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Investigating genetically mimicked 
effects of statins via HMGCR 
inhibition on immune‑related 
diseases in men and women using 
Mendelian randomization
Guoyi Yang1 & C. Mary Schooling 1,2*

Statins have been suggested as a potential treatment for immune‑related diseases. Conversely, 
statins might trigger auto‑immune conditions. To clarify the role of statins in allergic diseases and 
auto‑immune diseases, we conducted a Mendelian randomization (MR) study. Using established 
genetic instruments to mimic statins via 3‑hydroxy‑3‑methylglutaryl‑coenzyme A reductase (HMGCR) 
inhibition, we assessed the effects of statins on asthma, eczema, allergic rhinitis, rheumatoid arthritis 
(RA), psoriasis, type 1 diabetes, systemic lupus erythematosus (SLE), multiple sclerosis (MS), Crohn’s 
disease and ulcerative colitis in the largest available genome wide association studies (GWAS). 
Genetically mimicked effects of statins via HMGCR inhibition were not associated with any immune‑
related diseases in either study after correcting for multiple testing; however, they were positively 
associated with the risk of asthma in East Asians (odds ratio (OR) 2.05 per standard deviation (SD) 
decrease in low‑density lipoprotein cholesterol (LDL‑C), 95% confidence interval (CI) 1.20 to 3.52, p 
value 0.009). These associations did not differ by sex and were robust to sensitivity analysis. These 
findings suggested that genetically mimicked effects of statins via HMGCR inhibition have little 
effect on allergic diseases or auto‑immune diseases. However, we cannot exclude the possibility that 
genetically mimicked effects of statins via HMGCR inhibition might increase the risk of asthma in East 
Asians.

Statins are one of the most commonly used drugs in the world which prevent cardiovascular diseases and reduce 
 mortality1. Statins target 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) to reduce low-density 
lipoprotein-cholesterol (LDL-C)2. Nevertheless, statins are increasingly recognized as having pleiotropic effects 
beyond lipid-lowering  properties3,4. Statins have been suggested as a potential treatment for immune-related 
diseases, possibly due to their anti-inflammatory and immunomodulatory  effects5,6. Meta-analysis of randomized 
controlled trials (RCTs) suggest that statins have anti-inflammatory effects and ameliorate RA activity in RA 
 patients7,8. Trial evidence for statins treatment on other immune-related diseases is  limited6,9.

Conversely, statins are associated with auto-immune myopathies, with the presence of autoantibodies against 
HMGCR 10,11, which implies that statins might trigger auto-immune  diseases6. Observational studies of statins 
use and risk of developing auto-immune diseases are  inconsistent12–15. Observational studies of drug side-effects 
can also be difficult to interpret because of potential nocebo  effects16 and the possibility of confounding. Trial 
investigation of whether statins affect risk of auto-immune conditions is very limited. Moreover, few studies 
are sex-specific although auto-immune conditions tend to be more common in women than  men17, possibly 
because of hormone related effects on the immune  system18. Previous studies have demonstrated that statins 
affect hormones, possibly more in men than  women19,20.

To assess the effects of statins via HMGCR inhibition on immune-related diseases, we used a Mendelian 
randomization (MR) study, i.e., instrumental variable analysis with genetic instruments, which takes advantage 
of genetic randomization at conception to obtain unconfounded  estimates21, here sex-specifically. We used 
established genetic variants to mimic the effects of statins via HMGCR inhibition, applied to the largest available 
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sex-combined genome wide association study (GWAS) and sex-specific genetic summary statistics from the UK 
Biobank, with Biobank Japan used for replication.

Results
Genetic instruments for statins via HMGCR inhibition. Of six SNPs mimicking genetic effects of 
statins via HMGCR inhibition (rs12916, rs10066707, rs17238484, rs2006760, rs2303152 and rs5909), all SNPs 
were correlated. In the main analysis, only the lead SNP rs12916, with the strongest association with LDL-C, was 
used (Supplemental Table S1, p value 4.32 ×  10−144). In sensitivity analysis, all available SNPs and their correlation 
matrix were included.

The F-statistics for independent SNPs were all > 10 in men, women and overall. None of the SNPs were asso-
ciated with socioeconomic position, current smoking or alcohol consumed in the UK Biobank. Supplemental 
Table S1 shows the associations of the SNPs used with LDL-C, as well as the F-statistic for each SNP.

