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Leaf economics fundamentals explained by optimality
principles
Han Wang1*, I. Colin Prentice1,2,3, Ian J. Wright3,4, David I. Warton5, Shengchao Qiao1,
Xiangtao Xu6, Jian Zhou1, Kihachiro Kikuzawa7, Nils Chr. Stenseth1,8

The life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this
empirical generalization (the foundation of theworldwide leaf economics spectrum) is a consequence of natural
selection, maximizing average net carbon gain over the leaf life cycle. Analyzing two large leaf trait datasets, we
show that evergreen and deciduous species with diverse construction costs (assumed proportional to LMA) are
selected by light, temperature, and growing-season length in different, but predictable, ways. We quantitatively
explain the observed divergent latitudinal trends in evergreen and deciduous LMA and show how local distri-
butions of LMA arise by selection under different environmental conditions acting on the species pool. These
results illustrate how optimality principles can underpin a new theory for plant geography and terrestrial carbon
dynamics.
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INTRODUCTION
All life on Earth is continuously subject to selective pressures
imposed by environmental conditions. The rapidly changing envi-
ronment of the Anthropocene is modifying the selective pressures
on plant traits that play key roles in the terrestrial carbon cycle, with
largely unknown consequences. Plant leaves are subject to strong
selection for economic efficiency in carbon uptake (1, 2). The leaf
economics spectrum (LES), describing observed relationships
among different leaf traits, has at its core the fact that plants with
thicker and/or denser leaves (high leaf mass per area, LMA) have
longer life spans (high leaf longevity, LL) (3, 4). Together, these
traits influence carbon cycling in terrestrial ecosystems by deter-
mining the carbon requirement for leaf construction and turnover.
Understanding the LES is a major goal in plant functional ecology
and is necessary for more robust modeling of the global carbon
cycle and its responses and feedbacks to changes in atmospheric
CO2 and climate (5–7).

LL and LMA vary several hundred-fold across vascular plants
and up to 10-fold among cooccurring species (3, 8). Large-scale
trends in both traits strongly suggest the existence of a common or-
ganizing principle (9–12). However, the environmental controls on
variation in LL and LMA remain to be clarified (13), as do the dis-
tinct responses of the deciduous and evergreen leaf habits (13). In
particular, why do the leaves of deciduous trees and shrubs tend to
become thinner (as their life span declines) poleward, while those of
evergreen species become thicker (14) and longer-lived (15)?

Recent research has shown that the principle of eco-evolutionary
optimality, invoking the power of natural selection to eliminate un-
competitive trait combinations, can predict a priori the observed
patterns of relationship among plant traits and between traits and
environment (16). The increasing availability of large plant trait da-
tasets allows independent, quantitative assessment of such predic-
tions (17). This combined data- and theory-driven approach holds
promise for better understanding of ecological processes and im-
provement of land-surface models (16, 18). However, because of
the unknown effects of species adaptation (on an evolutionary
time scale) on trait variations, much research has focused on phys-
iological traits, such as photosynthetic capacity, that can acclimate
even within the life cycle of a single leaf following seasonal cues (19,
20). LMA and LL show more muted intraspecific responses to tem-
poral changes and geographic gradients in environmental factors,
suggesting a key role of adaptation in mediating the shifts of com-
munity-mean trait values (21). Moreover, eco-evolutionary opti-
mality hypotheses typically predict a single value for a given trait,
representing a site-specific optimum. This approach provides no in-
formation on within-site functional diversity and, therefore, adds
uncertainty in predicting the function and resilience of diverse eco-
systems under environmental change.

Here, we propose a theory based on eco-evolutionary optimality
that predicts how the LES for woody plant species depends on en-
vironmental variables. We test our predictions using two large, in-
dependent leaf trait datasets. We use the theory to explain why
deciduous and evergreen leaves show opposite latitudinal trends
in LMA, and how site-specific functional diversity of LMA is
shaped jointly by environmental selection and evolutionary history.

We start by developing a unified optimality framework for the
LES. First, we consider the relationship between LMA and LL that
maximizes the leaf life cycle (LC) average net carbon gain, i.e., net
photosynthesis minus the associated (amortized) tissue construc-
tion costs (22). This relationship depends on the rate of photosyn-
thetic decline with leaf age (23). Second, the aging rate increases in
proportion to the leaf’s initial photosynthetic capacity, as measured
by the maximum rate of carboxylation at a standard temperature of
25°C (Vcmax25), and decreases in proportion to LMA (23). Third,
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photosynthetic capacity itself is optimized to the physical environ-
ment, following the coordination hypothesis (24–26). We account
for the key distinction between deciduous and evergreen species:
The LC is equal to LL for evergreen species but to 365 days for de-
ciduous species (whose LL is strongly constrained by growing-
season length). We obtain the following relationships between
optimal LL and LMA in evergreen and deciduous leaves (see Mate-
rials and Methods for derivations)

