only overlaps with a subset of annual forbs. Annual forbs can
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be divided into winter, spring and summer forbs according to
their differing phenologies, with direct competition mostly
between winter forbs and annual grasses. Annual grasses also
have competitive effects on spring and summer forbs, but this
form of competition mainly comes from annual grass litter
inhibiting germination and growth of the later-season forbs,
so there are no reciprocal effects of spring and summer forbs
on annual grasses. Unlike the persistent thatch of annual
grasses, winter forb tissues break down rapidly as plants
senesce, so these species provide a favourable germination and
growth environment for spring and summer forbs. An addi-
tional litter-based effect extends across plant growing seasons:
nitrogen-fixing forbs in one growing season fuel increased
annual grass production in the next season due to a fertilisa-
tion effect from the breakdown of nitrogen-rich tissues during
the winter rainy season when annual grasses are active.

Perennial grasses, perennial forbs and perennial bulbs are
also present in the system. Individuals of these species are rel-
atively tolerant of competition from surrounding annuals, and
their populations fluctuate much less than annual species
because their reproductive strategy relies more on the survival
of existing individuals and less on the recruitment of new indi-
viduals relative to annual species. The main competitive effect
of perennial plants in the study system occurs in the summer,
when perennial grasses are active alongside summer forbs and
there is competition for limited water resources. The generalist
grasshopper Melanoplus devastator is an important consumer
of spring forbs, summer forbs, and annual grasses; winter
forbs senesce early enough to precede grasshoppers in the sys-
tem, and perennial plants are highly tolerant of herbivory.
Further details about community-level interactions were

revealed from environmental change experiments that
extended the rainy season from the usual January–March per-
iod. Since 2001, a random selection of the 70m2 plots at the
study grassland have been experimentally subject to
14–16 mm of additional rainfall delivered every 3 days during
April, May and June (Suttle et al. 2007; Sullivan et al. 2016).
Two plant species in the 53-species record for the study sys-
tem occur only in plots with the extended rainy season treat-
ment, and appeared only after many years of repeated
extensions (Stachys ajugoides, ID 47, after 7 years and Cirsuim
occidentale, ID 15, after 9 years). Two other species (Aira
caryophyllea, ID 2, and Epilobium brachycarpum, ID 25), com-
mon throughout the grassland, have entirely dropped out of
plots with the extended rainy season treatment. This dynamic
could signal heightened competition among the four species,
or it could represent a negative corollary to shared habitat
suitability, whereby the directional environmental forcing cre-
ates mutually exclusive habitat suitability between the more
mesic-associated Stachys ajugoides and Cirsuim occidentale
and the more xeric-associated Aira caryophyllea and Epilobium
brachycarpum.

Environmental data

We selected climate variables developed for an earlier, unre-
lated study (Pearson et al. 2014) and freely available online
(https://doi.org/10.7917/D7WD3XH5). Briefly, an ensemble of
five atmosphere-ocean general circulation models was used to
generate climate anomalies for the years 2010 and 2050 based
on a reference greenhouse gas emission scenario that assumes
no substantive intervention to curb emissions (a pathway to
stabilising atmospheric concentration at 750 ppmv, Wigley
et al. 1996, which is similar to IPCC RCP 6.0, IPCC Fifth
Assessment Report 2014). Climate anomalies were downscaled
to an ecologically relevant spatial resolution of
� 800 m 9 800 m and added to a high-resolution baseline
observed climatology (PRISM 1971–2000 normals; http://
prism.oregonstate.edu). We selected seven bioclimate variables
for use in SDMs based on their relevance to the California
grassland community: maximum temperature of the warmest
month; minimum temperature of the coldest month; annual
precipitation; precipitation of the driest quarter; mean temper-
ature of the wettest quarter; temperature seasonality (standard
deviation 9 100); and precipitation seasonality (coefficient of

Table 1 List of the 14 focal species with the most presence records in the

western USA extent

Species

ID Name Functional group

Number of

presence records

1 Achillea millefolium Perennial forb 94

2 Aira caryophyllea Annual grass 45

7 Bromus carinatus Perennial grass 77

9 Bromus hordeaceus Annual grass 39

11 Bromus tectorum Annual grass 67

19 Danthonia californica Perennial grass 38

22 Draba verna Spring forb 48

23 Elymus glaucus Perennial grass 80

25 Epilobium brachycarpum Summer forb 75

36 Madia gracilis Summer forb 53

43 Ranunculus occidentalis Perennial forb 55

44 Rumex acetosella Perennial forb 44

52 Trifolium microcephalum Nitrogen-fixing

forb

49

54 Vulpia myuros Annual grass 36

Species IDs were assigned in alphabetical order and a complete list of all

54 species are in Table S1.