Associations of genetically mimicked statins via HMGCR inhibition with immune‑related dis‑
eases. Overall and sex-specific associations of genetically mimicked statins via HMGCR inhibition with 
immune-related diseases are shown in Fig. 1. Genetically mimicked effects of statins via HMGCR inhibition 
did not affect any allergic diseases or auto-immune diseases in men, women and overall. Genetically mimicked 
effects of statins via HMGCR inhibition were positively associated with the risk of asthma in East Asians overall 
(odds ratio (OR) 2.05 per standard deviation (SD) decrease in LDL-C, 95% confidence interval (CI) 1.20 to 3.52, 
p value 0.009), although the p value did not reach the Bonferroni corrected significance level. Such an association 
was not observed in people of European decent (p value for ethnic difference 0.030). There was no significant 
difference in genetically mimicked effects of statins via HMGCR inhibition on immune-related diseases between 
men and women. These associations were generally robust to sensitivity analysis shown in Supplemental Fig. S1.

This study has 0.8 power to detect an OR of approximately 1.29, 1.70, 1.48, 1.72, 1.95, 2.26, 2.17, 1.87, 1.86 
and 1.81 per SD decrease in LDL-C for asthma, eczema, allergic rhinitis, RA, psoriasis, type 1diabetes, SLE, MS, 
Crohn’s disease and ulcerative colitis in Europeans, respectively. The Biobank Japan has 0.8 power to detect an 
OR of approximately 1.78, 2.40, 1.92 and 2.07 per SD decrease in LDL-C for asthma, eczema, allergic rhinitis 
and RA in East Asians, respectively.

Discussion
This Mendelian randomization (MR) suggests that genetically mimicked effects of statins via HMGCR inhibition 
have little effect on allergic diseases or auto-immune diseases in men or women. However, we cannot exclude 
the possibility that genetically mimicked effects of statins via HMGCR inhibition might increase the risk of 
asthma in East Asians.

Our findings are consistent with a population-based cohort study which investigated overall effects of statins 
and revealed no change in the risk of RA, psoriasis, SLE or  MS13. Another prospective cohort study found that use 
of any type of statins was not associated with the risk of RA in men or  women14. Our findings are less consistent 
with case–control studies suggesting a positive or inverse association of statins use with the risk of  RA12,15 and a 
retrospective cohort study suggesting that statin use increased the incidence of  eczema22. However, these studies 
are subject to bias from unmeasured  confounding12,22, selection  bias15,22 and possibly nocebo effects of  statins16.

Clinical trials of statin treatment in asthmatic patients have yielded contradictory  results23, probably due 
to differences in participants’ characteristics (i.e., severity of asthma, age, obesity and smoking status), doses 
and types of statins. Meta-analysis of RCTs have found that statins suppress inflammation and improve RA 
symptoms in RA  patients7,8. An RCT also showed benefits of additional atorvastatin to topical betamethasone 
in the treatment of chronic hand  eczema24. However, these trials examined a short-term effect on the prognosis 
in patients, while we used MR to assess the lifetime effects on the risk of developing immune-related diseases 
in the general population.

An association of genetically mimicked statins via HMGCR inhibition with asthma was not observed in 
Europeans, but only in East Asians. The discrepancy might be due to the different study designs of the UK 
Biobank and Biobank Japan. The UK Biobank had a low response to the baseline survey. However, selection bias 
occurs in a non-representative study if the study was selected on exposure and outcome. There is no reason to 
think that both genetic make-up and immune-related conditions determined recruitment into the UK Biobank. 
Correspondingly, risk factor associations in UK Biobank are similar to those seen in population representative 
studies, both overall and by  sex25. Biobank Japan is a multi-institutional hospital-based  registry26, where the 
controls are largely patients, rather than being representative of the population that generated the cases. Although 
the study included not only 179,660 patients but also 32,793 population-based  controls27, we cannot exclude the 
possibility that the control selection generated a false positive. Another possibility is that the effects of statins 
via HMGCR inhibition on asthma might vary by population. Causal effects act consistently, but the mechanism 
may not be relevant in all settings, thereby resulting in different effects in different  settings28. Statins largely 
operate by modulating lipids, but are known to have pleiotropic effects, such as increasing body  weight29, which 
is positively associated with the risk of  asthma30. Japanese are more likely to develop asthma with less weight 
gain than  Europeans31, which might explain the discrepancy in the association of genetically mimicked statins 
via HMGCR inhibition with asthma between East Asians and Europeans.