LLev ¼
LMA
A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 u hT mc Cc

f

s

ð1Þ

LLde ¼
LMA
A0
ðu hT mcÞ ¼ 365f ð2Þ

where subscripts “ev” and “de” denote evergreen and deciduous
species, respectively; A0 is the leaf’s initial photosynthetic rate; f is
the growing-season length, as a fraction of the year; and u is a cons-
tant that relates the aging rate to LMA and photosynthetic capacity.
Cc is a multiplier for the plant-level total carbon costs of leaf con-
struction, including all required investments in constructing and
maintaining supporting tissues. This definition is more explicit
than the original one provided by Kikuzawa (22). By linking the
whole plant-level cost to LMA, we can now estimate Cc from empir-
ical observations (see detailed information in Materials and
Methods). hT is the Arrhenius function relating Vcmax to tempera-
ture (T ), equal to unity when T = 25°C; and mc is the ratio of the
Rubisco-limited photosynthetic rate to Vcmax, which is a function of
the intercellular CO2 partial pressure, the photorespiratory com-
pensation point, and the affinity of Rubisco for CO2 versus O2.
The coordination hypothesis predicts that A0 is proportional to
the photosynthetic photon flux density (PPFD) absorbed by the
leaf. This theory predicts the existence of a spectrum of values of
both quantities, from low LMA and LL to high LMA and LL, result-
ing in equal rates of net carbon gain (see Materials and Methods),
thus providing a formal mathematical expression for the founda-
tional relationship underlying the LES.

RESULTS AND DISCUSSION
For evergreens, the optimal LL in a given environment is propor-
tional to LMA and inversely proportional to absorbed PPFD and
the square root of growing-season length. We show here (Fig. 1,
A to C, and table S1) that these predictions are close to the corre-
sponding partial effects independently inferred from a multiple re-
gression fitted to the measurements on evergreen species in the
Glopnet dataset (3), which provides the largest available worldwide
compilation of paired data on LMA and LL. The regression for ev-
ergreen species captures 42% of the variation in LL. Globally, the
fitted relationship of evergreen LL to LMA—with other environ-
mental predictors included—is a proportionality (log-log slope ≈
1), as predicted (tables S1 and S2), and consistent with (12). Stan-
dardized major axis (SMA) regression, without environmental co-
variates, indicates a steeper overall slope of LL against LMA (log-log
slope = 1.41). However, analysis of within-site relationships between
LL and LMA shows that log-log SMA slopes > 1 are particularly a
feature of denser canopies (fig. S1). This might reflect sampling bias,
whereby leaves are systematically sampled from lower light condi-
tions in more dense vegetation (27), or possibly the effect of “time-
discounting” (1), whereby the average light conditions experienced
by a leaf diminish more rapidly over time in denser canopies. The
observed relationship of LL to PPFD is negative as predicted, and
the relationship of LL to growing-season length is also negative
(P < 0.1) as predicted, both with theoretical slope coefficients
similar in magnitude to fitted values. For deciduous species, in ad-
dition to the optimality criterion, LLde is assumed to be tightly con-
strained by growing-season length. Among the deciduous species in
Glopnet, growing-season length is indeed nearly proportional to LL
(0.99 ± 0.06, 1 SE) and explains about 70% of the observed variation
in LL (Fig. 1D and table S1).

To quantify the environmental dependencies of LMA, we con-
sider how environmental selection interacts with other physiologi-
cal or evolutionary constraints. For evergreens, we consider the
prior probability distributions of LMA and LL (fig. S2) as an evolu-
tionary constraint. The principle is illustrated in fig. S3, where
straight lines in the log-log plot of LL versus LMA— representing
the optimal LES for sites in different environments—intersect log-
normal distributions of both traits. The resulting predicted sensitiv-
ities of evergreen LMA to PPFD are only half those for deciduous
LMA (see Materials and Methods). For growing-season length and
temperature, they are only a quarter of those for deciduous LMA.

Fig. 1. Partial residual plots for observed leaf longevity (LL) against explanatory variables. (A) LMA, leaf mass per area. (B) Iabs, site-mean leaf-absorbed PPFD. (C and
D) f, fractional growing-season length. Predicted: red. Fitted: black, with 95% confidence intervals. Evergreen: green. Deciduous: orange. All axes are log-scaled. Data from
Glopnet (3).
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Last, for both deciduous and evergreen species, environmental
aridity is expected (and found) to impose an additional physiolog-
ical constraint on LMA, probably due to a requirement for physical-
ly robust leaves to maintain turgor at low leaf water potentials (28)
and/or for thermal buffering at high leaf temperatures (29).

