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Abstract. Spread Through Air Spaces (STAS) is involved 
in lung adenocarcinoma (LUAD) recurrence, where cancer 
cells spread into adjacent lung tissue, impacting surgical 
planning and prognosis assessment. Radiomics‑based models 
show promise in predicting STAS preoperatively, enhancing 
surgical precision and prognostic evaluations. The present 
study performed network meta‑analysis to assess the predic‑
tive efficacy of imaging models for STAS in LUAD. Data were 
systematically sourced from PubMed, Embase, Scopus, Wiley 
and Web of Science, according to the Cochrane Handbook for 
Systematic Reviews of Interventions) and A Measurement Tool 
to Assess systematic Reviews 2. Using Stata software v17.0 
for meta‑analysis, surface under the cumulative ranking area 
(SUCRA) was applied to identify the most effective diagnostic 
method. Quality assessments were performed using Cochrane 
Collaboration's risk‑of‑bias tool and publication bias was 
assessed using Deeks' funnel plot. The analysis encompassed 
14 articles, involving 3,734 patients, and assessed 17 predic‑
tive models for STAS in LUAD. According to comprehensive 
analysis of SUCRA, the machine learning (ML)_Peri_tumour 
model had the highest accuracy (56.5), the Features_computed 
tomography (CT) model had the highest sensitivity (51.9) and 
the positron emission tomography (pet)_CT model had the 
highest specificity (53.9). ML_Peri_tumour model had the 
highest predictive performance. The accuracy was as follows: 
ML_Peri_tumour vs. Features_CT [relative risk (RR)=1.14; 
95% confidence interval (CI), 0.99‑1.32]; ML_Peri_tumour 

vs. ML_Tumour (RR=1.04; 95% CI, 0.83‑1.30) and ML_Peri_
tumour vs. pet_CT (RR=1.04; 95% CI, 0.84‑1.29). Comparative 
analyses revealed heightened predictive accuracy of the 
ML_Peri_tumour compared with other models. Nonetheless, 
the field of radiological feature analysis for STAS prediction 
remains nascent, necessitating improvements in technical 
reproducibility and comprehensive model evaluation.

Introduction

Lung cancer, particularly lung adenocarcinoma (LUAD), is a 
major contributor to cancer‑associated mortality worldwide, 
accounting for approximately 11.4% of all global cancer 
cases and 18.0% of cancer‑related deaths. This prominence is 
potentially linked to its unique patterns of invasion. (1). Aside 
from infiltration of myofibroblast stroma, lymphovascular 
and pleural invasion, spread through air spaces (STAS) has 
emerged as an invasion pattern in LUAD (2). It was identi‑
fied initially by Kadota et al (3) and recognized as a distinct 
form of tumor spread in the 2015 World Health Organization 
classification (3). STAS is characterized by presence of 
micropapillary clusters, solid nests or individual cells in lung 
parenchyma air spaces beyond the tumor margin (4). The 
current diagnostic methodology for STAS is analysis of patho‑
logical specimens obtained from lung tissues excised during 
surgical procedures in patients (5). It is found in 14.8‑56.4% 
of LUAD cases and is associated with lower survival rates 
and a worse prognosis compared with STAS‑negative tumors. 
Therefore, identification of STAS can provide key information 
for the clinical treatment of patients with LUAD (6,7). Reports 
indicate a significant risk of local and distant recurrence in 
STAS‑positive cases treated with sublobar resection (3,8), 
whereas patients who undergo lobectomy have no increased 
recurrence risk. Thus, early detection of STAS is of clinical 
importance.

