
ORIGINAL RESEARCH
published: 19 July 2018

doi: 10.3389/fncom.2018.00056

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2018 | Volume 12 | Article 56

Edited by:

Yoram Burak,

Hebrew University of Jerusalem, Israel

Reviewed by:

Tatyana Sharpee,

Salk Institute for Biological Studies,

United States

Jonas Kubilius,

KU Leuven, Belgium and

Massachusetts Institute of

Technology, United States

*Correspondence:

Ari S. Benjamin

aarrii@seas.upenn.edu

Received: 05 October 2017

Accepted: 29 June 2018

Published: 19 July 2018

Citation:

Benjamin AS, Fernandes HL,

Tomlinson T, Ramkumar P,

VerSteeg C, Chowdhury RH, Miller LE

and Kording KP (2018) Modern

Machine Learning as a Benchmark for

Fitting Neural Responses.

Front. Comput. Neurosci. 12:56.

doi: 10.3389/fncom.2018.00056

Modern Machine Learning as a
Benchmark for Fitting Neural
Responses
Ari S. Benjamin 1*, Hugo L. Fernandes 2, Tucker Tomlinson 3, Pavan Ramkumar 2,4,

Chris VerSteeg 5, Raeed H. Chowdhury 3,5, Lee E. Miller 2,3,5 and Konrad P. Kording 1,6

1Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States, 2Department of Physical

Medicine and Rehabilitation, Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, United States,
3Department of Physiology, Northwestern University, Chicago, IL, United States, 4Department of Neurobiology, Northwestern

University, Evanston, IL, United States, 5Department of Biomedical Engineering, Northwestern University, Evanston, IL,

United States, 6Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States

Neuroscience has long focused on finding encoding models that effectively ask “what

predicts neural spiking?” and generalized linear models (GLMs) are a typical approach.

It is often unknown how much of explainable neural activity is captured, or missed,

when fitting a model. Here we compared the predictive performance of simple models to

three leading machine learning methods: feedforward neural networks, gradient boosted

trees (using XGBoost), and stacked ensembles that combine the predictions of several

methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1)

cortices from standard representations of reaching kinematics, and in rat hippocampal

cells from open field location and orientation. Of these methods, XGBoost and the

ensemble consistently produced more accurate spike rate predictions and were less

sensitive to the preprocessing of features. These methods can thus be applied quickly

to detect if feature sets relate to neural activity in a manner not captured by simpler

methods. Encoding models built with a machine learning approach accurately predict

spike rates and can offer meaningful benchmarks for simpler models.

Keywords: encodingmodels, neural coding, tuning curves,machine learning, generalized linearmodel, GLM, spike

prediction

INTRODUCTION

A central tool of neuroscience is the tuning curve, which maps aspects of external stimuli to neural
responses. The tuning curve can be used to determine what information a neuron encodes in its
spikes. For a tuning curve to be meaningful it is important that it accurately describes the neural
response. Often, however, methods are chosen for simplicity but not evaluated for their relative
accuracy. Since inaccurate methods may systematically miss aspects of the neural response, any
choice of predictive method should be compared with accurate benchmark methods.

A popular predictive model for neural data is the Generalized Linear Model (GLM) (Nelder and
Baker, 1972; Simoncelli et al., 2004; Truccolo et al., 2005; Wu et al., 2006; Gerwinn et al., 2010).
The GLM performs a nonlinear operation upon a linear combination of the input features, which
are often called external covariates. Typical covariates are stimulus features, movement vectors,
or the animal’s location, and may include covariate history or spike history. In the absence of
history terms, the GLM is also referred to as a linear-nonlinear Poisson (LN) cascade. The nonlinear
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operation is usually held fixed, though it can be learned
(Chichilnisky, 2001; Paninski et al., 2004a), and the linear
weights of the combined inputs are chosen to maximize the
agreement between the model fit and the neural recordings. This
optimization problem of weight selection is convex, allowing
a global optimum, and can be solved with efficient algorithms
(Paninski, 2004). The assumption of Poisson firing statistics can
often be loosened (Pillow et al., 2005), as well, allowing the
modeling of a broad range of neural responses. Due to its ease
of use, perceived interpretability, and flexibility, the GLM has
become a popular model of neural spiking.