These predictions are broadly supported by analysis of data in
the China Plant Trait Database (CPTD) (30), which provides site
climatology with high spatial resolution (1 km), a larger LMA
dataset than Glopnet for temperate and boreal deciduous species,
many more observations for deciduous species, and data from
more than three times as many sites. Growing-season PPFD, tem-
perature, and an index of plant-available moisture (see Materials
and Methods) all significantly influenced the LMA of evergreen
species (Fig. 2, A to C, and table S3). The predictive power of this
relationship was limited (13%), however, presumably because envi-
ronmental predictors alone can only explain part of the variation in
LMA, while additional variation is expected to be driven by varia-
tion in LL, and the effect of growing-season length could not be un-
equivocally disentangled from that of PPFD due to
multicollinearity. The first two principal components accounted
for 94% of variance in PPFD, temperature, moisture, and
growing-season length (fig. S4); when growing-season length was
included as a predictor, the effect of PPFD (variance inflation
factor = 3.6) became nonsignificant (table S3). Growing-season
length was nonetheless a significant predictor of the residual varia-
tion in evergreen LMA, explaining a further 3% of variance in the
residuals from the model based on PPFD, temperature, and mois-
ture (Fig. 2D and table S3). These same four predictors accounted
for over half the variation in LMA among deciduous species in the
CPTD (Fig. 2, E to H, and table S3), where growing-season length is
expected to largely determine LL and to be proportional to LMA, as
observed. The confidence intervals of the fitted coefficients for
PPFD, temperature, and growing-season length all included the
predicted values for both evergreen and deciduous species, and

the expected negative effect of moisture on LMA was found in
both evergreen and deciduous species (Fig. 2, C and G, and tables
S3 and S4).

This theory accounts for the contrasting latitudinal patterns in
LMA between deciduous and evergreen species (Fig. 3 and fig.
S5) (31). The effect of increasing temperature alone toward the
equator on LMA is negative for both leaf types and stronger for de-
ciduous leaves. According to our theory, this response of LMA to
growth temperature is attributed to the thermal acclimation of car-
boxylation capacity (23, 26). At higher temperatures, less invest-
ment in photosynthetic enzymes (i.e., lower carboxylation
capacity when measured at standard temperature) is needed to
produce a unit of photosynthate, which, according to the empirical
relationship expressed by Eq. 12, leads to slower leaf aging at any
given LMA. In deciduous species, this influence of temperature,
however, is outweighed by the effects of increasing growing-
season PPFD and length, both of which favor increased LMA (32).

The theory could be extended to consider variations in the cost
of nutrient acquisition associated with below-ground microbial
processes. Mass balance dictates that community nitrogen
demand (to support leaf turnover) cannot exceed supply. In high
latitudes where nitrogen is commonly limiting to plant growth
and soil mineralization is slow, building new leaves may be more
expensive than in warmer climates (33). Consistent with this idea,
the multiplier Cc estimated at individual sites increases toward the
poles (fig. S6). HigherCc, in turn, predicts still greater LMA (fig. S7).
Our theory therefore could lead to a qualitative explanation for why
less-fertile soils favor species with higher LMA (9). The theory also
provides a step forward toward predicting biogeographic distribu-
tions of evergreen and deciduous species as a result of the compe-
tition between average net carbon gain for the two strategies, taking
into account environmental influences on Cc.

To address the functional diversity of LMA, we hypothesize that
site-mean LMA should be predicted at the mean of the distribution

Fig. 2. Partial residual plots for observed LMA against environmental variables. (A and E) Iabs, site-mean leaf-absorbed photosynthetic PPFD. (B and F) Tg, mean
growing-season temperature. (C and G) αp, moisture index. (D and H) f, fractional growing-season length. Predicted: red. Fitted: black, with 95% confidence intervals.
Evergreen: green. Deciduous: orange. All axes except Tg are log-scaled. Data from the extended CPTD (30, 40).
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formed by the intersection of the predicted lines with the prior dis-
tribution based on the global species pool (fig. S3). We fitted inde-
pendent log-normal distributions of LMA and LL based on Glopnet
data and imposed Eq. 1 as a constraint. This method successfully
predicted within-community LMA distributions in evergreen tem-
perate forests, tropical rain forests, and woodlands (Fig. 4). The

community-mean LMA values of temperate forests and tropical
rain forests are close to the global mean value of LMA derived
from the Glopnet dataset. They are similar because growth temper-
ature and growing-season PPFD and duration are positively corre-
lated but have opposite effects on LMA. The community-mean
LMA of woodlands (Fig. 4, E and F) however shifts to the right of
the global mean, because of the ecophysiological constraint
imposed by aridity.