Table 2 Community-level interactions for the modelled species pool based

on 16 years of experiments and field research in a northern California

grassland

WF SpF SuF NF PF AG PG Bulb MD

WF • + + �
SpF • �
SuF •
NF � • +
PF •
AG � � � •
PG � •
Bulb •
MD � � � •

Plant species are categorised into eight functional groups according to

phenology and basic life history traits: winter forbs (WF); spring forbs

(SpF); summer forbs (SuF); nitrogen-fixing forbs (NF); perennial forbs

(PF); annual grasses (AG); perennial grasses (PG); and bulbs (Bulb). Also

included are interactions for the generalist grasshopper Melanoplus devas-

tator (MD, species ID 37). Positive (+) and negative (�) interaction signs

represent the effect of row species on column species.
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variation). California experiences a Mediterranean-type cli-
mate with hot, dry summers and cool, wet winters; prolonged
annual drought is typical, so the distribution of temperature
and rainfall has a large influence on the grassland ecosystem
(Suttle et al. 2007; Sullivan et al. 2016).

Species distribution models

We generated SDMs using the Maxent method (Phillips et al.
2006), which performs well compared to other types of distri-
bution model (Elith et al. 2006). Although many different
methods exist for estimating the geographical distribution of
species (Elith et al. 2006), and multiple methods are often
used to compare SDMs and find agreement among models
(Ara�ujo & New 2007; Thuiller et al. 2009), we used only one
method as our goal was to illustrate the use of BNs for mod-
elling biotic interactions. Our approach can be implemented
with other types of SDM by following a similar workflow.
Maxent uses presence records for a species and associated

environmental data to determine favourable habitat condi-
tions, which are then combined with environmental data at
other locations to estimate a geographical distribution for the
species (Elith et al. 2011). We implemented Maxent using the
BIOMOD platform in R (Thuiller et al. 2009). Models were
calibrated for each species separately using the baseline clima-
tology and then projected for years 2010 and 2050. We used
Maxent’s logistic output, which is an approximation of the
species’ probability of occurrence and can be interpreted as
the habitat suitability for each species in each grid cell (Elith
et al. 2011). Habitat suitability values were transformed to a
binary (1 = ‘present’ and 0 = ‘absent’) species geographical
range by selecting a threshold value above which the species is
assumed to be able to exist and below which it cannot exist.
We considered two ways of selecting an appropriate thresh-
old: (1) the largest habitat suitability value (and therefore
smallest area) that resulted in all presence records being
included in the estimated species range; and (2) the habitat
suitability value that maximised the true skill statistic (TSS;
Allouche et al. 2006), which is equivalent to maximising the
sum of model specificity and sensitivity, known as maxSSS
(Liu et al. 2013). Species ranges for 2010 represent the ‘pre-
sent day’ and those for 2050 represent predictions under
environmental change.

A Bayesian network for the California grassland community

We specified the graphical structure of the BN using a
strategy that is similar to an optimisation process but less
computationally intensive, and for simplicity used the OR
model (eqn 2) to fill state table entries. We determined a
DAG in five steps: (1) for each of the 14 focal species, we
computed the AUC when applying a BN with one positive
conditional dependency involving the focal species as the child
node and, in turn, each of the other 53 species as the parent
node; (2) we repeated the first step but with negative condi-
tional dependencies; (3) we repeated the first and second steps
for a total of 20 different training and test partitions; (4) we
averaged AUC scores over the 20 data partitions separately
for each focal species; and (5) we constructed an initial

directed graph that included all positive and negative condi-
tional dependencies that consistently increased AUC, then
pruned conditional dependencies using a greedy heuristic
(Eades et al. 1993) to ensure that the final graph was acyclic.
The resulting DAG is not expected to maximise AUC and
there are likely other topologies which result in better AUC
scores. It is also likely to omit many recognised biotic interac-
tions, but their inclusion would be unlikely to affect subse-
quent analysis.
The BN we obtained exhibits a complex topology with mul-

tiple conditional dependencies per focal species that sometimes
form chains of influence (Fig. 2). Not counting the 14 focal
species, 23 of the remaining 40 species were included in the
BN as parent nodes (they were also all root nodes, by con-
struction). The BN contained a total of 12 negative and 40
positive and conditional dependencies.
Of the twelve negative conditional dependencies identified

