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Abstract
Elevated plasma triglyceride (TG) levels are an established risk factor for type-2 diabetes

(T2D). However, recent studies have hinted at the possibility that genetic risk for TG may

paradoxically protect against T2D. In this study, we examined the association of genetic risk

for TG with incident T2D, and the interaction of baseline TG with TG genetic risk on incident

T2D in 13,247 European-Americans (EA) and 3,238 African-Americans (AA) from three pro-

spective cohort studies. A TG genetic risk score (GRS) was calculated based on 31 validat-

ed single nucleotide polymorphisms (SNPs). We considered several baseline covariates,

including body- mass index (BMI) and lipid traits. Among EA and AA, we find, as expected,

that baseline levels of TG are strongly positively associated with incident T2D (p<2 x 10-10).

However, the TG GRS is negatively associated with T2D (p=0.013), upon adjusting for only

race, in the full dataset. Upon additionally adjusting for age, sex, BMI, high-density lipopro-

tein cholesterol and TG, the TG GRS is significantly and negatively associated with T2D in-

cidence (p=7.0 x 10-8), with similar trends among both EA and AA. No single SNP appears

to be driving this association. We also find a significant statistical interaction of the TG GRS

with TG (pinteraction=3.3 x 10-4), whereby the association of TG with incident T2D is strongest

among those with low genetic risk for TG. Further research is needed to understand the like-

ly pleiotropic mechanisms underlying these findings, and to clarify the causal relationship

between T2D and TG.

Author Summary

An elevated triglyceride level is generally considered a risk factor for the development of
type-2 diabetes. However, recent studies suggest, somewhat paradoxically, that genetic risk
for elevated triglycerides may protect against type-2 diabetes. In this study, we test the rela-
tionship of triglyceride-associated genetic variants, collectively and individually, with inci-
dent type-2 diabetes across three prospective cohort studies comprised of European- and
African-American participants. Our findings across studies, racial groups, and statistical
models consistently demonstrate that triglyceride-increasing alleles are associated with
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decreased type-2 diabetes incidence. These genes therefore appear to both increase triglyc-
eride levels and decrease type-2 diabetes risk. More work is needed to understand the
physiological mechanism underlying these findings, and to determine the causal relation-
ship between triglycerides and type-2 diabetes.

Introduction
Along with age, body weight, family history, and other characteristics, triglyceride (TG) level is
a major risk factor for cardiovascular disease and type-2 diabetes (T2D). In many prospective
studies, TG at baseline is positively associated with T2D incidence, independently of body
mass index (BMI) and other risk factors [1], although the direction of causality between TG
and T2D is unclear [2], and somewhat ambiguous.

Over thirty single nucleotide polymorphisms (SNPs) have been found to be associated with
plasma TG levels through meta-analysis of genome-wide association studies (GWAS) [3,4].
Using a case-control analytical design in over 30,000 individuals, we previously examined the
association of 17 genetic risk scores (GRS) for various traits, including lipid traits, with current
T2D status (importantly, adjusting only for sex and age), and observed an unexpected, albeit
not statistically significant, pattern suggesting that being at high genetic risk for low-density li-
poprotein cholesterol, total cholesterol, or TG could be protective against T2D [5]. At the same
time, another group found in a cross-sectional study that genetic risk for dyslipidemia is nega-
tively associated with fasting glucose and HbA1c [6] after adjustment for lipid phenotypes. As
illustrated and discussed by Li et al. [6], by not adjusting for TG, the negative direct path be-
tween TG genes and T2D is weakened by the positive path linking TG genes, TG, and glycemic
traits.