Leaf-level maximization of life cycle average net carbon gain pro-
vides a quantitative eco-evolutionary explanation for the existence
of the LES and for observed, systematic variations with environment
of the relationship between LMA and LL that is fundamental to the
LES. Like other optimality-based explanations for global patterns,
the theory is silent on the physiological and anatomical mechanisms
by which leaves can be adapted to different environments, which
may indeed be diverse. The resulting patterns are nonetheless key
to understanding the biogeographical dimension of leaf economics.
Unlike variations in physiological traits, these patterns are primarily
determined by environmental selection among species rather than
plasticity and genetic adaptation within species (21, 34). However,
plants do have some plasticity for LMA, as has been shown exper-
imentally (35). Experimental effects on LMA include positive re-
sponses to PPFD, CO2, aridity, and a negative response to growth
temperature (35, 36)—all in the same direction as predicted here
but smaller in magnitude. Some uncertainties are inevitable in a
global-scale quantitative empirical test, such as the representative-
ness of environmental conditions extracted from the gridded cli-
matic products, sampling biases, and potential multicollinearity
among environmental variables. More rigorous quantitative tests
of predicted environmental effects on the LES will require both ex-
perimental studies and more systematic field surveys. Nonetheless,
our analysis of available data broadly supports the predictions of the
theory, which may serve as a key step toward a more comprehensive
understanding of the adaptive value and competitive success of dif-
ferent plant strategies. The successful application of our theory in
understanding the observed declining trend of nitrogen content
in vegetation canopies confirms its promising role in addressing
and predicting the dynamics of the global carbon cycle under envi-
ronmental change (37).

Plants have been subject to profound changes in climate during
their evolutionary history. Large and, sometimes, rapid changes in
recent geological times have resulted in repeated large-scale reas-
sortments of species and consequent major changes in community
composition (38, 39). Current anthropogenic environmental
changes are adding to the forces shaping plant communities, in
ways that remain only partly understood (7). On the basis of evolu-
tionary thinking—taking into account the changing selective pres-
sures imposed by changing environmental conditions—we suggest
that optimality theory may serve not only to resolve the puzzles of
global phytogeography but also to help to move plant functional
ecology from empirical description to robust theoretical and predic-
tive understanding (16).

MATERIALS AND METHODS
Leaf trait data
We tested our quantitative predictions with the woody plants rep-
resented in two nonoverlapping datasets: the Glopnet dataset (3)
and the CPTD (30) augmented with data compiled by Geng et al.

Fig. 3. Observed and predicted trends of LMA from tropical to polar regions.
Evergreen: green; deciduous: orange. Solid lines, regressions with 95% confidence
intervals. Dashed lines: theoretical predictions. Data from Glopnet (3).

Fig. 4. Observed and predicted within-site distributions of LMA. (A and B)
Temperate forests. (C and D) Tropical rain forests. (E and F) Woodlands. Means
and SE of observed (Obs) and predicted (Pre) distributions are shown. Predicted
distributions (red curves) are scaled in height to match observed distributions.
Data from Glopnet (3). Sites with the largest sample sizes were selected. See de-
tailed information in table S5.
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(40) from alpine shrublands. Glopnet contains paired LMA and LL
data for 326 evergreen and 179 deciduous species at 45 sites distrib-
uted globally. For deciduous plants, we focus here on those whose
growing season is constrained by a cold winter; thus, tropical decid-
uous species that shed leaves in the dry season have been excluded
from the analysis. Applying this filtering criterion, the Glopnet
dataset contains data on LMA alone from 1225 evergreen and 98
deciduous species at 146 sites, distributed from 69°S to 40°N. The
CPTD provides LMA data from 419 for evergreen and 398 decidu-
ous species at 164 sites, spanning the range from alpine and boreal
to tropical environments and from desert and steppe vegetation to
woodlands and forests. Data in the CPTD were obtained using a
consistent sampling strategy to ensure adequate representation of
species in all strata.

Site climate data
We calculated site-specific bioclimatic variables from monthly tem-
perature, precipitation, and sunshine hours with the Simple
Process-Led Algorithms for Simulating Habitats (SPLASH) model
(41). This model has been validated at both site and global scales
(41) and has been extensively used to calculate bioclimatic variables.
Defining the (thermal) growing season as the period when mean
quasi-daily temperature (interpolated from monthly data) is
above 0°C, we calculated the ratio of growing-season length to the
number of days in the year and the mean values of temperature and
PPFD during growing season, as estimates of site-mean f, Tg, and
PPFD. A moisture index, defined as the ratio of estimated annual
actual to potential evapotranspiration (denoted αp), was also calcu-
lated using SPLASH. For the Glopnet dataset, time series monthly
climate data for the period 1981 to 2010 were extracted for each site
from Climate Research Unit data at a grid resolution of 0.5° (42).
This 30-year period allowed us to estimate both climatological
mean values and interannual variations of calculated bioclimatic
variables. To account for the fact that the field-measured trait
data reflect leaves developed at a range of irradiances at different
levels in the canopy, we applied the approach used by Wang et al.
(43) to estimate Iabs from the site-mean PPFD, with the help of leaf
area index values extracted from Advanced Very-High-Resolution
Radiometer (AVHRR) data at the same resolution and for the same
time interval (44). The site-specific means and SDs of the calculated
annual bioclimatic variables f, Tg, αp, and Iabs allow an estimate of
the reliability of bioclimatic variables, reflecting the uncertainties in
the monthly climate inputs and the SPLASH calculations. For the
extended CPTD, the database already contained f, Tg, αp, and Iabs,
and these data were used for our analyses. These bioclimatic data
were also calculated using SPLASH but driven by higher-resolution
(1 km) gridded climatological data interpolated from 1814 meteo-
rological stations (China Meteorological Administration: 740 sta-
tions have observations from 1971 to 2000 and the rest from 1981
to 1990) using a three-dimensional thin-plate smoothing spline
(ANUSPLIN version 4.36; Hancock and Hutchinson, 2006).

