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Wisdom of the Crowd is the aggregation of many individual estimates to
obtain a better collective one. Because of its enormous social potential, this
effect has been thoroughly investigated, but predominantly on tasks that
involve rational thinking (such as estimating a number). Here we tested
this effect in the context of drawing geometrical shapes, which still enacts
cognitive processes but mainly involves visuomotor control. We asked
more than 700 school students to trace five patterns shown on a touchscreen
and then aggregated their individual trajectories to improve the match with
the original pattern. Our results show the characteristics of the strongest
examples of Wisdom of the Crowd. First, the aggregate trajectory can be
up to 5 times more accurate than the individual ones. Second, this great
improvement requires aggregating trajectories from different individuals
(rather than trials from the same individual). Third, the aggregate trajectory
outperforms more than 99% of individual trajectories. Fourth, while older
individuals outperform younger ones, a crowd of young individuals outper-
forms the average older one. These results demonstrate for the first time
Wisdom of the Crowd in the realm of motor control, opening the door to
further studies of human and also animal behavioural trajectories and
their mechanistic underpinnings.
1. Introduction
The Wisdom of the Crowd (WOC) is the notion that the aggregate opinion of a
diverse group of people may be more reliable than that of an expert. This idea
gained great standing in the academic community in 1906 when Sir Francis
Galton showed that the average of hundreds of individual estimates about
the weight of an ox matched its actual weight within 1%—far more accurately
than a highly skilled farmer [1]. The potential of this effect was rapidly appreci-
ated, but applications were limited for a long time, due to the practical difficulty
of gathering and aggregating individual opinions. The rapid development of
communication technologies since the 1990s has removed that barrier, unleash-
ing the potential of the WOC, which is now replacing individual experts in
several realms, from collectively written Wikipedia articles that replace classical
encyclopaedia articles written by experts [2] to Stack Exchange posts written
and voted by users that replace traditional manuals [3]. These examples show
the transformative potential of the WOC.

However, to properly grasp the non-trivial scope of the WOC and to ensure
its validity, it is critical to understand the effect deeply. In particular, two key
questions must be answered. The first key question is how to extract a WOC
estimate from a group of people. In the traditional paradigm, subjects were
as diverse as possible [4], each subject made an independent estimate (they
did not communicate with each other) [5], and opinions were aggregated by
averaging all individual guesses [6]. The condition of independence is tradition-
ally regarded as crucial to guarantee that systematic individual errors cancel out
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when aggregating several individuals [5,6]. An example of
the negative effect of broken independence arises when sub-
jects are informed of the guesses of others and are then
allowed to emit their guess or reconsider their previous one
[7]. However, quantifying social influence over each individ-
ual allows one to find new aggregation measures that
counteract this effect [8], and to take advantage of it to
improve upon the crowd estimate [9]. Moreover, it has been
shown how the condition of independence can be relaxed
[10], and how allowing subjects to discuss before arriving at
a consensus estimate can lead to improvements at both the
group and individual level [11,12]. Others have argued for
maximal differences (negative correlations) between subjects
as the essential requisite for the WOC [13], and therefore
the detection of correlations is presented as a powerful tool
to improve the collective estimate when it deviates from
the true value [14]. Finally, methods to find subgroups of
individuals whose aggregated estimate may be better than
the aggregated estimate of the whole crowd have been
proposed, for example, based on identifying expertise
within the crowd [15].

The second key question is what tasks can be performed
more efficiently by a collective than by an individual. Classical
demonstrations of theWOC consisted of guessing a number or
choosing over a set of discrete alternatives [5,6]. While a big
part of research still follows this paradigm, many studies
have successfully applied WOC to more complex tasks, such
as estimation of multi-dimensional quantities [16], sequential
decision-making [17], collective guessing of a sentence [18],
collective editing [2], forecasting in prediction markets and
prediction polls [19,20], correct tempo of a classical music
piece [21], medical diagnosis [22,23] or drug prescription
[24]. However, the vast majority of these studies share a
common characteristic: they focus on explicitly rational tasks,
in which individuals need to make a conscious estimate.