Previous studies have shown that GCKR variation is associated with both elevated TG and
reduced fasting glucose and T2D risk, [7,8] potentially implicating its role in hepatic de-novo
lipogenesis [9], through which it would promote glucose uptake, glycolysis, and subsequently
increase plasma TG levels [10]. In a Mendelian randomization study, no evidence to suggest a
causal role for TG in T2D or related traits was identified, although the authors did identify a
“suggestive protective association” of genetically-raised TG levels with T2D risk [11]. Finally,
Qi et al. identified a significant positive association between genetic risk for TG and T2D risk.
However, in that analysis there was no adjustment for plasma TG levels which would have bi-
ased the results towards the null, according to Li et al. [6]. Likely more important, is their exclu-
sion of SNPs with known pleiotropic effects, such as GCKR [12].

Here, we seek to further examine these seemingly paradoxical findings by drawing from
three prospective cohort studies and across two racial groups, and by considering baseline mea-
sures of BMI, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholester-
ol (LDL-C), TG, fasting glucose (FG) and fasting insulin (FI) as covariates. Specifically, we
hypothesize that baseline TG is associated with incident T2D, that genetic risk for TG is nega-
tively associated with T2D incidence, and that the association between TG and incident T2D is
stronger among those individuals with low genetic risk for TG.

Results
Characteristics of the participants in each study are shown in Table 1. In each study, there are
more females than males. The number of incident T2D cases ranges from 185 in the Multi-Eth-
nic Study of Atherosclerosis (MESA) to 789 in the Atherosclerosis Risk in Communities study
(ARIC), while the mean follow-up time ranges from 2,844 days in MESA to 9,392 days in the
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Framingham Heart Study (FHS). Among both EA and AA, we found that the association of
the 31-SNP TG GRS with TG was stronger (EA: β = 0.25, p = 7.3 x 10–204; AA: β = 0.058,
p = 7.8 x 10–4) than the association of the 40-SNP TG GRS with TG (EA: β = 0.20, p = 4.8 x
10–127; AA: β = 0.042, p = 1.6 x 10–2). Therefore, we proceeded with the 31 SNP TG GRS for all
subsequent analyses.

Association of TG, TG GRS, and TG SNPs with T2D incidence
Among EA, TG was strongly positively associated with T2D incidence (hazard ratio (HR) =
1.14, 95% CI [1.09–1.18], p = 8.8 x 10–11), conditioning upon age, sex, BMI, and HDL. The as-
sociation of the TG GRS with incident T2D, including no other covariates, was not statistically
significant, but was in the negative direction (HR = 0.997, 95% CI [0.994–1.000], p = 0.06).
Upon conditioning for age, sex, and BMI, the TG GRS was significantly negatively associated
with T2D incidence (HR = 0.996, 95% CI [0.993–0.999], p = 0.008). Finally, upon conditioning
for age, sex, BMI, TG, and HDL, the TG GRS was significantly negatively associated with T2D
incidence (HR = 0.991, 95% CI [0.988–0.995], p = 1.2 x 10–7). We did not include LDL-C as a
covariate as it was not significantly associated with T2D incidence in a model which included
BMI, TG and HDL-C. Including LDL-C in the full model resulted in a similar association of
TG GRS with T2D (HR = 0.991, 95% CI [0.988–0.994], p = 2.6 x 10–8). Including FG and FI as
additional covariates resulted in a similar but weaker negative association of the TG GRS with
T2D (HR = 0.994, 95% CI [0.990–0.998], p = 3.1 x 10–3).

Among AA, TG was strongly positively associated with T2D incidence (HR = 1.18, 95% CI
[1.12–1.23], p = 3.6 x10-11), conditioning on age, sex, BMI, and HDL. The TG GRS was nega-
tively but not significantly associated with T2D incidence (HR = 0.996, 95% CI [0.991–1.001],
p = 0.087), conditioning only on age and sex. As in EA, LDL-C was not significantly associated
with T2D incidence in any model. Conditioning upon age, sex, BMI, HDL, and TG, the TG
GRS association with T2D incidence was negative, but not statistically significant (HR = 0.995,
95% CI [0.991–1.000], p = 0.055). Fig 1 shows the TG GRS association on a study-by-study
basis in both EA and AA.