The optimality framework for leaf economics
The optimality model of leaf longevity (LL: day) proposed by Kiku-
zawa (22) rests on two assumptions. First, daily photosynthesis de-
clines linearly from an initial maximum (denoted by A0, g biomass
m−2 day−1) with increasing age. Second, LL maximizes the leaf’s
lifetime-average net carbon gain (accumulated daily photosynthesis
averaged over LL minus the initial structural investment amortized

over LL). Building on Kikuzawa’s original work, we propose a new,
unified optimality model for deciduous and evergreen species. For
deciduous species, we extend the period for maximizing average net
carbon gain from the LL to the whole LC (day), i.e., the period from
the formation of a leaf until its replacement. LC is thus equal to LL
for evergreen species but to 365 days for deciduous species. We
further simplify the derivation by disregarding leaf maintenance
respiration, as it is nearly proportional to photosynthetic capacity
and represents only about 6% of leaf gross photosynthetic rate
under standard environmental conditions (43, 45, 46). The daily
net carbon gain (g) is then

g ¼ ðG � CcLMAÞ=LC ð3Þ

where G (g biomass m−2) is the accumulated photosynthetic carbon
gain over the life cycle. The initial structural investments are repre-
sented by the product of LMA and Cc, where LMA is leaf mass per
area (g biomass m−2), and Cc (>1, gC gC−1) is the plant-level total
construction cost, including all required investments in construct-
ing and maintaining supporting leaf and nonleaf tissues, of a unit of
leaf mass. G is represented differently for deciduous and evergreen
species, since deciduous leaves can carry out photosynthesis during
their whole life span, whereas evergreen leaves are inactive during
the nongrowing season.

We use subscripts ev and de to distinguish evergreen and decid-
uous species. Thus, for evergreen plants

Gev ¼

ð

0

LC
fAðtÞ dt ð4Þ

where A(t) = A0 (1 – t/b) is the assimilation rate (g biomass
m−2 day−1) as a function of age (t, days), and b (days) is the (extrap-
olated) leaf age at which carbon assimilation would decline to zero. f
is the proportion of the year that is favorable for growth (day day−1).
Since LCev = LLev, the integral in Eq. 4 is equal to f A0 [LLev –
(LLev)2/2b], and Eq. 3 collapses to Kikuzawa’s model (22)

gev ¼ fA0ð1 � LLev=2bÞ � CcLMA=LLev ð5Þ

hence,

@gev=@ðLLevÞ ¼ � fA0=2bþ CcLMA=ðLLevÞ
2

ð6Þ

Setting Eq. 6 to zero yields an expression for optimal LLev (days)
in evergreen plants

LLev ¼
p
½ð2b Cc LMAÞ=ðf A0Þ� ð7Þ

For deciduous plants,

Gde ¼

ð

0

LC
AðtÞ dt ¼

ð

0

LL
AðtÞ dt ð8Þ

The integral in Eq. 8 equals A0 [LLde − (LLde)2/2b] and thus

gde ¼ ½A0 LLdeð1 � LLde=2bÞ � Cc LMA�=LC ð9Þ

In deciduous species, LC = 365; thus,

@gde=@ðLLdeÞ ¼ A0ð1 � LLde=bÞ=365 ð10Þ

Setting Eq. 10 to zero yields a simple equation for optimal LL
(days) in deciduous plants

LLde ¼ b ð11Þ

Wang et al., Sci. Adv. 9, eadd5667 (2023) 18 January 2023 5 of 10

SC I ENCE ADVANCES | R E S EARCH ART I C L E



We implemented the model of b proposed by Xu et al. (23) in the
framework described above. Xu et al. demonstrated that b has a pos-
itive relationship with LMA, and a negative relationship to the
Vcmax25 (μmol C m−2 s−1), with scaling coefficients close to 1
and –1, respectively. Therefore, b can be expressed as

b ¼ u LMA=ðk1 k2 Vcmax25Þ ð12Þ

Here, u ≈ 768 ± 71 (dimensionless), estimated from a meta-anal-
ysis of data on 49 species across temperate and tropical biomes (23).
The scaling factors are k1 = 30 g biomass mol C−1 and k2 = 0.0864
s mol C day−1 μmol−1 C.