Radiomics, the conversion of radiographic images into quan‑
tifiable information, offers the potential to improve diagnosis, 
prognosis and the development of predictive models (9‑11). 
Previous advancements in predicting STAS status in LUAD 
using radiomics methods reported promising results (12,13). 
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However, bridging the gap between radiomics as a research tool 
and its clinical implementation presents challenges, including 
technical reproducibility, clinical validity, quantification and 
cost‑effectiveness. There is also notable heterogeneity in 
previous studies, with lack of comprehensive evaluation of the 
performance of radiomics in predicting STAS in LUAD (14). 
Identifying factors affecting the predictive performance of 
radiomics is key for its clinical use. Several radiomics models 
employing computed tomography (CT), magnetic resonance 
imaging and positron emission tomography (PET)/CT have 
been developed for predicting STAS, showing diverse perfor‑
mance and indicating methodological variability (15,16). 
However, to date, there are no relevant network meta‑analyses 
to evaluate the predictive value of these models, to the best of 
our knowledge. Therefore, the present study aimed to assess 
the risk of bias and methodological quality and to perform a 
network meta‑analysis (NMA) to evaluate the effectiveness 
of radiomics models in predicting preoperative STAS in 
LUAD. This may be valuable for clinicians, radiologists and 
researchers in the field of LUAD diagnosis and treatment.

Materials and methods 

Protocol and registration. The present review was performed 
in accordance with AMSTAR 2 (17). The methods and protocol 
for the present study were pre‑registered, in accordance with 
standard procedures, in the International Platform of Registered 
Systematic Review and Meta‑analysis Protocols (registration 
no. 202390105; DOI: 10.37766/inplasy2023.9.0105).

Retrieval strategy. A comprehensive literature search was 
performed using the following key terms: ‘Risk factor’, ‘predic‑
tive’, ‘spread through air spaces’, ‘lung adenocarcinoma’ and 
‘nomograms’. This search used the PubMed (pubmed.ncbi.
nlm.nih.gov/), Embase (embase.com/),Scopus(https://www.
scopus.com/),Wiley(https://onlinelibrary.wiley.com/) and Web 
of Science(https://www.webofscience.com/wos/) databases, 
with a cut‑off date of May 1, 2023. The references of included 
studies were also systematically reviewed to obtain potentially 
relevant publications (Table I).

Inclusion and exclusion criteria. The inclusion criteria 
included the following: i) Study focuses on patients who have 
been diagnosed with LUAD and who exhibit STAS; ii) objec‑
tive of the study is to develop a predictive model to accurately 
identify the presence of STAS in patients with LUAD. Tumor 
STAS was defined as tumor cells (micropapillary structures, 
solid nests, or single cells‑spreading within air spaces in the 
lung parenchyma beyond the edge of the main tumor (3). 
The present study selected studies that included patients who 
underwent segmental or lobar resection.

The exclusion criteria were as follows: i) Predictive models 
that were not constructed based on radiological features; 
ii) no clear inclusion and exclusion criteria; iii) reviews and 
lecture‑type literature; iv) literature for which the full text 
could not be obtained and v) literature for which data could 
not be extracted.

Literature screening. The initial screening of titles and abstracts 
was independently conducted by two researchers (CL and PW) 

using Cochrane handbook's guidelines for systematic reviews 
of interventions (18), adhering to the predefined inclusion and 
exclusion criteria. Discrepancies or uncertainty about article 
inclusion were resolved through discussion or consultation 
with a third reviewer (XL).

Quality evaluation of literature. The quality of articles was 
assessed by two independent reviewers using Quality Assessment 
of Diagnostic Accuracy Studies‑2 (QUADAS‑2) (19), which 
is a tool for assessing quality of diagnostic studies, focusing 
on ‘risk‑of‑bias’ and ‘applicability concerns’. The risk‑of‑bias 
was assessed across four domains: Patient selection, index test, 
reference standard and flow and timing. The applicability was 
evaluated for the first three domains and rated as ‘yes’, ‘no’ 
or ‘unclear’, with ‘yes’ denoting low risk, ‘no’ indicating high 
risk and ‘unclear’ suggesting insufficient information. In cases 
of disagreement, a third reviewer was used for resolution. A 
Measurement Tool to Assess systematic Reviews was used for 
a stringent quality assessment (14).