Here we investigated whether WOC can be applied to a
task that depends on embodied motor control rather than
high-order abstract cognition. To that end, we developed an
experimental paradigm where we asked children to trace a
series of predefined patterns on a tablet. Such a situation
defies classical WOC studies because it is a complex motor
task, which is difficult to parameterize or describe in simple
terms, and whose errors are highly correlated (a deviation
at any point in the line affects the future trajectory of the
finger). It is also worth emphasizing that the task is inti-
mately related to drawing, an important part of human
culture and, with the appropriate experimental design and
measuring tools, can be tested in naturalistic conditions
beyond artificial laboratory settings. Although some studies
have investigated collective problem-solving in tasks invol-
ving movement [25], visual decision-making [26–28] and
visual search [29–31], our study is, to the best of our knowl-
edge, the first one showing the implications of aggregating
individual solutions to a sensory-motor task.

In this paper, we first present experimental results from
hundreds of subjects tracing with their fingers a series of
well-defined geometrical templates displayed on touchscreen
tablets in a classroom setting. Using such ‘big behavioural
data’ [32] collected ‘outside the laboratory’ [33], we examine
the four main features that characterize the strong instances
of WOC. The paper is thus organized along these four ques-
tions: (i) whether individual trajectories of subjects can be
aggregated to produce a more accurate description of the
desired pattern, (ii) whether the improvement is a true
‘crowd’ effect (requiring different individuals, as opposed
to a single individual repeating the same task), (iii) whether
the effect is strong enough so that the aggregate is more accu-
rate than most of the individuals and (iv) whether the effect is
strong enough so that a crowd of low-skill individuals out-
performs one high-skill individual. We find that all these
conditions are met, providing the first evidence of motor
WOC.
2. Results
2.1. Collecting behavioural big data in a classroom

setting
We asked 797 school students with ages between 6 and 18
years old to trace with their finger several shapes using a
custom-made drawing app (figure 1a). After a few minutes
of practice to familiarize themselves with the app, subjects
were invited to reproduce five different geometric curves
with varying levels of complexity, from ellipses to four-fold
rose figures. A template of each shape was shown in the
screen of the tablet (figure 1a), and subjects were instructed
to trace fluidly and continuously for 30 s, not excessively
fast so as to avoid systematically overshooting the template
but not excessively slow so as to avoid halts and brief jerky
movements in trying to perfectly match the template. In
other words, to simply produce good-enough tracing. All
shapes were closed curves that could be traced repeatedly
in a single stroke, and almost every subject traced each tem-
plate several times during the 30 s of each experimental
curve (figure 1b; electronic supplementary material, figure
S1a). Our experimental procedure allowed us to test hun-
dreds of children producing thousands of high-resolution
trajectories (more than 24 h of data) in naturalistic conditions
(see Methods for more details).

2.2. Processing the trajectories to extract the Wisdom of
the Crowd

In order to estimate the WOC of the trajectories traced by our
subjects, the first step consisted in splicing the full trajectory
of each subject into individual trajectories that represent a
single pass over the template. This task turned out to be
complicated for some complex shapes, and especially for
low-accuracy trajectories that deviated very much from the
template. To avoid biasing our results and increase the trans-
parency of our analysis, we resorted to a simple approximate
method: we determined that in most cases subjects traced
each template at least 8 times, and divided the full
trajectory of each subject into 8 segments of equal duration,
which we then call ‘raw individual trajectories’ (electronic
supplementary material, figure S1b). While in most cases
each raw individual trajectory contains more than a single
pass over the template, this fact does not affect our
conclusions and, in fact, strengthens them (see Methods).

Next, we subsampled the templates and processed the
raw individual trajectories to facilitate their further analysis.
We first took a set of reference points along each template
(figure 1c, left; electronic supplementary material, figure
S1c). We then took the raw individual trajectory, assigned
each of its points to the nearest reference point on the
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template, and found the median centre of mass of each
group of points (figure 1c, left; electronic supplementary
material, figure S1d–h). In this way, we obtained a sub-
sampled individual trajectory (which we simply call
‘individual trajectory’), with one experimental point corre-
sponding to each reference point of the template. From now
on, we will refer to these subsampled individual trajectories
simply as ‘individual trajectories’.