by AUC optimisation, nine match expected community-level
interactions. Negative conditional dependencies between the
generalist grasshopper Melanoplus devastator (species ID 37)
and the spring forb Draba verna (ID 22) and the annual
grass Vulpia myuros (ID 54) align with herbivore-resource
interactions in the study system, and the remaining seven
negative conditional dependencies align well with expecta-
tions of competition. Four of these negative conditional
dependencies may also represent a negative corollary to
shared habitat suitability, with paired species requiring mutu-
ally exclusive sets of environmental conditions. AUC optimi-
sation picked up negative conditional dependencies between
the species that occur only in plots watered through spring
and into summer (Stachys ajugoides and Cirsuim occidentale,
ID 47 and ID 15, respectively) and the two species that do
not occur at all in these plots (Aira caryophyllea and Epilo-
bium brachycarpum, ID 2 and ID 25, respectively). Only two
of the twelve identified negative conditional dependencies
contradict community-level understanding: those between the
summer forb Eremocarpus setigerus (ID 26) and the annual
grass Vulpia myuros (ID 54), and the nitrogen-fixing forb
Trifolium albopurpureum (ID 50) and Vulpia myuros. We do
not have clear community-level expectations for species in
the same functional group based on research at the study
site. For this reason, it is unclear how to interpret the final
negative conditional dependency between the two spring
forbs Hemizonia congesta (ID 31) and Draba verna (ID 22).
Of the 40 positive conditional dependencies, 32 appear to

reflect shared habitat suitability, at least according to our defi-
nition of expected biotic interactions. The preponderance of
positive compared to negative conditional dependencies is
expected given the model’s sensitivity to shared habitat suit-
ability. As mentioned above, shared habitat suitability is not a
biotic interaction between two species, but, as we show below,
using positive conditional dependencies in this way still has
predictive value. Six positive conditional dependencies match
community-level interactions, including the most conspicuous
positive biotic interactions at the study site: facilitation of
annual grasses by the breakdown of litter from nitrogen-fixing
forbs. Notably, the AUC optimisation procedure identified
positive conditional dependencies between the most abundant
nitrogen-fixing forbs at the study site, Lotus micranthus (ID
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34) and Trifolium wildenovii (ID 53), and the most abundant
annual grass, Bromus hordeaceus (ID 9). In addition, there are
positive conditional dependencies between the most abundant
winter forb at the study site, the bedstraw species Sherardia
arvensis (ID 46), and three later-season forb species (IDs 22,
25 and 52), and also between the winter forb Leptosiphon
bicolor (ID 33) and the summer forb Madia gracilis (ID 36).
These results match interactions observed in the community
in which winter forbs create favourable spaces for germination
and establishment of spring and summer forbs, while annual
grasses exclude these later-season forbs. Two positive condi-
tional dependencies contradict expected community-level inter-
actions: those between the annual grass Gastridium
ventricosum (ID 29) and Draba verna (ID 22) and between the
nitrogen-fixing forb Trifolium microcephalum (ID 52) and
Draba verna.

Validating predictions of present-day species ranges made with and

without biotic interactions

We used AUC to measure model performance for the 14 focal
species, separating presence records for each species into train-
ing (75% of presence records) and test partitions (25% of
presence records). We also measured model performance using

TSS, which gave qualitatively similar results to those using
AUC (see Figs S1 and S2). Because AUC scores depend on
the particular separation of data into training and test parti-
tions, we considered 20 random partitions for each species.
For Maxent models without biotic interactions, we mea-

sured performance using AUC scores involving only prior
habitat suitability values. When biotic interactions are ignored
AUC is simply a function of the priors for one focal species
i ¼ i� calculated from the test partition, i.e. AUCi¼i� ¼
fðp0i¼i�; xÞ, where p0i;x indicates a value associated with a test

partition to distinguish it from a value calculated using all
available data. Computing AUC scores is more complicated
when including biotic interactions with posteriors. This is
because habitat suitability values must also be computed for
all other species in addition to the focal species, while at the
same time respecting the need to maintain comparable train-
ing and test partitions to the case without biotic interactions.
When including biotic interactions with posteriors, we first
computed priors for all species using all available data, i.e.
pi;x. Then we calculated AUC using the same training and test

partitions for each focal species as in the case without biotic
interactions, but all other priors were calculated using all