Additionally, the methodological quality of studies was 
appraised using the Cochrane Handbook's risk‑of‑bias assess‑
ment tool (RevMan v.5.3.5, The Cochrane Collaboration) (20), 
covering six aspects (selection, performance bias,detection, 
attrition, reporting bias and other bias), which were categorized 
as ‘yes’, ‘no’ or ‘unclear’ to indicate the level of bias.

Data extraction. The data extracted primarily encompassed 
the following aspects: i) Characteristics of the included 
literature, such as author information, publication date, 
country of origin, predictive models and regression methods 
employed and predictive factors investigated; ii) details of 
the study subjects, such as sample size, sex distribution and 
tumor stage (according to the 8th edition of the AJCC staging 
standards) (21), with all participants having undergone surgery 
and iii) evaluation of effect indicators.

Statistical analysis. The effectiveness of various predictive 
models were evaluated based on their accuracy, sensitivity 
(SEN), and specificity (SPE). Predictive models were catego‑
rized according to their unique features for NMA to assess 
performance in predicting STAS. This NMA, conducted using 
Stata software (version 17.0; StataCorp LP) within a Bayesian 
framework, used the Markov Chain Monte Carlo Subset 
Simulation (22) in accordance with the PRISMA NMA guide‑
lines (23). A nodal approach for quantifying and clarifying 
concordance between direct and indirect comparisons was 
adopted. The consistency criterion for the NMA was P>0.05. 
Network diagrams visually represented diagnostic methods, 
with nodes symbolizing each method and lines representing 
direct comparisons. The size of nodes and thickness of lines 
corresponded to the number of studies. To detect possible publi‑
cation bias in selected studies, funnel plots were constructed 
for each measure of diagnostic efficiency, employing symmetry 
criteria as a key validation technique. Statistical heterogeneity 
was evaluated using I2 statistic, a measure in meta‑analytical 
methods. This quantifies the proportion of the total variation 
in study estimates due to heterogeneity rather than chance. 
An I2 value of 0% indicates no observed heterogeneity, whilst 
higher values suggest increasing heterogeneity, with guidelines 
typically considering 25, 50 and 75% as low, moderate and 
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high heterogeneity, respectively (18). Additionally, to ascertain 
the relative superiority of one method, the level of certainty 
for predictive models was quantified. This assessment was 
performed using surface under the cumulative ranking curve 
(SUCRA), forest plots and league tables.

Subgroup diagnostic meta‑analyses were performed using 
Stata to assess relative predictive efficiency of composite 
models. The effectiveness of these models was evaluated using 
the area under the curve (AUC) derived from the summary 
receiver operating characteristics (sROC). Additionally, the 
Fagan plot was utilized to quantify the overall discriminatory 
power of a diagnostic test (24).

Results

Selection and characteristics of literature. Literature review 
was performed using 565 articles. Subsequent to this, a 
meticulous screening process was undertaken to ensure the 
relevance and quality of sources. This entailed the removal 
of 249 articles due to duplication. Further scrutiny, focusing 
on titles and abstracts, led to the exclusion of an additional 
288 articles that were not pertinent. The remaining pool of 
28 articles was subjected to a more rigorous evaluation, which 
included accessibility of full‑text versions and the feasibility 
of data extraction. This process led to the disqualification of 
14 articles, leaving a final count of 14 articles (Fig. 1).

These 14 articles, collectively encompassing data from 
3,734 participants, were exclusively focused on patients 
diagnosed with STAS in LUAD. The predictive models were 
categorized into the following four distinct types based on their 
methodological approaches and radiological characteristics: 
i) Models developed using logistic regression analysis to screen 
CT features (Features_CT); ii) models using machine learning 
(ML) techniques to screen tumor radiological characteristics 
(ML_Tumour); iii) models applying ML for the screening of 
both tumor and peritumor radiological features (ML_Peri_
tumour) and iv) models that used logistic regression analysis 
for screening of PET/CT features (pet_CT).