When using a GLM, it is important to check that the method’s
assumptions about the data are correct. The GLM’s central
assumption is that the inputs relate linearly to the log firing rate,
or generally some monotonic function of the firing rate. It thus
cannot learn arbitrary multi-dimensional functions of the inputs.
When the nonlinearity is different than assumed, it is likely that
the optimal weight on one input will depend on the values of
other inputs. In this case the GLM will only partially represent
the neural response, will poorly predict activity, and may not be
reproducible on other datasets. This drawback has been noted
before, and indeed the GLM has been shown to miss nonlinearity
in numerous circumstances (Butts et al., 2011; Freeman et al.,
2015; Heitman et al., 2016; McIntosh et al., 2016). However,
GLMs are still commonly applied without comparison to other
methods. To test if the linearity assumption is valid, it is sufficient
to test if other nonlinearmethods predict activitymore accurately
from the same features.Many extensions have been proposed that
introduce a specific form of nonlinearity (McFarland et al., 2013;
Theis et al., 2013; Latimer et al., 2014; Williamson et al., 2015;
Maheswaranathan et al., 2017), but these methods ask specific
research questions and are not intended as general benchmarks.
What is needed is are nonlinear methods that are universally
applicable to new data.

Machine learning (ML)methods for regression have improved
dramatically since the invention of the GLM. Many ML methods
require little feature engineering (i.e., pre-transformations the
features) and do not need to assume linearity. These methods are
thus ideal candidates for benchmark methods. The ML approach
is now quite standardized and robust across many domains of
data. As exemplified by winning solutions on Kaggle, an ML
competition website (Kaggle Winner’s Blog, 2016), the usual
approach is to fit several top performing methods, and then
to ensemble these models together. These methods are now
relatively easy to implement in a few lines of code in a scripting
language such as Python, and are enabled by well-supported
machine learning packages, such as scikit-learn (Pedregosa et al.,
2011), Keras (Chollet, 2015), Tensorflow (Abadi et al., 2016),
and XGBoost (Chen and Guestrin, 2016). The greatly increased
predictive power of modern ML methods is now very accessible
and could help to benchmark and improve the state of the art in
encoding models across neuroscience.

In order to investigate the feasibility of ML as a benchmark
approach, we applied several ML methods, including artificial
neural networks, gradient boosted trees, and ensembles to the
task of predicting spike rates, and evaluated their performance
alongside a GLM. We compared the methods on data from

three separate brain areas. These areas differed greatly in the
effect size of covariates and in their typical spike rates, and
thus served to evaluate the strengths of these methods across
different conditions. In each area we found that the ensemble of
methods could more accurately predict spiking than the GLM
with typical feature choices. The use of an ML benchmark
thus made clear that tuning curves built for these features
with a GLM would not capture the full nature of neural
activity. We provide our implementing code at https://github.
com/KordingLab/spykesML so that all neuroscientists may easily
test and compare ML to their own methods on other datasets.

MATERIALS AND METHODS

Data
We tested our methods at predicting spike rates for neurons
in the macaque primary motor cortex, the macaque primary
somatosensory cortex, and the rat hippocampus. All animal use
procedures were approved by the institutional animal care and
use committees at Northwestern University and conform to
the principles outlined in the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication
no. 86-23, revised 1985). Data presented here were previously
recorded for use with multiple analyses. Procedures were
designed to minimize animal suffering and reduce the number
used.

The macaque motor cortex data consisted of previously
published electrophysiological recordings from 82 neurons in the
primary motor cortex (M1) (Stevenson et al., 2011). The neurons
were sorted from recordings made during a two-dimensional
center-out reaching task with eight targets. In this task the
monkey grasped the handle of a planar manipulandum that
controlled a cursor on a computer screen and simultaneously
measured the hand location and velocity (Figure 1). After
training, an electrode array was implanted in the arm area of area
4 on the precentral gyrus. Spikes were discriminated using offline
sorter (Plexon, Inc), counted and collected in 50-ms bins. The
neural recordings used here were taken in a single session lasting
around 13min.