To compute WOC trajectories, we computed the median
centre of mass for the points associated with the same refer-
ence point from different individual trajectories (figure 1c,
right; electronic supplementary material, figure S1i–k).

To quantify the accuracy of a trajectory (either an individ-
ual trajectory or a WOC trajectory), we computed the
distance between each of its points and the corresponding
reference point of the template (figure 1c; electronic sup-
plementary material, figure S1l ), obtaining the distance
between them for each small region. Then, we used the aver-
age of these errors to quantify the overall error for the whole
trajectory (electronic supplementary material, figure S1m).
We are now in a position to establish whether the drawing
task fulfils the four criteria of WOC mentioned above.

2.3. Criterion (i): Wisdom of the Crowd trajectories are
more accurate than individual trajectories

We first investigated the accuracy of individual trajectories.
Participants cared about properly tracing the templates but
were not particularly motivated to be accurate, as we
instructed them to trace quickly and fluidly without being
too concerned about accuracy. Furthermore, our dataset
includes data from very young children to late teenagers,
whose motor skills are at different maturation stages. Conse-
quently, individual trajectories showed a lot of dispersion
(figure 2a, blue).

In spite of this inaccuracy at the individual level, WOC
achieves remarkable accuracy. We built WOC trajectories for
all shapes by taking one individual trajectory from each subject
and aggregating all of them (figure 2a, red). Average error
(across all patterns) decreased more than twofold, from
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2.72 mm for individual trajectories (figure 2b) to 1.03 mm for
WOC trajectories (figure 2c). Improvement of WOC over indi-
vidual trajectories was unequal over different portions of the
templates (figure 2d). Despite not showing a definite structure,
one can notice interesting differences in the local improvement
along different parts of the templates. In ellipses, major
improvements take place in the straightest parts of the curve,
where tracing speed is typically faster.While three-petal flowers
show theirWOCmaximal improvement at the edges, four-petal
flowers have it where curvature is minimal (rather than at the
inner high-curvature turns). In both cases, however, the
improvement corresponds to the most distal parts of the tem-
plate taken globally. In the lemniscate, the WOC shows an
intriguing global top–bottom asymmetry.
2.4. Criterion (ii): Wisdom of the Crowd accuracy
improves with a diverse crowd

Aggregating several trajectories from a single subject should
also lead to an improvement in accuracy, an effect termed
‘the crowd within’ [34]. Therefore, the improvement reported
here for the WOC trajectories might not require a diverse
crowd, but just be a consequence of aggregating multiple
datasets (regardless of whether they come from the same
subject or from different ones).

To elucidate whether our observation is a true effect of the
crowd, we took advantage of the fact that each subject traced
each pattern several times. While in the previous section we
built our WOC trajectory from all of our subjects, here we
studied how the error of the WOC trajectory changes as
a function of how many individual trajectories are
aggregated. We also compared the case of aggregating trajec-
tories from the same individual (cycles while the same person
draws the same pattern) or from different individuals. While
in both cases the error decreases as we aggregate more
trajectories, this decrease is much more rapid when the trajec-
tories come from different individuals (figure 3a), thus better
supporting the WOC in movement trajectories.

This advantage of crowds over repeated trials of the same
subject indicates that subjects tend to repeat their own errors.
Different trajectories drawn by the same subject tend to devi-
ate in the same regions and towards the same side, creating
systematic biases. These biases are corrected when aggregat-
ing trajectories from different subjects, whose deviations are
more balanced.

We also used this procedure to determine how many sub-
jects are needed to achieve high accuracy. The error decreases
monotonically as we add more trajectories from different
subjects, dropping by almost half with only 10 subjects and
starting to saturate after 50 subjects (figure 3a, red).
2.5. Criterion (iii): Wisdom of the Crowd outperforms
most individuals

A mere improvement of accuracy as we aggregate more tra-
jectories would seem insufficient to support our claim of a
WOC effect in motor control. In fact, it is a mathematical
necessity that the error of an aggregate trajectory must be
equal to or smaller than the average error of the individual
trajectories [14,35].