In the process of tumor and peritumor segmentation, the 
open‑source software 3D Slicer v4.8.1 (slicer.org) was used. 
Moreover, all studies used pathological findings as a bench‑
mark, forming a control group against which predictive models 
were evaluated. The data enabling direct comparative analysis 
in outcomes were also assessed (Table II) (5,15,16,25‑35).

Quality assessment and publication bias. In the present study 
involving 14 articles and 17 predictive models, NMA was 
performed using Stata and the QUADAS‑2 tool was used to 
assess quality, risk of bias and applicability of the articles. The 
inter‑rater reliability (κ‑agreement) between the reviewers was 
0.87. A high risk of bias was detected in a few articles (3/14) 
in terms of patient selection (1/14) and reference standards 

Table I. Search strategy.

  Number
Database Search query of results

PubMed (spread through air spaces [Mesh] OR STAS [Mesh] OR spread through air spaces  64
 [Title/Abstract] OR STAS [Title/Abstract]) AND (Lung cancer [Mesh] OR Lung  
 adenocarcinoma [Mesh] OR Adenocarcinoma of Lung [Mesh] OR Lung cancer  
 [Title/Abstract] OR Lung adenocarcinoma [Title/Abstract] OR Adenocarcinoma  
 of Lung [Title/Abstract]) AND (Risk factor [Mesh] OR Prediction [Mesh] OR  
 Nomograms [Mesh] OR Risk factor [Title/Abstract] OR Prediction [Title/Abstract]  
 OR Nomograms [Title/Abstract]) 
Embase ((STAS)/br OR ((‘spread through air spaces’):ti)) AND ((Adenocarcinoma of  120
 Lung)/br OR ((Lung adenocarcinoma)/br) OR ((Lung cancer)/br)) AND  
 ((prediction)/br OR ((Risk factor)/br) OR ((Nomograms)/br)) 
Scopus (TITLE‑ABS‑KEY (stas) OR TITLE‑ABS‑KEY (spread AND through AND air  81
 AND spaces) AND (TITLE‑ABS‑KEY (lung AND cancer) OR TITLE‑ABS‑KEY  
 (Adenocarcinoma AND of AND Lung) OR TITLE‑ABS‑KEY (Lung AND  
 adenocarcinoma)) AND (TITLE‑ABS‑KEY (risk AND factor) OR TITLE‑ABS‑KEY  
 (Prediction) OR TITLE‑ABS‑KEY (Nomograms)) 
Wiley ‘STAS OR spread through air spaces’ anywhere and ‘Lung cancer OR Lung  177
 adenocarcinoma OR Adenocarcinoma of Lung’ anywhere and ‘prediction OR Risk  
 factor OR Nomograms’ anywhere 
Web of science ((TS=(spread through air spaces)) OR TS=(STAS) OR TI=(STAS) OR AB=(STAS))  112
 AND (TS=(Lung cancer) OR TS=(Adenocarcinoma of Lung) OR TS=(Lung  
 adenocarcinoma) OR TI=(Lung adenocarcinoma)) AND (TS=(Prediction) OR  
 TS=(Risk factor) OR TS=(Nomograms)) 

STAS, spread through air spaces.



LIU et al:  PREDICTIVE VALUE OF MODELS FOR STAS USING NMA4

(2/14); however, the overall quality of the publications was 
satisfactory (Fig. 2).

NMA. NMA evaluated the relative risk (RR) values and 95% 
confidence intervals (CI) across different predictive models in 
terms of accuracy, SEN and SPE for STAS in LUAD.