We examined the association of the TG GRS with T2D incidence, conditioning only on
race, in a combined dataset of EA and AA. We find that the TG GRS is negatively and signifi-
cantly associated with T2D incidence (HR = 0.997, 95% CI [0.994–0.999], p = 0.013). Upon

Table 1. Characteristics of the three samples of European-Americans and two samples of African-Americans.

European Americans African Americans

ARIC FHS MESA ARIC MESA

n 7,868 3,430 1,949 2,089 1,149

Age (yr) 54.1 ± 5.7 35.2 ± 9.9 61.9 ± 10.4 53.0 ± 5.7 61.2 ± 10.3

Sex (% female) 54.0 52.7 61.9 62.0 54.7

BMI (kg/m2) 26.7 ± 4.7 25.2 ± 4.2 27.3±5.1 29.2 ± 8.9 29.8 ± 5.9

Plasma triglyceride* 1.46 ± 0.87 300.7 ± 240.8 126.2±71.6 1.2 ± 0.83 98.5 ± 50.3

TG GRS (31 SNP) 154.0 ± 16.4 160.9 ± 16.8 155.4 ± 16.3 160.6 ± 17.5 161.5 ± 17.1

Plasma HDL** 1.34 ± 0.43 51.2 ± 14.7 53.4 ± 16.2.1 1.45 ± 0.45 53.35 ±15.5

Incident cases (n) 789 468 185 383 200

Mean follow-up time (days) 2,859 9,392 2,844 2,529 2,624

*TG units: ARIC—mmol/L; FRAM—Meq/L; MESA—mg/dL

**HDL units: ARIC—mmol/L; FRAM & MESA—mg/dL

doi:10.1371/journal.pgen.1005204.t001
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conditioning on race as well as age, sex, TG and HDL, we find a very strong negative associa-
tion of the TG GRS with T2D (HR = 0.993, 95% CI [0.990–0.995], p = 7.0 x 10–8).

Of 31 TG-associated SNPs, 24 (77.4%), and 15 (48.4%) are negatively associated with T2D
incidence in EA and AA, respectively (see Table 2). However, none are significantly associated
with T2D incidence. SNPs that are negatively associated with T2D among EA, at a nominal
level of significance (p<0.05) are those in/near APOA1, PLA2G6, GCKR, CETP, and CILP2.
Among AA, no single SNP was at least nominally significant. However, we did observe the
same negative trend of association for all SNPs that are nominally significant in EA, except for
PLA2G6.

Fig 1. Association of TG GRSwith incident T2D and interaction of TG with TGGRS on incident T2D in each dataset and in EA (top; n = 13,247) and
AA (bottom; n = 3,238).Hazard ratios and 95%CI are shown. Covariates include age, sex, BMI, TG, and HDL.

doi:10.1371/journal.pgen.1005204.g001
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Interaction of TG GRS with TG on T2D incidence
Among EA, we find a significant interaction of TG and TG GRS (HRinteraction = 0.997, 95% CI
[0.995–0.999], p = 1.1 x 10–3), with the inclusion of age, sex, BMI, TG and HDL as covariates.
Fig 1 shows the TG x TG GRS interaction HRs on a study-by-study basis in EA and AA. Fig 2
shows the association of TG with incident T2D in each of three tertiles of TG GRS. Among EA,
we observe a stronger association of TG with incident T2D among individuals with a low TG
GRS (HR = 1.24, 95% CI [1.16–1.32], p = 8.0 x 10–10) compared to those with a high TG GRS
(HR = 1.12, 95% CI [1.05–1.19], p = 4.6 x 10–4). Among AA, we do not find a statistically sig-
nificant interaction of TG and TG GRS (HRinteraction = 0.998, 95% CI [0.993–1.0003], p = 0.39),

Table 2. List of 31 triglyceride (TG)-associated SNPs with their respective genomic position, risk allele (TG increasing), TG effect size (weight used
in GRS), association with T2D incidence, and interaction with TG phenotype in European- and African-Americans (EA, AA).