available data, i.e. gAUCi¼i� ¼ fðp0i¼i�; xÞ ¼ fðp0i¼i�;x; pi6¼i�;xÞ.
This allowed us to isolate the effect of biotic interactions on
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Figure 2 Bayesian network for the California grassland community. The 14 focal species with the most presence records across the western USA are shown
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AUC separately for each focal species, with paired AUCi¼i�

and gAUCi¼i� scores for each training and test partition. If

DAUCi¼i� ¼ gAUCi¼i� � AUCi¼i� is consistently greater than
zero across multiple training-test partitions, then the BN is
valuable and including biotic interactions in SDMs improves
estimates of species ranges.
We found that modelling biotic interactions with the BN

for the California grassland community consistently
improved AUC scores for 6 of the 14 focal species (Fig. 3,
interquartile range completely above zero for species IDs 7,
9, 22, 25, 52 and 54). There were noticeable but less pro-
nounced improvements in AUC for a further five species (in-
terquartile range mainly above zero for IDs 11, 19, 36, 43
and 44). One species (Achillea millefolium, ID 1) had no con-
ditional dependencies in the BN (it was a root node), so
there was no difference between priors and posteriors and
therefore AUC. (TSS scores improved for five species but
worsened for one species, see Fig. S2.) AUC scores were
already high for priors, which restricted the potential for
increases once biotic interactions were included in models
(eight focal species had median AUC scores above 0.8, see
Fig. S3). Using all data in SDMs for 2010, we found that
posterior habitat suitability values (pi;x) were typically higher
than prior values (pi;x), which was unsurprising given the
greater number of positive conditional dependencies in the

BN. Species ranges were also typically larger with posteriors
than priors, a result that was more pronounced with the
inclusion threshold because the maxSSS threshold allows
omission of some presence records and therefore results in
smaller estimated species ranges.

Comparing predictions of future impacts from climate change made

with and without biotic interactions

After testing whether modelling biotic interactions using a BN
improved model performance with 2010 data, we made pre-
dictions of species ranges in 2050 using projected climate vari-
ables in SDMs (projections suggest warmer and drier
conditions in 2050 across the western USA; see Table S2).
Estimating the impacts of climate change on species is one of
the most common applications of SDMs, with many studies
predicting high risk of extinctions over the coming decades
(Thomas et al. 2004; Pearson et al. 2014; Urban 2015).
Although it is well documented that such predictions remain
highly uncertain (e.g. they fail to account for potentially rapid
genetic adaptation and phenological mistiming; Pearson &
Dawson 2003; Parmesan 2006), we aim here to demonstrate
how incorporating biotic interactions refines predictions and
moves us a step closer to being able to make reliable assess-
ments of future impacts from climate change.
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For each focal species, we assessed the predicted change in
its geographical range between 2010 and 2050 first using a
model without biotic interactions to serve as a reference point
and then using a model with biotic interactions. We quantified
change between 2010 and 2050 in three ways: (1) the change
in average habitat suitability; (2) the change in binary range
when the threshold habitat suitability was set to the largest
value that resulted in all presence records being included in
the species range for 2010; and (3) the change in binary range
when the threshold habitat suitability was set to the maxSSS
value for 2010 data. For both threshold-based measures, we
assumed that species dispersal was either possible (the pre-
dicted range in 2050 could extend beyond the range in 2010)
or not (the predicted range in 2050 was limited to grid cells
classed as ‘present’ in 2010) (Thomas et al. 2004). Predicted
decreases in species ranges from this kind of assessment have
been widely interpreted as indicating increased risk of extinc-
tion (Urban 2015). We provide a detailed description of how
range changes were quantified in Appendix S2 and results in
Appendix S3.
In general, we found that ignoring biotic interactions led

to larger predicted decreases in species ranges; however,
there were also examples where ignoring biotic interactions
led to smaller decreases. Results also varied by how change
was quantified. For instance, the SDM without biotic inter-
actions for Danthonia californica (ID 19) predicted a 30%
decrease in range between 2010 and 2050 (using the maxSSS
threshold with dispersal), whereas the model with biotic
interactions predicted a smaller decrease of 11% (Table S3).
By contrast, for Trifolium microcephalum (ID 52) the SDM
with biotic interactions predicted a larger relative decrease in
geographical range than the SDM without biotic interactions
(65% with interactions vs. 59% without interactions;
maxSSS threshold with dispersal; Table S3). However, note
that the SDM with biotic interactions for Trifolium micro-
cephalum predicted a larger geographical range than the
model without biotic interactions in both 2010 and 2050
(Fig. 4), which highlights a limitation of quantifying impacts
based only relative change (see Figs S4–S17 for geographical
ranges for the other focal species). For one species, Epilo-
bium brachycarpum (ID 25), including biotic interactions
reversed the predicted response from a 16% increase in
range to a 6% decrease (maxSSS threshold with dispersal;
Table S3). Further research with a larger sample size of spe-
cies across multiple taxonomic groups will be required to
discern whether predicted impacts of climate change on bio-
diversity are generally more or less severe when biotic inter-
actions are included in the models, or if there is no general
trend. Nevertheless, our application here demonstrates that
including biotic interactions is possible and has the potential
to substantially affect results.