What makes WOC such an important effect is the magni-
tude of the improvement. While there is no absolute
threshold to consider that the effect is strong enough, a clas-
sical criterion is that the WOC estimate must be better than an
overwhelming majority of the individual estimates. This was
the case for example in Galton’s original demonstration of the
effect, in which the arithmetic mean of individual guesses
was better than every single individual estimate [36].

To investigate whether our WOC trajectories outperform
the vast majority of individual estimates, we computed all
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individual errors for each template and compared it with the
error of the WOC estimate. In all cases, the WOC estimate
outperforms 99.5% of the individual trajectories, except in
one pattern in which it outperforms 95% of the subjects
(figure 3b). Therefore, our dataset meets the criterion that
the WOC estimate outperforms the vast majority of the
individual estimates.
2.6. Criterion (iv): Wisdom of the Crowd of low-skill
individuals beats the average high-skill individual

The last criterion of strong WOC, which is critical for its prac-
tical applicability, is that a crowd of low-skill individuals
must outperform a single high-skill individual. To test this
criterion, we first need to divide our population of subjects
in groups with different expected skill levels. For tasks that
require specific skills learned through education or pro-
fessional training, high-skill subjects can be defined through
their cultural level or profession. In the context of drawing,
we considered testing professional painters and designers,
but these professions usually have more to do with an
aesthetic sense and the ability to master different drawing
tools than with the motor control required to follow a
predefined line with one’s finger.
However, our empirical approach allowed us to
sample a large population of maturing subjects of different
ages. Such a rich dataset offered a practical criterion to
separate subjects by skill level: age stratification. Our
results include subjects aged from 6 to 18 years (figure 4a),
and motor control develops during this period (especially
between 6 and 10 years of age) [37–40]. Indeed, our results
show that individual performance improves with age
(figure 4b). Therefore, we defined low-skill individuals
as young children (less than 10.5 years), and high-skill indi-
viduals as older children (greater than 10.5 years) whose
motor skills are comparably more developed (while this
threshold maximizes the difference in individual perform-
ance between the two groups, our results hold regardless of
the threshold chosen; electronic supplementary material,
figure S2).

As a confirmation of this criterion, individual estimates
are better for older children than for younger ones (figure 3c,
compare bars 1 and 2 of every template). The key question is
then whether a crowd of young children outperforms the
average older child. Remarkably, we found this to be true for
every template (figure 3c, compare bars 2 and 3 of every tem-
plate). Therefore, our dataset meets the last criterion of the
strongest versions of WOC: a crowd of low-skill individuals
outperforms the average high-skill individual.
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2.7. High-skill individuals play little role in the motor
Wisdom of the Crowd

We also found an interesting and unexpected result. When
comparing the results from WOC estimates from old and
young children, we found almost no difference. Only for 2
of the 5 templates are the WOC estimates better for older chil-
dren than for younger ones (figure 3c, compare bars 3 and 4
of every template). This result suggests that, when recruiting
a crowd to perform a WOC estimate, there is no benefit in
selecting high-skill individuals [41]. In other words, one
may not need to include (motor) ‘experts’ to achieve the
(motor) WOC.

We also asked the question of whether different criteria to
define high-skill or low-skill individuals could give different
results. To answer this question, we simulated criteria that
estimated individual skill with different accuracies, from
those capable of selecting the very best individual, to bench-
marks incapable of distinguishing skill. Our results turned
out to be very robust: for a high-skill individual to out-
perform the crowd, the selection method must be able
to identify accurately the top 1.73% performers (electronic
supplementary material, figure S3).
2.8. The method to aggregate trajectories has little
impact on the results