To our knowledge, our study is the first MR study investigating genetically mimicked effects of statins via 
HMGCR inhibition on the development of immune-related diseases. Recent GWAS enabled us to examine sex-
specific associations in people of European descent and East Asians.

Nevertheless, there are several limitations in the study. First, MR is based on three rigorous assumptions, that 
is the genetic variants are strongly associated with the exposure, the variants are independent of confounders 
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Figure 1.  Genetically mimicked effects of statins via HMGCR inhibition (based on rs12916) on allergic 
and auto-immune diseases. HMGCR  3-hydroxy-3-methylglutaryl-coenzyme A reductase, OR odds ratio, CI 
confidence interval, SD standard deviation, LDL-C low-density lipoprotein cholesterol. Only rs12916 was 
included in the analysis using inverse variance weighted (IVW) method. The unit of LDL-C reduction is 
approximately 0.87 mmol/L in Europeans and 1.06 mmol/L in East Asians.
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of the exposure-outcome association and the variants only affect the outcome via effects on the  exposure32. To 
satisfy the assumption of relevance, the SNPs used to mimic effects of statins were established on functional 
ground and were in the relevant target gene (HMGCR )33. The F-statistics for the SNPs were all > 10, which sug-
gests little weak instrument bias. We checked for the associations of all six SNPs with potential confounders 
(i.e., socioeconomic position, current smoking and alcohol consumed) in UK Biobank. There was no association 
of the SNPs with these confounders, which supports the independence assumption. Statins act via HMGCR, 
but are typically instrumented on LDL-C33, as here, because HMGCR is rarely measured and LDL-C is the 
intended target. However, instrumenting on LDL-C does not imply that LDL-C is the mechanism of action 
for all the consequences of statins. It just provides an interpretable means of quantifying the MR estimates. As 
such, examining genetically mimicked effects of statins via HMGCR inhibition on immune-related diseases 
does not violate the exclusion restriction assumption because we used SNPs in the HMGCR  gene and then for 
ease of interpretation provided estimates in terms of changes to LDL-C. Second, although we used the largest 
available study giving sex-specific genetic associations, the number of cases of some conditions was low, which 
may explain the relatively wide confidence intervals. We used meta-analysis to combine MR estimates in Euro-
peans and East Asians to increase the power. Third, the genetic instruments for statins via HMGCR inhibition 
were for both sexes instead of sex-specific instruments in the Biobank Japan. However, there is no reason to 
think that the genetics of statins via HMGCR inhibition differ by sex, although the consequences might do. 
Fourth, MR can be open to selection bias due to only selecting survivors. We cannot exclude the possibility that 
some participants eligible for UK Biobank could not be recruited because they had already  died34. However, 
the immune-related conditions considered are rarely fatal, and thus these estimates are less likely to be biased. 
Fifth, population stratification might affect the MR estimates. However, the underlying studies were corrected 
for population stratification. Sixth, canalization might occur, which means that genetic effects might be buffered 
during development. Nevertheless, it would not explain the positive association of genetically mimicked statins 
via HMGCR inhibition with asthma in East Asians, since such complementary mechanisms generally mitigate 
genetic effects and bias towards the null. Seventh, Rho/Rho-associated coiled-coil-containing protein kinase 
(ROCK), Rac, Ras and peroxisome proliferator-activated receptors (PPARs) could also account for pleiotropic 
effects of  statins4,35. However, these proteins are downstream of the HMGCR pathway. We cannot exclude the 
possibility that statins act via other pathways unrelated to HMGCR inhibition, which we could not investigate 
here because such pathways remain to be identified.

In conclusion, genetically mimicked effects of statins via HMGCR inhibition have little effect on allergic 
diseases or auto-immune diseases. However, we cannot exclude the possibility that genetically mimicked effects 
of statins via HMGCR inhibition might increase the risk of asthma in East Asians.