DISCUSSION

We have presented an approach that links macro-scale species
distributions and local-scale community interactions by
combining SDMs and BNs. The approach addresses a long-
standing problem in macroecology: that models of species
distributions have focused on the abiotic constraints imposed

on species distributions (the Grinnellian niche) and failed to
take into account biotic interactions (the Eltonian niche).
Improvements in predictions of present-day species’ distribu-
tions when biotic interactions were included were relatively
small but nevertheless consistent for our application to a Cali-
fornian grassland (when SDM performance was measured
using AUC). The fact that improvements in predictions were
only small may be because ranges at large scales are determined
principally by abiotic factors, in line with the Eltonian Noise
Hypothesis; however, further research with more species in dif-
ferent regions will be required to robustly test this hypothesis.
We have shown that including biotic interactions can substan-
tially alter assessments of range changes under future environ-
mental change, including the possibility that projections will
reverse from an increasing range to a decreasing range. We
therefore expect that linking SDMs and BNs will lead to
improved estimates of species distributions across a wide range
of applications, including conservation planning, invasive spe-
cies management, and disease containment (Peterson et al.
2011).

Specifying and validating Bayesian networks

We have described two general approaches to specifying the
graphical structure of a BN: defining it based on community-
level knowledge or inferring it from macroecological occur-
rence data. Specifying a BN directly from local scale, commu-
nity data is a promising avenue for future work, particularly
because it enables true biotic interactions to be separated from
dependencies that reflect shared habitats. However, the
macroecological approach that we illustrate for the California
case study also offers great potential, not only because it
makes use of occurrence data sets that are more readily avail-
able, but also because it enables identification of interactions
that should be included in models to improve predictive
performance.
Using macroecological models to infer interactions can also

enhance community-level understanding because the effects of
biotic interactions can vary across present and future mod-
elled ranges. Even iconic examples of strongly interacting spe-
cies show pronounced variation in interaction strength and
importance at different locations within their ranges (Paine
1966; Dayton 1971; Menge et al. 2004). In addition to differ-
ences owing to local community composition, environmental
variation across years within a single study system has
revealed that important structuring interactions are a function
of specific physical contexts rather than some kind of robust
ecological truth (Power, 1990, Power et al. 2008). As such, the
possibility for macroecological models to inform community-
level understanding can be just as useful as using community-
level knowledge to inform macroecological modelling.
Further work could explore the use of different BNs at dif-

ferent locations for the same community. For example,
repeating local experimental manipulations over macroecolog-
ical extents (the comparative-experimental approach; Paine
2010) will prove informative for specifying different BNs. Dif-
ferent BNs spread across space could then be embedded
within a metacommunity framework (Cazelles et al. 2016).
BNs could also vary through time as biotic interactions are
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altered by, for instance, the introduction of an invasive alien
species or by climate change (Blois et al. 2013), and experi-
mental methods to quantify novel biotic interactions (Alexan-
der et al. 2016) have potential to inform in this regard.
Note that the two general approaches to specifying a BN are

complementary when it comes to validation (see Appendix S4).
When predicting species ranges, a general way of assessing the
value of a BN is by comparing the value of an objective func-
tion when an SDM includes the BN to when it does not, for
example by comparing the AUC with posteriors to the AUC
with priors, as we did in the California grassland case study.
Similarly, different BNs can be compared using AUC to test the
importance of specific groups of biotic interactions or modelling
assumptions for a given system. This approach is particularly
informative when a BN is specified using data from local obser-
vations or experimental manipulations.