The optimality model of leaf photosynthesis
The coordination hypothesis, supported by extensive field and ex-
perimental evidence (26, 47), states that the maximum capacity of
carboxylation at growth temperature (Vcmax.gt, μmol C m−2 s−1) ac-
climates to the daytime environment so that the Rubisco-limited
photosynthetic rate (AC, μmol C m−2 s−1) tends to be equal with
the electron transport-limited rate (AJ, μmol C m−2 s−1). In other
words, AC = AJ. This acclimation is optimal because it avoids invest-
ment in excess photosynthetic capacity while allowing full use of the
available light (24, 25). Combined with the standard biochemical
model of photosynthesis (45), the coordination hypothesis predicts
Vcmax.gt

AC ¼ Vcmax:gtmc ð13Þ

AJ ¼ φ0Iabsm ð14Þ

and

Vcmax:gt ¼ φ0Iabsm=mc ð15Þ

where

m ¼ ðci � Γ�Þ=ðci þ 2Γ�Þ ð16Þ

and

mc ¼ ðci � Γ�Þ=ðci þ KÞ ð17Þ

Here, ϕ0 is the intrinsic quantum efficiency of photosynthesis
(μmol C μmol−1 photon), which we assume to depend on temper-
ature as described in (48). Iabs is the leaf-absorbed PPFD (μmol
photon m−2 s−1) to which Vcmax.gt acclimates, mc and m are the
CO2 limitation terms for AC and AJ, respectively, ci is the leaf-inter-
nal partial pressure of CO2 (Pa), Γ* is the photorespiratory compen-
sation point (Pa), and K is the effective Michaelis-Menten
coefficient of Rubisco (Pa). Optimal stomatal regulation, according
to the least-cost hypothesis (49), yields the following relationship of
ci to environmental variables, including vapor pressure deficit (D,
Pa) and ca

ci ¼ ðξca þ Γ�
p
DÞ=ðξ þ

p
DÞ ð18Þ

where

ξ ¼
p
½βðΓ� þ KÞ=ð1:6η�Þ� ð19Þ

The dimensionless parameter β in Eq. 19 is the ratio of unit costs
for the maintenance of carboxylation and water transport capaci-
ties, evaluated at 25°C. The term η* is the viscosity of water (normal-
ized by its value at 25°C), which declines with increasing

temperature, thereby reducing the cost of water transport and
thereby favoring higher ci. The value of ci thus depends on temper-
ature via η*, Γ*, andK, as well as onD and ca (49). Analysis of a global
leaf stable carbon isotope dataset (20) has provided empirical
support for the separate dependencies of the ci:ca ratio on temper-
ature, vapor pressure deficit, and elevation implied by (Eqs. 18 and
19) and an estimated value of β ≈ 146 (20, 50).

The temperature dependencies of Γ*,K, andVcmax within normal
physiological ranges can be described by the Arrhenius function
(51) with different activation energies [the formulation for K is
somewhat more complex as it depends on the affinities of
Rubisco for CO2 and O2 and their distinct activation energies,
while both Γ* and K are influenced by atmospheric pressure; see
(51) for details]. Vcmax25 is related to Vcmax.gt by

Vcmax25 ¼ Vcmax:gt=hT ð20Þ

where hT is the Arrhenius function for Vcmax.
We further assume that the coordination hypothesis defines the

initial photosynthetic capacity of the leaf. Thus,

A0 ¼ k1 k2 Vcmax:gt mc ð21Þ

Here, k1 and k2 together convert the unit ofVcmax.gt from μmol C
m−2 s−1 into g biomass m−2 day−1 to match the units of A0.

Optimal leaf longevity in evergreen species
Substituting Eqs. 12 to 21 into (Eq. 7) yields Eq. 1. Substituting Eq. 7
into Eq. 5 also yields an expression for an evergreen leaf’s average
daily net carbon gain

gev ¼ f A0f1 �
p
½2 Cc=ðu hTmcf Þ�g ð22Þ

which is independent of either LMA or LL. In other words, any
combination of LMA and LL that satisfies the optimality criterion
will yield the same daily net carbon gain. This equivalence may
provide a first-order explanation for the large variation in LMA
and LL commonly observed within any one plant community.

The coordination hypothesis also relates the initial rate of carbon
assimilation to the electron transport–limited photosynthetic rate

A0 ¼ k1 φ0 ΣIabs m ð23Þ

where ΣIabs is the integrated Iabs through a day (mol photon
m−2 day−1). It follows that

LLev ¼ LMA xT:ev
p
ð2u Cc=f Þ=ðΣIabs k1Þ ð24Þ

where

xT:ev ¼
p
ðhT mcÞ=ðφ0mÞ ð25Þ

The composite term xT.ev includes the temperature-dependent
variables. We express the parameter Cc as a function of LL, LMA,
and environmental predictors by rearranging Eqs. 24 and 25 as
follows

Cc ¼ f ðLLφ0ΣIabs m k1=LMAÞ2=ð2u hTmcÞ ð26Þ

On the basis of all paired observations of LL and LMA in ever-
green species in Glopnet (326 samples), we estimated a median
value of Cc = 13.23 ± 4.07 gC gC−1 (means ± SE).
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Optimality leaf longevity in deciduous species
Substituting Eqs. 12, 15, and 20 into Eq. 11 yields Eq. 2. Substituting
Eq. 2 into 9 also yields an expression for a deciduous leaf’s average
daily net carbon gain

gde ¼ f A0½1=2 � Cc=ðu hTmcÞ� ð27Þ

As in evergreen species, gde is independent of either LMA or LL.
The different formulae for gde and gev potentially allow modeling of
competition between the two strategies.