Methods
Genetic predictors mimicking effects of statins via HMGCR inhibition. Established genetic predic-
tors of the effects of statins via HMGCR inhibition were used, i.e., six single nucleotide polymorphisms (SNPs) 
from the HMGCR   gene33. Independent genetic mimics of effects of statin via HMGCR inhibition  (r2 < 0.01) most 
strongly associated with LDL-C were used in the main analysis, while all available SNPs along with their correla-
tion matrix were included in sensitivity analysis. Sex-combined and sex-specific effects of genetically mimicked 
statins via HMGCR inhibition were reported in terms of a standard deviation (SD) decrease in LDL-C taken 
from the largest sex-specific genetic summary statistics, i.e., UK Biobank (http:// www. neale lab. is/ uk- bioba nk/) 
and Biobank  Japan36. The UK Biobank study included 361,194 people of white British ancestry aged 40–69 years 
(194,174 women and 167,020 men). Associations from linear regression were adjusted for age,  age2, inferred sex, 
age × inferred sex,  age2 × inferred sex and the first 20 principal components. The Biobank Japan study included 
72,866 Japanese individuals (42.8% women) with a mean age of 63.9 years, adjusted for age, sex, the top 10 prin-
cipal components and status of 47 diseases.

To assess potential pleiotropy, associations of all six SNPs with potential confounders (i.e., Townsend index 
for socioeconomic position, current smoking and alcohol consumed) were also checked in the UK Biobank.

Genetic associations with immune‑related diseases in Europeans. Outcomes included allergic 
diseases (i.e., asthma, eczema and allergic rhinitis) and auto-immune diseases (i.e., RA, psoriasis, type 1 diabe-
tes, systematic lupus erythematosus (SLE), multiple sclerosis (MS), Crohn’s disease and ulcerative colitis). We 
obtained sex-combined genetic associations with each immune-related disease from the largest publicly avail-
able  GWAS37–43. Information about relevant GWAS is summarized in Supplemental Table S2.

Sex-specific genetic associations with asthma, eczema, allergic rhinitis, RA and psoriasis in people of Euro-
pean descent were obtained from UK Biobank summary statistics (http:// www. neale lab. is/ uk- bioba nk/). Cases 
were defined based on self-reported illness. Genetic associations for all or nothing outcomes obtained using 
linear regression were transformed into log odds ratio (OR) using an established  approximation44.

Genetic associations with immune‑related diseases in East Asians. Both sex-combined and 
sex-specific genetic associations with immune-related diseases in East Asians were obtained from a GWAS 
of Biobank Japan for replication, where  applicable27. The GWAS included 179,660 patients in Biobank Japan 
and 32,793 population-based controls. The Biobank Japan study is a multi-institutional hospital-based registry, 
which recruited patients with newly developed diseases and also patients who were diagnosed and treated before 
the study  started26. Age, sex and the top five principal components were adjusted for in the analysis, using scal-
able and accurate implementation of generalized mixed model (SAIGE).

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
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Statistical analysis. The F-statistic was used to assess the strength of the genetic instruments, approxi-
mated by the mean of the square of each SNP-exposure association divided by the square of its standard  error45. 
An F-statistic larger than 10 suggests weak instrument bias is unlikely.

MR estimates were obtained by meta-analyzing Wald estimates (ratio of SNP on outcome to SNP on expo-
sure) using inverse variance weighting (IVW) with fixed effects for three SNPs or less or random effects for four 
SNPs or more. In sensitivity analysis, all relevant SNPs were used with a matrix of their correlations, obtained 
by using the “ld_matrix” function from MRBase. MR estimates in Europeans and East Asians were subsequently 
meta-analyzed using a fixed-effects model unless the Q-statistic suggested heterogeneity when random effects 
were used. To examine potential pleiotropy we assessed whether the genetic instruments were associated with 
key potential confounders at genome wide significance in the UK Biobank.

Power calculations were conducted based on the approximation that the sample size required for an MR study 
is the sample size for exposure on outcome divided by the  R2 for instrument on  exposure46. The  R2 for instru-
ment on exposure was estimated as 2 ×  beta2 × MAF × (1 − MAF), where beta is the genetic association with the 
exposure in SD units and MAF is the minor allele frequency.

A Bonferroni corrected significance level was set at α = 0.05/10 = 0.005, where 10 was the number of pheno-
types included. All statistical analyses were conducted using R version 4.0.3 and the packages “MendelianRand-
omization”, “TwoSampleMR” and “metafor”. Results were visualized using the package “forestplot”. All analyses 
were based on publicly available data, which does not require ethical approval.

Data availability
The datasets analyzed during the current study are available in UK Biobank website (http:// www. neale lab. is/ 
uk- bioba nk/), Biobank Japan website (http:// jenger. riken. jp/ en/ result/), and GWAS catalogue website (https:// 
www. ebi. ac. uk/ gwas/).
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