An important practical question is how to aggregate the indi-
vidual responses to produce the WOC estimate [7,14], and in
particular whether to use the mean or the median,
considering that the latter can counteract the effect of outliers
[42,43]. All our previous analyses use the median to compute
centres of mass, as we detected some subjects with very large
deviations from the templates. We re-did our analysis using
the mean instead of the median and compared both methods,
to find very little difference between them (electronic sup-
plementary material, figure S4). This result indicates that,
even though some subjects are clear outliers, the distribution
of trajectories around the true pattern has relatively little
skew (figure 2a; note how the density of traces is nearly
symmetric along the templates).
3. Discussion
Here we tested whether WOC can take place in a context far
removed from those studied so far. By asking our subjects to
trace a complex trajectory rather than estimating a number,
we investigated a procedure that does not consist in
making an explicit rational estimate but in performing an
implicit embodied motor task. We tested hundreds of chil-
dren drawing in a custom-made tablet app, collecting a
large amount of precise and quantitative data to test the
effect of aggregating independent individuals for better
collective performance.

We found that tracing geometrical patterns manifests all
the characteristics of WOC: (i) accuracy improves when
aggregating several trajectories, (ii) these trajectories must
come from different subjects, (iii) the aggregate trajectory
outperforms most individual ones and (iv) a crowd of low-
skill individuals outperforms a typical high-skill individual.
Our results thus extend the concept of WOC from its classical
application of quantity estimation to the realm of motor
control and embodied cognition.

Our findings suggest that WOC may be applicable with a
greater generality than previously thought because they
address outstanding theoretical concerns. For the WOC esti-
mate to be accurate, the individual estimates must follow a
probability distribution whose average (either the mean or
the median) matches the true value. A general concern was
that the tasks typically chosen, such as number estimation,
might share some characteristics that made them fulfil this
requirement, which would not be met when trying to
extend WOC to other contexts. Here we have tested WOC
in a completely different context, in which the object to be
estimated is not a number but a complex trajectory, and the
estimation procedure is not a rational thought process but a
motor task. Our results indicate that the conditions required
for WOC are met with great generality, and call for a more
systematic exploration across tasks of different nature.

In our results, collectives of younger children achieve
almost the same accuracy as collectives of older ones, despite
the fact that the former are on average less accurate individu-
ally. This result indicates that individual inaccuracy does not
translate here to a larger bias at the population level: younger
children draw more diverse trajectories (average individual
Euclidean distance to collective trajectory 2.77 mm for
younger, 2.37 mm for older; see electronic supplementary
material, figure S5), but their aggregate is as accurate as
that of older children. Since more diverse datasets converge
to their average faster than less diverse ones (by virtue of
the diversity prediction theorem [5]), collectives of younger
children catch up with the accuracy of collectives of older
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ones. The fact that young children exhibit no larger syste-
matic bias than older ones suggests that young children
might have a similar psychomotor plan to execute the task
than older ones, but it is executed with less precision due
to underdeveloped motor control.

Different contexts may modulate the effect. Our results
were collected after instructing subjects to emphasize natural
movements rather than accuracy. Different instructions might
change the results, as greater emphasis on individual accu-
racy might decrease the impact of WOC, while absence of
instructions might increase variability (and therefore the
potential for WOC effects). In any case, we found a high accu-
racy in the motor WOC, despite the complex nature of the
task, the extreme inaccuracy of some trajectories and
the fact that errors accumulate (a deviation at one point in
the trajectory affects its future). This high accuracy opens
the door to applying similar aggregation methods to other
tasks with similar characteristics, such as finding the optimal
trajectory of a vehicle [44] or in the context of skill improve-
ment in amateur and professional athletes, where the
aggregation of different patterns used to execute a movement
or a manoeuvre could complement other approaches aiming
to find an optimal biomechanical technique [45].