Following similar logic to that applied to evergreens, Eq. 23 is
then substituted into Eq. 2, leading to a prediction of LLde from
LMA and environmental variables

LLde ¼ LMA u xT:de=ðΣIabs k1Þ ð28Þ

where

xT:de ¼ ðhT mcÞ=ðφ0mÞ ð29Þ

Linearized models for optimal LL
To facilitate comparisons of data with theoretical predictions, Eq. 24
can be linearized

ln LLev ¼ ln LMA � ln ΣIabs � 0:5 ln f þ ln xT:ev þ Cev ð30Þ

where

Cev ¼ 0:5 ln ð2 u CcÞ � ln k1 ð31Þ

By taking the partial derivative of ln xT.ev with respect to temper-
ature, we calculated that LLopt.ev increases with growth temperature
(Tg, K) by 2.6% K−1 under standard environmental conditions.
Thus, ln xT.ev can be replaced by the sum of 0.026 Tg and ln xT.ev
at the reference condition (ln xT0.ev). D and z are also expected to
influence LLopt slightly via their effects on optimal ci, but these
effects are too small to be detected.

Similar logic yields a linearized model of LL for deciduous
species from Eq. 28

ln LLde ¼ ln LMA � ln ΣIabs þ ln xT:de þ Cde ð32Þ

where

Cde ¼ ln u � ln k1 ð33Þ

The thermal sensitivity of LLde is twice of that in evergreen
species. Thus, ln xT.de can be replaced by 0.052 Tg plus its reference
value (ln xT0.de).

Distributions of evergreen LMA and LL
Different combinations of LMA and LL consistent with the opti-
mality criterion result in equal net carbon gain, implying the exis-
tence of a LES along which species with different LMA are equally
competitive. Nonetheless, within-site distributions of LMA and LL
are known to vary systematically with climate. To account for this
variation, it is necessary first to take account of their prior distribu-
tions in the species pool. We fitted log-normal distributions to ob-
served LMA and LL data independently in the full Glopnet dataset
(fig. S1). Equation 24 was then imposed as a constraint, representing
environmental filtering of the species pool. This procedure gener-
ates site-specific log-normal distributions, which serve as predic-
tions of the probability density functions of LMA and LL subject
to the optimality criterion as illustrated in fig. S2.

Environmental dependencies of LMA
Equation 30 can be reconfigured as an expression for the optimal
LMA of evergreen species

ln LMAev ¼ ln ΣIabs þ 0:5 ln f � 0:026 Tg þ ln LLev

þ Cev
0 ð34Þ

where

Cev
0 ¼ ln k1 � 0:5 ln ð2u CcÞ � ln xT0:ev ð35Þ

Optimal LMA depends on LL and environmental factors. For a
given LL, Eq. 34 implies that LMA (all else equal) should increase in
proportion to absorbed PPFD and the square root of growing-
season length but should decrease with temperature by 2.6% K−1.
The prior normal distributions of ln LMA and ln LL, together
with their predicted proportional relationship, allow LMA to be
predicted from environment alone (fig. S2). Here, we consider
ΣIabs as an example to make the derivation, noting that the effects
of the other environmental variables ( f and Tg) can be derived fol-
lowing the same logic. We specify Eqs. 34 and 35 at two sites with
different light conditions (ΣI1 and ΣI2) but the same growing-
season length and growth temperature. The subscripts “1” and “2”
in the equations below distinguish the two sites

ln LMAev1 ¼ ln ΣI1 þ 0:5 ln f � 0:026 Tg þ ln LLev1

þ Cev
0 ð36Þ

ln LMAev2 ¼ ln ΣI2 þ 0:5 ln f � 0:026 Tg þ ln LLev2

þ Cev
0 ð37Þ

Thus,

ln LMAev1 � ln LMAev2 ¼ ln ΣI1 � ln ΣI2 þ ln LLev1

� ln LLev2 ð38Þ

The normal distribution constraint induces a line perpendicular
to the optimality lines for evergreen species (fig. S2)