Main Effect on T2D incidence Interaction with TG phenotype

EA AA EA AA

SNP Nearest Gene Risk allele Effect size β p-value β p-value β p-value β p-value

rs10195252 COBLL1 T 2.01 0.1 0.01 0.04 0.44 -0.03 0.23 0.04 0.29

rs10401969 CILP2 T 7.83 -0.16 0.02 -0.09 0.28 -0.06 0.22 -0.06 0.24

rs1042034 APOB T 5.99 -0.07 0.11 0.07 0.36 -5.8E-3 0.85 0.04 0.37

rs10761731 JMJD1C A 2.38 -2.7E-3 0.95 0.06 0.33 0.07 0.02 -0.01 0.86

rs11613352 LRP1 C 2.7 0.03 0.46 0.06 0.49 0.04 0.18 0.02 0.79

rs11649653 CTF1 C 2.13 -8.3E-3 0.83 0.07 0.32 -0.01 0.62 0.06 0.08

rs11776767 PINX1 C 2.01 -0.01 0.72 0.05 0.39 -0.02 0.56 0.04 0.35

rs12310367 ZNF664 A 2.42 -0.04 0.33 0.02 0.69 -6.7E-3 0.75 -0.02 0.67

rs1260326 GCKR T 8.76 -0.08 0.03 -0.04 0.52 -0.02 0.52 0.08 0.07

rs12678919 LPL A 13.64 -0.03 0.63 -0.11 0.23 -0.04 0.41 -0.14 0.19

rs1321257 GALNT2 G 2.76 -0.01 0.74 -0.04 0.56 -8.7E-4 0.98 0.05 0.21

rs13238203 TYW1B C 7.91 0.24 0.11 -0.26 0.38 0.07 0.56 -0.2 0.66

rs1495743 NAT2 G 2.97 0.09 0.03 -0.04 0.56 -0.05 0.06 -0.06 0.06

rs1553318 TIMD4 C 2.63 -0.05 0.23 -0.07 0.23 0.03 0.29 -0.06 0.12

rs174546 FADS1-2-3 T 3.82 -0.04 0.3 -0.01 0.88 4.1E-3 0.86 -0.02 0.77

rs2068888 CYP26A1 G 2.28 -3.2E-3 0.94 -0.04 0.57 0.01 0.66 0.12 0.01

rs2131925 ANGPTL3 T 4.94 0.04 0.26 -6.9E-3 0.9 0.03 0.35 -0.05 0.1

rs2412710 CAPN3 A 7 2.1E-3 0.99 0.08 0.59 0.16 0.13 0.02 0.82

rs261342 LIPC G 2.99 -4.1E-3 0.93 0.04 0.45 -0.06 0.03 0.05 0.19

rs2929282 FRMD5 T 5.13 -0.08 0.33 0.05 0.47 0.21 2.2E-4 -0.04 0.48

rs2943645 IRS1 T 1.89 -0.04 0.27 0.07 0.25 -0.01 0.62 -0.04 0.1

rs2954029 TRIB1 A 5.64 1.7E-3 0.96 6.1E-3 0.92 0.04 0.2 0.02 0.66

rs439401 APOE C 5.5 -2.8E-3 0.95 0.1 0.18 0.07 0.05 -0.03 0.57

rs442177 KLHL8 T 2.25 -0.02 0.67 0.02 0.79 -0.06 0.08 -0.04 0.34

rs4810479 PLTP C 3.32 -0.02 0.66 0.03 0.6 -3.1E-3 0.92 -0.06 0.17

rs5756931 PLA2G6 T 1.54 -0.09 0.02 0.13 0.1 -0.05 0.1 0.05 0.24

rs645040 MSL2L1 T 2.22 -9.7E-3 0.83 -0.03 0.6 -0.03 0.43 -0.05 0.31

rs7205804 CETP G 2.88 -0.1 0.01 -0.07 0.31 -0.03 0.41 0.05 0.27

rs7811265 MLXIPL A 7.91 -0.05 0.34 -0.09 0.18 0.01 0.72 -0.04 0.14

rs964184 APOA1 G 16.95 -0.15 7.2E-3 -0.08 0.28 -0.06 0.05 -0.04 0.39

rs9686661 MAP3K1 T 2.57 -0.06 0.24 -0.04 0.62 0.07 0.03 -0.07 0.17

Covariates include age, sex, BMI, TG, and HDL.

doi:10.1371/journal.pgen.1005204.t002
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Fig 2. Association of TG with T2D in each of three strata of TG GRS, in EA and AA. Hazard ratios and 95%CI are shown. Covariates include age, sex,
BMI, TG, and HDL.

doi:10.1371/journal.pgen.1005204.g002
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although the trend is similar as that in EA (see Fig 2). Including all possible TG x covariate and
TG GRS x covariate interaction terms in the model results in a TG x TG GRS interaction that
has the same direction as the model without all possible interaction terms, but that is not statis-