Our results suggest a potential application in the study of
human symbols. Letters, numbers and other symbols are
written differently by different people [46], and their shape
changes significantly over time and from region to region
[47]. These changes are well documented qualitatively, and
recent techniques have been developed to characterize them
quantitatively [48,49]. These techniques are usually based
on aggregating images, regardless of the trajectories that the
writers followed to trace each symbol. Our results indicate
that it would be possible to compute an average trajectory
for a given symbol across a population. The methodology
would need to be different from the one presented in this
paper, with trajectory estimation and alignment posing
important methodological challenges. But the surprisingly
high accuracy found in our dataset indicates that aggregating
symbols written by different people may provide an intelligi-
ble average tracing trajectory, which would facilitate the
study of how handwriting changes in space and time.
4. Methods
4.1. Hardware
Thirty Android touch-screen tablets were used for the behavioural
experiments. The tablet brand was Samsung Galaxy Tab A6 (size:
254 × 164 × 8 mm3,Androidv. 8.1.0 andAPI level 26). Theprice per
tablet was less than $200. The display has a 10.1-inch PLS LCD
screen, with dimensions 216 × 135 mm2, and a resolution of
1920 × 1200 px2. The tablet has a capacitive touch-screen, and reg-
isters touch by a finger or a capacitive stylus, with a resolution
equal to the display resolution. Maximum screen refresh rate is
60 Hz, and maximum sampling rate of touch events is close
to 85 Hz.
4.2. Software
The app was programmed in Android Studio (v. 3.3.2) in the
Kotlin programming language [33], and tailored specifically for
accuracy, efficiency and robustness in out-of-the-laboratory
experiments with children. It can be freely downloaded
(https://github.com/adam-matic/KinematicCognition), and
also edited for different experimental purposes.
4.3. Experimental procedures
A total of 851 subjects (56% female, 10% left-handed) partici-
pated in the experiment, most of whom were school students
between 6 and 18 years old (797 subjects; see electronic sup-
plementary material, table S1). All experiments were performed
during the 2019 Brain Awareness Week (from 11 to 15 March
2019). Students arrived in groups of about 30 individuals,
belonging to the same school class. Classes belonged to several
different schools in the area of Alicante, Spain. There were no
specific selection criteria for schools and classes beyond their
willingness to participate in our experiment and a more or less
homogeneous sampling of ages and locations. Groups were
assigned different time slots throughout the morning. The exper-
iments took place in a regular small classroom (with a capacity
for 30 students) in a building adjacent to the Instituto de Neuro-
ciencias de Alicante, Spain. We used 30 tablets (a single tablet
per children), placed on the tables in the classroom. Each
experimental session had an overall duration of about 15 min.

Students were invited to enter the classroom and sit down
wherever they wished. Then, before starting the experiments,
students were greeted and briefly told about the overall goal of
the study (they already knew some details because they had an
explanation of the activity days before by their teachers at their
own local schools). The explanation was generic, namely, a
brief and fun experiment was going to take place where they
would simply need to draw and trace specific geometric figures
in order as they would appear on the tablet screen, helping
scientists to study motor control (this fitted well in the Brain
Awareness Week, since each group also received a related
outreach talk, so that they could not only listen about scientific
experiments but actually also participate in them).

Students were requested to use the index finger of their
dominant hand to draw and trace on the tablet screen (rather
than using tablet pens). They were also asked to avoid touching
the screen with the other hand, or to move the tablet from where
it was placed when they entered the room. Before starting the
experiment, they all tapped on the screen at the custom-made
app logo of the experiment.

First, a simple screen opened where they were asked whether
their dominant hand was left or right, their age by scrolling on
the date of birth, and their gender. After the information is
complete, the app allows two options: ‘Practice’ or ‘Experiment’.

Second, the participants did a trial exercise before the actual
experiment, where similar curves appeared to the ones they
would encounter later. This part was key for them to familiarize
with the tasks they would need to accomplish next. In particular,
they were instructed not to separate the finger from the screen
until each task was over, and to perform fluid movements, avoid-
ing delineating too slow or too fast. They could at this point ask
questions before the experiment took place.

Third, after such trials, oral instruction prompted the
students to start all the ‘Experiment’ part at the same time. The
experimental part consisted of a series of exercises, or tasks, all
automatically concatenated with brief pauses in between. In
this way, we avoided having to verbally interrupt the whole
classroom with various unnecessary (and potentially distracting
and confusing) instructions (especially for the younger children)
to start the many different drawing and tracing tasks.