ln LLev1 ¼ k � ln LMAev1 ð39Þ

ln LLev2 ¼ k � ln LMAev2 ð40Þ

where k is the intercept of this line. Therefore,

ln LLev1 � ln LLev2 ¼ ln LMAev2 � ln LMAev1 ð41Þ

Combining Eqs. 38 and 41 yields

ln LMAev2 � ln LMAev1 ¼ 0:5ðln ΣI2 � ln ΣI1Þ ð42Þ

Similarly, for the growing-season length and temperature

ln LMAev2 � ln LMAev1 ¼ 0:25 ðln f 2 � ln f 1Þ ð43Þ

ln LMAev2 � ln LMAev1 ¼ � 0:013 ðTg2 � Tg1Þ ð44Þ

Thus, when moving from site 1 to site 2, the predicted changes in
LMA are 50, 25, and −13% of the changes in PPFD, growing-season
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length, and temperature respectively. Thus,

ln LMAev ¼ 0:25 ln f þ 0:5 ln ΣIabs � 0:013 Tg þ Cev
0 ð45Þ

As the life span of deciduous leaves is constrained by growing-
season length, LLde should also be proportional to f (LLde = 365 f ).
Rearranging Eq. 32 and imposing this additional constraint yields
the following expression for deciduous LMA as a function of envi-
ronment alone

ln LMAde ¼ ln f þ ln ΣIabs � 0:052 Tg þ Cde
0 ð46Þ

where

Cde
0 ¼ ln k1 þ ln 365 � ln u � ln xT0:de ð47Þ

Equation 46 implies that deciduous LMA, unlike evergreen
LMA, should increase in direct proportion to both PPFD and
growing-season length and decline with warming four times
faster than in evergreens.

The aridity constraint on LMA
Last, we account for the expected increase in LMAwith aridity as an
additional constraint on LMA for both deciduous and evergreen
species. This constraint could, in principle, have been included in
Eqs. 34 and 45 as an independent predictor, but the current opti-
mality framework does not predict the magnitude of this response.
We therefore estimated the aridity effect empirically, based on a re-
gression of ln LMA against climatic variables, and used this addi-
tional information to modify the predicted latitudinal trends in
evergreen and deciduous LMA and the predicted within-site distri-
bution of evergreen LMA, shifting the peak to higher values in drier
sites. This estimation was performed on the basis of all LMA obser-
vations from Glopnet and CPTD combined to obtain the largest
possible sample size. The regression coefficients for light, growing
season length, and temperature were fixed at their theoretically pre-
dicted values, allowing the effect of aridity alone to be calibrated.
Aridity effects on LMA in deciduous and evergreen species were es-
timated separately (table S4). Estimated aridity effects were included
in the predictions of both latitudinal trends and within-site distri-
butions of LMA.

Statistical analysis
Errors-in-variables multiple regression (accounting for measure-
ment errors in predictors and the response variable) was used as
the principal approach to estimate partial environmental dependen-
cies of LL and LMA from data, for comparison with independent
predictions from theory. This method accounts for uncertainty in
each predictor, which we estimated using the coefficient of variation
based on interannual climate variability (see the “Site climate data”
section above). All traits and bioclimatic variables except for tem-
perature were log-transformed (consistent with the theoretical
model, where all variables were log-transformed for the purpose
of linearization). We excluded deciduous species from sites with
year-round temperatures >0°C, which were presumed to be
drought-deciduous. The effect of this exclusion could only be
minor, however, as it merely reduces the sample size for deciduous
LMA to 292 in Glopnet and 621 in the CPTD.

We first tested the climatic controls of the relationship between
LL and LMA using the Glopnet data for evergreens. The constraint
of growing-season length on LL in deciduous species was also tested

using Glopnet data. We further tested the relationships between LL
and LMA by fitting (i) a hierarchical mixed-effects model, including
site as a random effect on both the slope and the intercept, and (ii)
SMA regressions within individual sites for which sample size was
adequate. We then tested the climatic controls on LMA using both
Glopnet and CPTD data, but CPTD-based results are given in the
main results because of their more reliable bioclimatic data (1-km
resolution in CPTD versus 0.5° resolution in Glopnet) and larger
sample size, especially for deciduous species (621 in the CPTD
versus 292 in Glopnet), in the CPTD. However, Glopnet covers a
greater latitudinal range (55°S to 78.93°N in Glopnet versus
28.19°N to 53.47°N in the CPTD), and so Glopnet LMA data
were used to analyze latitudinal trends. All statistical analyses
were performed in R (version 3.5.2), using the eivtools, ‘lmer ’,
and ‘smatr’ packages.

Global distributions of LL and LMAwere derived on the basis of
all the samples in Glopnet and site-specific distributions estimated
as described above (see the “Environmental dependencies of LMA”
section). Six sites from Glopnet with relatively large sample sizes
were selected to test the predicted within-site distributions of
LMA: two sites each from evergreen-dominant vegetation in tropi-
cal rain forests, temperate forests, and woodlands (for details, see
table S3). As shown in fig. S2, the global distribution is constrained
by the site-specific optimal relationship of ln LL to ln LMAwith the
slope set to unity and the intercept being the sum of the estimated
value of C and the climatic terms in Eq. 30. Predicted distributions
of ln LMA were generated after further imposing the aridity effect
(see the “The aridity constraint on LMA” section above).

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Table S1 to S5
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