The macaque primary somatosensory cortex (S1) data was
recorded during a two-dimensional random-pursuit reaching
task and was previously unpublished. In this task, the monkey
gripped the handle of the same manipulandum. The monkey
was rewarded for bringing the cursor to a series of randomly
positioned targets appearing on the screen. After training, an
electrode array was implanted in the arm area of area 2 on
the post-central gyrus, which receives a mix of cutaneous and
proprioceptive afferents. Spikes were processed as for M1. The
data used for this publication derives from a single recording
session lasting 51min.

As with M1 (described in results), we processed the
hand position, velocity, and acceleration accompanying the S1
recordings in an attempt to obtain linearized features. The
features

(

x, y, ẋ, ẏ
)

were found to be the most successful for the
GLM. Since cells in the arm area of S1 have been shown to have
approximately sinusoidal tuning curves relating to movement
direction (Prud’homme and Kalaska, 1994), we also tested the
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FIGURE 1 | Encoding models aim to predict spikes, top, from input data, bottom. The inputs displayed are the position and velocity signals from the M1 dataset

(Stevenson et al., 2011) but could represent any set of external covariates. The GLM takes a linear combination of the inputs, applies an exponential function f, and

produces a Poisson spike probability that can be used to generate spikes (Left). The feedforward neural network (Center) does the same when the number of

hidden layers i = 0. With i ≥ 1 hidden layers, the process repeats; each of the j nodes in layer i computes a nonlinear function g of a linear combination of the previous

layer. The vector of outputs from all j nodes is then fed as input to the nodes in the next layer, or to the final exponential f on the final iteration. Boosted trees (Right)

return the sum of N functions of the original inputs. Each of the fi is built to minimize the residual error of the sum of the previous f 0 : i−1.

same feature transformations as were performed for M1 but did
not observe any increase in predictive power.

The third dataset consists of recordings from 58 neurons
in the CA1 region of the rat dorsal hippocampus during a
single 93min free foraging experiment, previously published and
made available online by the authors (Mizuseki et al., 2009a,b).
Position data from two head-mounted LEDs provided position
and heading direction inputs. Here we binned inputs and spikes
from this experiment into 50ms bins. Since many neurons in the
dorsal hippocampus are responsive to the location of the rat, we
processed the 2D position data into a list of squared distances
from a 5 × 5 grid of place fields that tile the workspace. Each

position feature thus has the form

pij =
1

2

(

x(t)− µij

)T
6−1

ij

(

x(t)− µij

)

,

whereµij is the center of place field i, j≤ 5 andΣ ij is a covariance
matrix chosen for the uniformity of tiling. An exponentiated
linear combination of the pij (as is performed in the GLM)
evaluates to a single Gaussian centered anywhere between the
place fields. The inclusion of the pij as features thus transforms
the standard representation of cell-specific place fields (Brown
et al., 1998) into the mathematical formulation of a GLM. The
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final set of features included the pij as well as the rat speed and
head orientation.

Treatment of Spike and Covariate History
We slightly modified our data preparation methods for spike rate
prediction when spike and covariate history terms were included
as regressors (Figure 6). To construct spike and covariate history
filters, we convolved 10 raised cosine bases (built as in Pillow
et al., 2008) with binned spikes and covariates. The longest
temporal basis included times up to 250ms before the time bin
being predicted. This process resulted in 120 total covariates per
sample (10 current covariates, 100 covariate temporal filters, and
10 spike history filters). We predicted spike rates in 5ms bins
(rather than 50ms) to allow for modeling of more precise time-
dependent phenomena, such as refractory effects. The cross-
validation scheme also differs from the main analysis of this
paper, as using randomly selected splits of the data would result
in the appearance in the test set of samples that were in history
terms of training sets, potentially resulting in overfitting.We thus
employed a cross-validation routine to split the data continuously
in time, assuring that no test set sample has appeared in any form
in training sets.