Pairwise meta‑analysis. NMA graph illustrates the compara‑
tive accuracy, SEN and SPE of predictive models (Fig. 3). 
Notably, CT_feature model group encompassed the largest 
sample size, followed by the ML_Peri_tumour model. 
Specifically, two studies directly compared the CT_feature 
and ML_Peri_tumour model, and one study contrasted 
the CT_feature model with ML_Tumour model (Fig. 3). 
Furthermore, the comprehensive evaluation of the included 
studies spanned all domains. Potential publication bias was 
assessed using funnel plots (Fig. 4). The roughly symmetric 
distribution suggested a negligible presence of publication 
bias or other forms of bias within the studies. This symmetry 
bolstered the reliability of findings.

Accuracy. Using the SUCRA, the accuracy of several predictive 
models for STAS was evaluated. Models ranked in descending 
order of accuracy were as follows: Control (100.0%); ML_
Peri_tumour (56.5%); ML_Tumour (41.8%); pet_CT (41.4%) 

and Features_CT (10.3%; Fig. 5A). A detailed two‑by‑two 
comparative analysis is presented in Table IIIA, highlighting 
the predictive efficacy of these models. ML_Peri_tumour 
model demonstrated superior accuracy, particularly compared 
with Features_CT (RR=1.14; 95% CI, 0.99‑1.32), ML_Tumour 
(RR=1.04; 95% CI, 0.83‑1.30) and pet_CT (RR=1.04; 95% 
CI, 0.84‑1.29). A heterogeneity test revealed I2 value of 
20.4%. Consistently, the forest plot demonstrated the highest 
predictive accuracy for ML_Peri_tumour model (Fig. 6A).

SEN. SEN for different predictive models for STAS, derived 
from the SUCRA was as follows: Control (99.9%); Features_CT 
(51.9%); ML_Peri_tumour (49.9%); ML_Tumour (42.8%); and 
pet_CT (5.5%; Fig. 5B). Table IIIB shows a comparative league 
table for a two‑by‑two analysis of these models. Features_CT 
model exhibited superior SEN, especially compared with 
ML_Peri_tumour (RR=1.00; 95% CI, 0.89‑1.13), ML_Tumour 
(RR=1.02; 95% CI, 0.88‑1.18) and pet_CT (RR=1.17; 95% CI, 
0.97‑1.40). The heterogeneity test indicated an I2 of 17.8%. 
Additionally, forest plot highlighted the superior predictive 
SEN of the Features_CT model (Fig. 6B).

SPE. SPE of different predictive models for STAS, ascertained 
using the SUCRA, was as follows: Control (99.7%); pet_CT 
(53.9%); ML_Peri_tumour (48.0%); ML_Tumour (42.7%); and 

Figure 1. Comprehensive flow diagram of the literature selection process. The flowchart represents systematic screening and selection methodology in compli‑
ance with established meta‑analysis protocols. The number inside each box reflects the cumulative count of studies at each sequential stage.
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Features_CT (5.7%; Fig. 5C). A comprehensive league table 
in Table IIIC compares these models in a two‑by‑two format. 

Table III. League tables for predictive models.

A, Accuracy: I2=20.4%; random effects results.    

pet_CT 1.00 (0.78,1.29) 1.04 (0.84,1.29) 0.92 (0.75,1.11) 1.38 (1.16,1.64)
1.00 (0.78,1.28) ML_Tumour 1.04 (0.83,1.30) 0.91 (0.75,1.11) 1.38 (1.15,1.66)
0.96 (0.77,1.19) 0.96 (0.77,1.20) ML_Peri_tumour 0.88 (0.76,1.01) 1.32 (1.16,1.50)
1.09 (0.90,1.33) 1.09 (0.90,1.33) 1.14 (0.99,1.32) Features_CT 1.51 (1.37,1.66)
0.72 (0.61,0.86) 0.73 (0.60,0.87) 0.76 (0.67,0.86) 0.66 (0.60,0.73) Control

B, SEN: I2=17.8%; random effects results.    