tically significant (EA: p = 0.15, AA: p = 0.38, combined: p = 0.06). In a combined analysis, con-
ditioning upon race as well as the other covariates, we find a statistically significant interaction
of the TG GRS and TG on T2D (HRinteraction = 0.997, 95% CI [0.995–0.999], p = 3.3 x 10–4).
Among the 31 individual SNPs, only rs2929282 in FRMD5 shows a significant interaction
(p = 2.2 x 10–4) with TG on T2D incidence among EA (see Table 2).

Discussion
Using data from three prospective cohorts, we show that genetic risk for elevated TG is nega-
tively associated with T2D incidence. Furthermore, our findings suggest that the risk conferred
by TG is greatest among individuals with low genetic predisposition for TG. We find a similar
pattern in both EA and AA, despite 1) the smaller sample size of AA, 2) the fact that TG SNPs
were mainly identified in EA, and 3) that the association of the TG GRS with TG among AA in
our sample is relatively weak, compared to that in EA.

Our findings are in accord with those of Klimentidis et al. [5] and Li et al. [6]. By adjusting
analyses for phenotypic levels of TG and HDL, we were more easily able to identify the negative
association of the TG GRS with T2D, and thus confirm the likely pleiotropic nature of TG
genes. However, our results differ with respect to the specific SNPs identified. Li et al. identified
SNPs in/near CETP,MLXIPL, PLTP, GCKR, APOB, APOE-C1-C2, CYP7A1 and TIMD4 as
being most strongly negatively associated with glycemic traits. Among these, we find that only
CETP and GCKR SNPs are negatively associated with T2D, albeit at a nominal significance
level. All others, except APOE, were directionally consistent. Differences in identified SNPs be-
tween our study and the Li et al. study may be attributed to, among other things, a difference in
the outcome measured (T2D vs glycemic traits). Indeed, the genetic determinants of glycemic
traits (i.e. normal glycemic variation) has been shown to differ somewhat from the genetic de-
terminants of T2D [13].

We find that rs964184 near APOA1 was most strongly negatively associated with T2D, ac-
cording to the p-value. To our knowledge there is no previous report of an APOA1 variant
being negatively associated with T2D or related trait. The variation near the APOA1 gene is
thought to increase TG levels through impairment of the capacity of APOA1 to bind with lipo-
protein lipase (LPL, the enzyme responsible for lipolysis), resulting in decreased LPL-mediated
lipolysis of TG [14,15]. In the DIAGRAMmeta-analysis, the G allele (TG increasing allele) at
this SNP is non-significantly (and positively), associated with a greater risk of T2D (p = 0.15)
[16]. We suspect that this non-significant result (and positive direction) is due to the fact that
TG is typically not included as a covariate in GWAS of T2D.