Although sitting next to each other, participants had little
influence on each other’s performance. While the attitude of
other participants might affect general features such as the
speed or care with which they performed the task, the nature
of our experiment made it virtually impossible to use
information from other subjects to increase one’s performance.

https://github.com/adam-matic/KinematicCognition
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Three different classes of tasks were presented to the partici-
pants: tracing, tracking and scribbling. Every class comprised
different exercises, each one with a duration of 30 s, with a 7 s
pause in between. Thus, the whole motor control experience
was brief, avoiding distractions or loss of interest by the children.
A visual summary of the experimental dataset can be found at:
https://youtu.be/rz-TWk_6HSU.

In this study, we only analysed the first class of task (tracing),
where participants had to delineate with their finger a black
curve on a blue screen. The curves shown were an oval (or
ellipse), a thinner oval (larger eccentricity), three-petal and four
petal-flowers (both based on Huh’s pure frequency curves
[50,51]), and an infinite symbol (lemniscate). Subjects were not
instructed to start tracing at any specific location of the templates.
However, the duration of each drawing trial ensured that all
participants covered the same surface area, several times.

When the experiment finished, students were thanked again
and invited to leave the room to continue enjoying the Brain
Awareness Week parade at the Instituto de Neurociencias. Exper-
imental procedures were approved by the Institutional Review
Board and followed the required guidelines on participation
and personal data protection. Parents of the students had been
previously informed and asked for written consent to record
the finger trajectories.

4.4. Data cleaning
We removed anomalous data following three criteria. (i) Trajec-
tories that lasted less than 25 s, which indicated subjects who
were not focused on the task, since they were instructed to
draw for the full duration of the experiment (less than 4% of tra-
jectories were removed for this reason, and most of them were
shorter than 15 s, so including them would have minimal
impact in our conclusions). (ii) Trajectories whose standard devi-
ation (in either the horizontal or vertical dimension) was less
than half the standard deviation of the points of the template.
(iii) Trajectories with jumps between two consecutively recorded
points greater than 1/4 of the dimensions of the touchscreen,
which in most cases were due to malfunctioning of the tablet
or the subject touching the screen with both hands simul-
taneously. See electronic supplementary material, table S1, for
the number of full trajectories originally stored, the number of
trajectories that did not meet each of the filtering criteria (some
trajectories did not meet more than one criterion), and the
number of trajectories that were finally used for the analysis. In
sum, a total of 3485 trajectories were analysed, each with a dur-
ation longer than 25 s, which yields an estimate of a total of more
than 24 h of high-resolution quantitative measurements of
human drawing in naturalistic conditions.

4.5. Definition of raw individual trajectories
Each subject traced the template repeatedly during the 30 s
allotted for the task, so each original trajectory contains several
passes over the template. The ideal definition for ‘individual tra-
jectory’ would be a single pass over the template, but finding the
exact point in which the trajectory finishes one pass and starts the
next is problematic: when the trajectory is a very poor approxi-
mation to the template, it is unclear when we should consider
that an individual trajectory has ended. Therefore, attempts to
divide the trajectories in this way would either force us to discard
the less accurate trajectories or could result in systematic biases
affecting differently the high- and low-accuracy trajectories.

For this reason, we chose a simple definition of raw individ-
ual trajectory: we divided each trajectory in 8 segments of equal
duration, and we took each of these segments as a single raw
individual trajectory. While this is only an approximation, it
has the advantage of being a simple and transparent method
and avoiding biases among trajectories of different accuracy.
Because of this approximate definition, in many cases, an
individual trajectory contains only part of the template or more
than one pass over some parts of the template. To determine a
convenient number of segments, we randomly extracted 150
original trajectories (from only those where a single pass could
be unambiguously defined). In 76% of the cases, subjects com-
pleted 8 or more full passes over the whole template (and only
6% of subjects performed 4 or 3 passes) so on average our indi-
vidual trajectories contain more than one pass. We made this
choice to be conservative: since they in fact contain more than
one pass over each template (with only 17% including 2 or
more passes), our individual trajectories already benefit from
a small degree of aggregation, and therefore their error is
smaller than the one we would measure if we took a true
single pass. Therefore, the effect of WOC in our dataset is,
if anything, probably underestimated. See electronic supplemen-
tary material, figures S6 and S7, for a demonstration of how the
results are similar when dividing the original trajectories in 5 or
12 segments.