When macroecological occurrence data are combined with
an optimisation procedure, the resulting BN is by definition
the ‘best’ model, so validation requires understanding whether
the suggested interactions make biological sense (for a discus-
sion of penalising for model complexity, see Appendix S5). As
demonstrated here, the simplified representation of biotic
interactions in a BN can be associated with ecological pro-
cesses known to be important for the system, such as facilita-
tion by nitrogen fixers on annual grasses and some forbs, and
competition between annual grasses and other plant species.

Future prospects

We used the Maxent method for SDMs, but BNs can be
easily combined with other machine-learning (e.g. Boosted
Regression Trees), regression-based (e.g. generalised additive

With biotic 
interaction 
network 

Without biotic 
interaction 
network 

2010 2050 

Figure 4 Predicted change in the geographical range of Trifolium microcephalum (nitrogen-fixing forb, species ID 52) between 2010 (left) and 2050 (right)

using species distribution models (SDMs) with (top) and without (bottom) biotic interactions and shared habitat suitability relationships. We considered

SDM outputs for the western USA at a resolution of � 800 m 9 800 m grid cells. Habitat suitability values were transformed to a binary

(green = ‘present’ and grey = ‘absent’) species range using the maxSSS threshold and allowing for dispersal. The two species ranges for 2010 represent the

‘present day’, and the two species ranges for 2050 are based on a greenhouse gas emission scenario that assumes no substantive intervention to curb

emissions. Notice that both models predict a smaller geographical range in 2050, but the SDM with biotic interactions and shared habitat suitability

relationships predicts a larger relative decrease in geographical range (values in Table S3). Differences between range maps are highlighted in Fig. S16.
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models) or envelope-based methods (e.g. Bioclim) (Elith et al.
2006). The most useful and mathematically satisfying
approach would involve SDMs that output actual probabili-
ties of species occurrence across a geographical extent (as
opposed to scores for relative habitat suitability). Because cor-
relative SDMs such as Maxent characterise suitable abiotic
environments based on observed ranges, which reflect biotic
as well as abiotic controls, these models implicitly incorporate
a measure of biotic interactions. By contrast, the approach we
propose here enables biotic interactions to be modelled explic-
itly, enabling knock-on impacts across a community to be
captured. BNs could also be combined with mechanistic distri-
bution models, which utilise information on the physiological
constraints that abiotic variables place on species independent
of biotic factors (Kearney & Porter 2009). And because mech-
anistic distribution models do not implicitly incorporate biotic
interactions, we expect to see greater predictive improvement
when biotic interactions are added explicitly using BNs.
As expected, because conditional dependencies include the

effects of shared habitat preferences as well as more direct
facilitation, we found more positive than negative conditional
dependencies in the BN for the California grassland commu-
nity. Future analyses of the effects of spatial resolution are
likely to reveal increased model performance when biotic
interactions are included at finer spatial resolutions. Despite a
relatively small grid-cell size for macroecological studies
(� 800 m 9 800 m), even this resolution may not be fine
enough to identify competitive exclusion and other negative
conditional dependencies, which are more likely to be
observed at finer resolutions than positive associations among
species (Ara�ujo & Rozenfeld 2014; Thuiller et al. 2015). We
therefore expect that as spatial resolution increases our
approach will identify more biotic interactions, especially neg-
ative ones, and the effects of biotic interactions on predictions
will become stronger.
Our approach will become more widely applicable as cover-

age of occurrence (and absence) records increases and new
data sets on interactions among species in a community are
assembled. Because the time required to solve a BN (trans-
forming priors to posteriors) grows linearly with spatial scale
and sub-linearly with the number of species, adding this step
to an existing workflow requires little computational over-
head, even for large communities. Clearly, the number and
pattern of biotic interactions will vary among ecological com-
munities, and so will the effect of including biotic interactions
in SDMs. It has been suggested, for example, that biotic inter-
actions may have a greater effect on species at higher trophic
levels (Ockendon et al. 2014). We presented three relatively
simple sets of rules for modelling state table entries (eqns 1–
3). Such rules can and should be tailored for different types of
interaction. However, it is imperative that laboratory and field
experiments are not only used to parameterise rules, but also
to justify the application of more complex sets of rules.
The approach we present offers two stimulating prospects:

first as a way of testing knowledge about biotic interactions at
large spatial scales, and second as a way of learning about
biotic interactions from biogeographical data. Ecology rests
on interactions between species, but the degree to which local-
scale interactions are important for predicting large-scale

distributions remains unclear. We have presented a way of
incorporating biotic interactions in models of species distribu-
tions, which we hope will prove valuable for testing hypothe-
ses that link macroecology and community ecology.
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