Previous studies have shown that variants in GCKRmay have pleiotropic effects of increas-
ing TG and decreasing insulin resistance [7,8,17–19]. We confirm this in our study. However,
our results suggest that GCKR is just one of several drivers of the pleiotropic effect of TG genes
on T2D risk. A recent functional analysis of GCKR variant rs1260326 found that it is highly ex-
pressed in hepatic cells in response to glucokinase (GCK) activity, as compared to pancreatic
islet cells, indicating its functional role inside liver cells [10,20]. Furthermore, the researchers
found the GCK-inhibiting activity, mediated through fructose-6 phosphate, to be significantly
attenuated among those with the rs1260326 variant, thus potentially enhancing glucose uptake
in the liver and further increasing levels of TG precursor substrate, malonyl-CoA [10]. This in-
flux of glucose inside the liver and resulting increase in the synthesis of malonyl-CoA may
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account for low glucose and high TG levels. A previous study has also implicated the CILP2
locus as having opposite putative effects on TG and T2D [21].

The SNP discovery efforts of large GWAS meta-analyses could have down-prioritized SNPs
involved in lipid variation among individuals with T2D, if T2D cases were excluded from the
analysis. This could potentially have the effect of only discovering SNPs involved in lipid varia-
tion among individuals who are non-diabetic. Although T2D cases were excluded from the
ARIC study in the Teslovich et al. meta-analysis, for most other studies, T2D cases were includ-
ed in the analysis, and analyzed separately from controls [3].

These findings have implications for how we understand the causal relationship between
TG and T2D. They suggest that additional studies are needed to closely examine the biological
and causal links connecting lipid and glycemic phenotypes. For example, several SNPs associat-
ed with FI have been found to be associated with higher TG [13,22] providing support for a
causal pathway in which a T2D-related phenotype causes elevated TG.

In conclusion, further research is needed to understand the molecular and physiological
mechanisms underlying the putative pleiotropic nature of TG-associated genes.

Methods

Studies
We used phenotypic and genotypic data of European- and African-Americans (EA, AA) from
three prospective cohort studies conducted in the United States for a combined sample size of
13,285. We used data from 7,868 EA and 2,089 AA participants from the Atherosclerosis Risk
in Communities (ARIC) study, which is a multi-center prospective study of men and women
between the ages of 45 and 64 to investigate risk factors associated with atherosclerosis [23].
We used data from 3,430 EA participants from the Framingham Heart Study Offspring Study
(FHS), which is a prospective cohort study to examine the causes of heart disease [24]. Finally,
we used data from 1,949 EA and 1,149 AA participants in the Multi-Ethnic Study of Athero-
sclerosis (MESA), a prospective cohort study of the risk factors for atherosclerosis among mid-
dle age men and women aged 45–85 years [25]. This study was approved by the University of
Arizona Human Subjects Protection Program (Protocol number: 1300000659R001). No pa-
tient consent was given as the data were analyzed anonymously.. Data was obtained from the
database of Genotypes and Phenotypes (dbGaP).

Phenotypic measurements
Individuals with prevalent T2D at the baseline examination were excluded from this study.
Prevalent T2D was defined as having a FG level> 125 mg/dL, a report of taking T2D medica-
tion, or a physician diagnosis. We also excluded individuals who reported using cholesterol
medications, including statins, as these medications can influence blood lipids levels and other
blood constituents, which may artificially reduce associations between TG and incident T2D.
We also excluded individuals who had not fasted (< 8 hours) at the baseline exam. The sam-
ples drawn at the first visit of each study were processed and analyzed using standardized pro-
cedures and protocols, the details of which are described elsewhere [26–28]. We used baseline
measurements of age, TG, HDL-C, LDL-C, BMI, FG and FI as covariates in the analysis. Height
and weight were also measured at baseline, and body mass index (BMI; kg/m2) was calculated.
Incident T2D cases were identified at one of three follow-up visits in ARIC, seven follow-up
visits in FHS, and four follow-up visits in MESA, based on FG, medication criteria, or physician
diagnosis. In ARIC, time to incident type 2 diabetes was extrapolated based upon glucose val-
ues at the ascertaining visit and the previous visit, as previously described [29].