pet_CT 1.14 (0.92,1.42) 1.16 (0.96,1.41) 1.17 (0.97,1.40) 1.37 (1.16,1.61)
0.87 (0.70,1.08) ML_Tumour 1.02 (0.86,1.20) 1.02 (0.88,1.18) 1.20 (1.04,1.37)
0.86 (0.71,1.04) 0.98 (0.83,1.16) ML_Peri_tumour 1.00 (0.89,1.13) 1.18 (1.06,1.30)
0.86 (0.71,1.03) 0.98 (0.85,1.13) 1.00 (0.89,1.12) Features_CT 1.17 (1.09,1.26)
0.73 (0.62,0.86) 0.84 (0.73,0.96) 0.85 (0.77,0.94) 0.85 (0.79,0.92) Control

C, SPE: I2=9.1%; random effects results.    

pet_CT 0.95 (0.67,1.35) 0.97 (0.72,1.29) 0.81 (0.62,1.06) 1.34 (1.06,1.70)
1.05 (0.74,1.50) ML_Tumour 1.02 (0.75,1.39) 0.85 (0.64,1.13) 1.41 (1.09,1.84)
1.03 (0.77,1.39) 0.98 (0.72,1.34) ML_Peri_tumour 0.83 (0.69,1.01) 1.39 (1.17,1.65)
1.24 (0.95,1.62) 1.18 (0.89,1.56) 1.20 (0.99,1.46) Features_CT 1.66 (1.46,1.90)
0.75 (0.59,0.94) 0.71 (0.54,0.92) 0.72 (0.61,0.86) 0.60 (0.53,0.68) Control

SEN, sensitivity; SPE, specificity; CI, confidence interval; ML, machine learning; CT, computed tomography; pet, positron emission 
tomography.

Figure 2. Bias risk in included studies based on Quality Assessment of 
Diagnostic Accuracy Studies‑2 criteria. (A) Risk of bias assessment. 
(B) Quality assessment graph includes the risk of bias graph, the % of each 
rank in the quality assessment graph.

Figure 3. Network diagram of studies included in meta‑analysis. The nodes 
represent distinct categories within the meta‑analysis framework, with the 
size of each node proportional to the amount of data or number of studies. The 
edges indicate the strength of the interactions, with thickness representing 
strength of the evidence supporting the interaction between categories. 
ML_Peri_tumour model was constructed by ML screening of tumor and 
peritumor radiological features. Features_CT model was constructed by 
screening CT features through logistic regression analysis. The control was 
established based on pathological findings utilized as the gold standard for 
comparison and validation. ML_Tumour model was constructed by screening 
tumor radiological features through ML. pet_CT model was constructed by 
screening PET/CT features by logistic regression analysis. ML, machine 
learning; CT, computed tomography; PET, positron emission tomography.
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Figure 4. Funnel plots of network meta‑analysis comparing predictive models. Plots for (A) accuracy, (B) sensitivity and (C) specificity represent predictive 
values within the network meta‑analysis. Each data point represents a study. A, control; B, Features_CT; C, ML_Peri_tumour; D, ML_Tumour and E, pet_CT. 
ML, machine learning; CT, computed tomography; pet, positron emission tomography.

Figure 5. Surface under the cumulative ranking curve for predictive models. Plots for (A) accuracy, (B) sensitivity and (C) specificity display cumulative 
probability distributions for treatment in a rank‑ordered fashion, with each panel corresponding to a unique treatment scenario. ML, machine learning; CT, 
computed tomography; pet, positron emission tomography.
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The pet_CT model showed enhanced SPE, particularly against 
ML_Peri_tumour (RR=1.03; 95% CI, 0.77‑1.39), ML_Tumour 
(RR=1.05; 95% CI, 0.74‑1.50) and Features_CT (RR=1.24; 
95% CI, 0.95‑1.62). The heterogeneity test yielded I2 of 9.1%. 
The forest plot indicated the superior predictive SPE of the 
pet_CT model (Fig. 6C).