4.6. Subsampling of individual trajectories
Raw individual trajectories contained between 200 and 215
points. Before any analysis, we subsampled the templates into
a set of reference points. We used 50 reference points for the
two ellipses and 100 reference points for the rest; these numbers
were chosen to be high enough to represent each template faith-
fully, while low enough to ensure that sufficient experimental
points fell into each bin. Then, we subsampled the raw individ-
ual trajectories to ensure that each point of a subsampled
individual trajectory corresponded to one reference point of its
corresponding template. We did this by finding the median
centre of mass of all points of the raw individual trajectory near-
est to each reference point of the template (similar results are
obtained by using the arithmetic mean instead of the median,
as shown in electronic supplementary material, figure S4). See
electronic supplementary material, figure S1, for a step-by-step
description of this process. The term ‘individual trajectory’ here-
inafter refers to the subsampled one (the term ‘raw individual
trajectory’ referred to the trajectory before subsampling).

4.7. Aggregation of individual trajectories
To aggregate several individual trajectories (regardless of
whether they belonged to the same subject or to different sub-
jects), we computed the median centre of mass of the points of
each individual trajectory corresponding to the same reference
point in the template (figure 1c). The final result is an aggregate
trajectory that has the same number of points as the number of
reference points of the template (see electronic supplementary
material, figure S1).

4.8. Computation of errors
To compute the error of any trajectory (either an individual tra-
jectory or an aggregated one), we found the Euclidean distance
between each of its points and the corresponding reference
point of the template (figure 1c; electronic supplementary
material, figure S1). These distances are used to represent the col-
ours in figure 2b–d, showing the average error for each region of
each template across all the trajectories. The total error of a trajec-
tory is computed as the arithmetic mean of all the distances to
the reference points.

To compute the average error when aggregating individual
trajectories from the same subject (figure 3a, black lines), we
created all possible sets with a given number of individual trajec-
tories from each subject. For example, when aggregating 3
individual trajectories, for each subject there are 56 different
combinations out of the total of 8 individual trajectories, so

https://youtu.be/rz-TWk_6HSU
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there are 56 different sets of 3 individual trajectories per subject.
The error for the template is determined as the average of the
errors over all sets of each subject, and then over all subjects.

To compute the average error when aggregating individual
trajectories from different subjects (as for example in figure 3a,
red lines), it would not be possible to compute all possible com-
binations (there would be too many). Therefore, we performed a
random sample: we randomly drew the desired number of
subjects from the database, and for each subject, we randomly
chose one of the individual trajectories. Then, we aggregated
the individual trajectories, and computed the error of the aggre-
gate one. We repeated this process 10 000 times and computed
the arithmetic mean of all errors.

To compute the average error across templates in figure 4, we
first computed the total error for each of the 5 templates and then
computed the arithmetic mean of these 5 error values.

4.9. Computation of confidence intervals
To compute the confidence intervals for the errors of individual
and aggregated trajectories (figure 3a,c), we used bootstrapping
[52]. First, we created ‘virtual experiments’ by randomly drawing
subjects with repetition until we reached the total number of sub-
jects. Therefore, each virtual experiment consisted of the same
number of subjects, but due to the random sampling some of
our original subjects may be missing, and some subjects may
be present more than once. Then, we recreated all our analysis
on each of these virtual experiments. We repeated this full pro-
cess with 500 virtual experiments, and our confidence intervals
represent the region that contains 95% of these results.

Ethics. Experimental procedures were approved by the Institutional
Review Board of the Miguel Hernández University in Elche (Ali-
cante, Spain), under project registration number 2019.111.E.OIR,
and followed the required guidelines on participation and personal
data protection. Parents of the students had been previously
informed and asked for written consent to record their children’s
finger trajectories.

Data accessibility. Experimental data and code for analysis and figure
generation can be found at the following link: https://github.com/
gabrielmadirolas/motorwoc.

The data are provided in electronic supplementary material [53].
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