Triglyceride Genes and Type-2 Diabetes
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Genotypes and genetic risk score
FHS participants were genotyped with the Affymetrix 500K SNP Array (Affymetrix, Santa
Clara, CA, USA). ARIC and MESA participants were genotyped with the Affymetrix Genome-
Wide Human SNP Array 6.0. Standard quality-control measures were employed prior to impu-
tation. We used IMPUTE2 with the 1,000 Genomes data as a reference, to impute millions of
genotypes in each study [30]. To assess genetic risk for elevated TG, we calculated two GRS.
The first GRS was based on 31 single nucleotide polymorphisms (SNPs) identified in a large-
scale meta-analysis of lipid levels [3]. The second GRS was based on 40 SNPs identified in a
more recent meta-analysis of lipid levels [4]. All SNPs in the three studies had imputation qual-
ity scores (‘info’)> 0.6. Weighted genetic risk scores were calculated by taking the sum of risk
alleles for all SNPs and weighting each risk allele by its respective effect size. Risk alleles and ef-
fect sizes were defined according to the findings in the respective meta-analysis.

Statistical analyses
Since TG, HDL-C, LDL-C, FG and FI levels were measured using different units in each study,
we standardized them to a mean of 0 and standard deviation of 1 in each study so that we
could combine the studies. Hazard ratios (HR), defined as the ratio of hazard rates correspond-
ing to different levels of TG genetic risk, were estimated using Cox proportional hazards
regression models in each of the three studies and in the combined data. We considered the as-
sociation of TG genes with incident T2D by conditioning on variables including age, sex, BMI,
HDL-C, LDL-C, FG, FI, and TG. As mentioned above, phenotypic covariates were measured at
the baseline examination in each respective study. Interactions were modeled as the product of
TG and the TG GRS (or TG SNP) and included as covariates in the Cox proportional hazards
regression model. We also tested a model in which additional interaction terms of both the TG
and TG GRS with all other covariates were added to the model, based upon the recommenda-
tion of Keller [31]. We combined the studies into one (one for EA and one for AA) to conduct
analyses, and accounted for the potential within-study dependence for the subjects from the
same study by including a ‘frailty’ term for the study in the model. We also tested proportional-
ity of hazard over time by including a time-dependent covariate consisting of the interaction
of the logarithm of the time to event with TG and the TG GRS, and their interaction term.
Among EA, there was not sufficient evidence (p>0.05) to reject the null hypothesis of hazard
proportionality over time in the TG GRS association or the TG-by-GRS interactions. Among
AA, we found the same, except for the TG variable (p = 0.04). However, upon visual inspection
and comparison of the Kaplan-Meier survival curves, we observe that the TG>-0.22 (median)
and< = -0.22 curves look proportional. We suspect that the p-value<0.05 is attributed to the
large sample size. For the SNP analysis, we considered a Bonferroni correction for 31 tests per-
formed, resulting in an alpha of 0.0016. To test the association of each TG GRS with TG, we
first natural-log (ln) transformed TG separately in each study, then standardized it as described
above. We also standardized each TG GRS in order to compare the association of each with
TG. We used linear regression to test the association of each TG GRS with standardized ln
(TG) in the set of combined studies, including age, sex, BMI and the random effect of study as
covariates. All analyses were conducted with R Statistical Software [32] and SAS Software
(Cary, NC).

Accession numbers
Data for this studies was obtained from dbGaP through accession numbers: phs000007.v23.p8,
phs000280.v2.p1, phs000209.v10.p2.
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