Subgroup diagnostic MA. Diagnostic MA scrutinized the 
predictive capabilities of the ML_Peri_tumour and Features_
CT models. AUC of the sROC for the ML_Peri_tumour model 
was 0.86 (95% CI, 0.82‑0.88), while for the Features_CT 
model it was 0.81 (95% CI, 0.77‑0.84; Fig. 7A and B, respec‑
tively). Fagan plot analysis, which assessed the predictive 
potency of models, demonstrated the relative superiority of the 
ML_Peri_tumour model (Fig. 7C and D).

Discussion

The present MA evaluated predictive accuracy of several 
models for STAS in LUAD. Analyzing 14 studies encom‑
passing 3,734 patients, four predictive models were assessed. 
Among these, the ML_Peri_tumour model, using ML to 
analyze tumor and peritumor radiographic features, was the 

most effective. This model demonstrated superior performance 
in accuracy, SEN and SPE, evidenced by its SUCRA values 
of 56.5, 49.9 and 48.0, respectively. Furthermore, a diagnostic 
MA supported the efficacy of the ML_Peri_tumour model, 
indicating a pooled AUC of 0.86 (95% CI, 0.82‑0.88).

Previous studies have substantially deepened understanding 
of STAS in LUAD, especially regarding its prediction via radio‑
logical and pathological features (36,37). Investigations into 
predictive CT characteristics for STAS in small‑sized LUAD 
have reported that attributes such as consolidation tumor ratio, 
spiculation, satellites, ground glass ribbon sign, pleural attach‑
ment and unclear tumor‑lung interface are effective predictors 
of STAS (30,38). This aligns with the present accuracy of the 
ML_Peri_tumour and other ML‑based models, underscoring 
the significance of CT features in these models.

The evolving understanding of the association between 
tumor stromal cells and STAS, along with the role of stromal 
cells in STAS pathogenesis, is noteworthy. Advanced medical 
information technology, including three‑dimensional space 
convolution and fuzzy neural networks, has demonstrated 
potential in enhancing diagnostic SEN and SPE for lung 
cancer, suggesting promising avenues for future STAS predic‑
tion models (39).

Figure 6. Forest plots for predictive models. Plots for (A) accuracy, (B) sensitivity and (C) specificity present pairwise meta‑analysis results comparing the 
efficacy of imaging modalities. Features_CT, ML_Tumour, ML_Peri_tumour and pet_CT were compared with each other and a control group. ML, machine 
learning; CT, computed tomography; pet, positron emission tomography; CI, confidence interval.
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Another notable development is the association between 
fluorodeoxyglucose (FDG) metabolic tumor burden, measured 
by PET/CT and STAS. Studies using PET/CT metrics such 
as standardized uptake value and total lesion glycolysis have 
reported that LUAD with low FDG uptake is associated with 
a lower incidence of STAS, whilst subtypes with higher FDG 
uptake, such as solid predominant adenocarcinoma, show a 
higher incidence of STAS (34,35). Furthermore, integration 
of ML techniques for analyzing radiological data for tumor 

and peritumor features has resulted in models with improved 
predictive accuracy for STAS. A study by Liao et al (5) 
involving 256 patients, integrated tumor radiomic signature 
(TRS) with peritumoral radiomic signatures (PRS) and 
developed an effective gross radiomic signature model. 
Particularly, TRS combined with the PRS‑15 mm model 
exhibited substantial predictive accuracy, achieving an AUC 
of 0.854 in the development and 0.870 in the validation 
cohort. The focus on the peritumoral environment represents 

Figure 7. Subgroup diagnostic meta‑analyses for predictive models. (A) Meta‑analysis of Diagnostic Subgroups based on Features_CT models: AUC of 
SROC was 0.81 (0.77‑0.84);  (B) Meta‑analysis of Diagnostic Subgroups based on ML_Peri_tumour models: AUC of SROC was 0.86 (0.82‑0.85); (C) Fagan's 
nomogram for the assessment of post prob (intersection of pre‑test prob and LR) based on Features_CT models; (D) Fagan's nomogram for the assessment of 
post prob (intersection of pre‑test prob and LR) based on ML_Peri_tumour models. SROC, summary receiver operating characteristic; AUC, area under the 
curve; SENS, sensitivity; SPEC, specificity; LR, likelihood ratio; Prob, probability; Post, post‑test; Pos, positive; Neg, negative.
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a notable advancement over prior research (28), which 
predominantly concentrated on the primary tumor alone. 
The success of the ML_Peri_tumour model in the present 
study highlights the potential of merging radiomic features 
from both tumor and peritumor regions, providing a more 
comprehensive approach to STAS prediction. This is relevant 
since STAS, typically found at the tumor periphery, may be 
more accurately predicted using preoperative CT images of 
tumor margins (26,33).

The present analysis revealed that the majority of radiomics 
studies on STAS prediction were in early or intermediate 
stages of research. The rigorous design of these studies is 
vital for validating the feasibility of radiological approaches. 
The present study identified limitations, including a lack of 
reproducibility analysis, internal validation and comprehen‑
sive performance evaluation of models. Notably, none of the 
included studies performed phantom or test‑retest analyses for 
validating feature robustness (40,41) and only three studies 
addressed calibration, which is a key metric for evaluating 
prediction consistency with actual outcomes (5,15,32). To 
advance clinical application and practicality of radiomics, 
attention must be paid to external validation, cost‑effectiveness 
and availability of open data. Validation with data from other 
institutions or different time periods is key for confirming 
model generalizability (42). However, only one study in the 
present analysis validated radiomic signatures with external 
data (15). Furthermore, a lack of open data and code avail‑
ability, essential for assessing reproducibility, was a common 
limitation across studies (43). In the present NMA, included 
studies encompassed two different regression methods for 
constructing predictive models: ML (6/14) and binary logistic 
regression (8/14). ML focuses on the accuracy of the final 
model, while binary logistic regression also pays attention 
to metrics such as the odds ratio for each variable (44). The 
present research did not reveal any heterogeneity between 
different types of regression method. However, the compre‑
hensive analysis indicated that the ML_Peri_tumour model 
held greater value in predicting STAS, potentially due to its 
consideration of radiomic signatures in the peritumoral region. 
Nevertheless, use of models developed using diverse regres‑
sion methods is a limitation of the present study. To enhance 
robustness and comprehensiveness of results of the present 
study, the incorporation of additional studies for detailed 
subgroup analyses is key. Additionally, 8/14 studies reviewed 
focused on the occurrence of STAS in patients with stage I 
LUAD. However, the MA did not demonstrate inter‑study 
heterogeneity in this aspect. There is need for more research 
to evaluate the predictive efficiency of radiomic models for 
STAS in early‑stage LUAD, where accurate diagnosis is of 
paramount importance. Assessing STAS status prior to devel‑
oping a surgical plan is key, as it significantly influences the 
selection of surgical strategies.

In conclusion, the present study is the first NMA to inte‑
grate several predictive models, to the best of our knowledge. 
The findings underscore the superior predictive efficacy of 
tumor and peritumor‑based radiological models. Nonetheless, 
research in radiological features for STAS prediction is in 
its early stages, and significant enhancements are needed, 
particularly in technical reproducibility and comprehensive 
model evaluation. The reliability of these studies requires 

experimental verification due to limited external validation. 
Additionally, the scarcity of direct model comparisons in 
the analyzed studies, primarily relying on indirect compari‑
sons, may affect quality assessment results, underscoring 
the need for more direct model comparisons in future. The 
ethnographic and geographic applicability of these findings, 
primarily contributed to by researchers in Asia, also needs 
further validation.
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