Generalized Linear Model
The Poisson GLM is a multivariate regression model that
describes the instantaneous firing rate as a nonlinear function of
a linear combination of input features (see e.g., Schwartz et al.,
2006; Aljadeff et al., 2016 for review, Pillow et al., 2008; Fernandes
et al., 2014; Ramkumar et al., 2016 for usage). Here, we took
the form of the nonlinearity to be exponential, as is common
in previous applications of GLMs to similar data (Saleh et al.,
2012). It should be noted that it is also possible to learn arbitrary
link functions through histogram methods (Chichilnisky, 2001;
Paninski et al., 2004a). We approximate neural activity as a
Poisson process, in which the probability of firing in any instant
is independent of firing history. The general form of the GLM is
depicted in Figure 1. We implemented the GLM using elastic-net
regularization, using the open-source Python package pyglmnet
(Ramkumar et al., 2017). The regularization path was optimized
separately on a single neuron in each dataset on a validation set
not used for scoring.

Neural Network
Neural networks are well-known for their success at supervised
learning tasks. More comprehensive reviews can be found
elsewhere (Schmidhuber, 2015). Here, we implemented a simple
feedforward neural network and, for the analysis with history
terms, an LSTM, a recurrent neural network architecture that
allows themodeling of time dependencies onmultiple time-scales
(Gers et al., 2000).

We point out that a feedforward neural network with no
hidden layers is equivalent in mathematical form to a GLM
(Figure 1). For multilayer networks, one can write each hidden
layer of n nodes as simply n GLMs, each taking the output of
the previous layer as inputs (noting that the weights of each are
chosen to maximize only the final objective function, and that the
intermediate nonlinearities need not be the same as the output

nonlinearity). A feedforward neural network can be seen as a
generalization, or repeated application of a GLM.

The networks were implemented with the open-source neural
network library Keras, running Theano as the backend (Chollet,
2015; Team et al., 2016). The feedforward network contained
two hidden layers, dense connections, rectified linear activation,
and a final exponentiation. To help avoid overfitting, we allowed
dropout on the first layer, included batch normalization, and
allowed elastic-net regularization upon the weights (but not the
bias term) of the network (Srivastava et al., 2014). The networks
were trained to maximize the Poisson likelihood of the neural
response.We optimized over the number of nodes in the first and
second hidden layers, the dropout rate, and the regularization
parameters for the feedforward neural network, and for the
number of epochs, units, dropout rate, and batch size for the
LSTM. Optimization was performed on only a subset of the data
from a single neuron in each dataset, using Bayesian optimization
(Snoek et al., 2012) in an open-source Python implementation
(BayesianOptimization, 2016).

Gradient Boosted Trees
Apopularmethod inmanymachine learning competitions is that
of gradient boosted trees. Here we describe the general operation
of XGBoost, an open-source implementation that is efficient and
highly scalable, works on sparse data, and easy to implement
out-of-the-box (Chen and Guestrin, 2016).

XGBoost trains many sequential models to minimize the
residual error of the sum of previous model. Each model is a
decision tree, or more specifically a classification and regression
tree (CART) (Friedman, 2001). Training a decision tree amounts
to determining a series of rule-based splits on the input to classify
output. The CART algorithm generalizes this to regression by
taking continuously-valued weights on each of the leaves of the
decision tree.

For any predictive model ŷ(1) = f1(xi) and true response yi, we

can define a loss function l
(

ŷ(1), yi

)

between the prediction and

the response. The objective to be minimized during training is
then simply the sum of the loss over each training example i, plus
some regularizing function Ω that biases toward simple models.

L =
∑

i

l(ŷ
(1)
i , yi)+ Ω(f1)

After minimizing L for a single tree, XGBoost constructs a second
tree f2(xi) that approximates the residual. The objective to be
minimized is thus the total loss L between the true response yi
and the sum of the predictions given by the first tree and the one
to be trained.

L =
∑

i

l(ŷ
(1)
i + f2(xi), yi)+ Ω(f2)

This process is continued sequentially for a predetermined
number of trees, each trained to approximate the residual of the
sum of previous trees. In this manner XGBoost is designed to
progressively decrease the total loss with each additional tree. At
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the end of training, new predictions are given by the sum of the
outputs of all trees.

ŷ =

N
∑

k= 1

fk(x)

In practice, it is simpler to choose the functions fk via gradient
boosting, which minimizes a second order approximation of the
loss function (Friedman et al., 2000).

XGBoost offers several additional parameters to optimize
performance and prevent overfitting. Many of these describe
the training criteria for each tree. We optimized some of these
parameters for a single neuron in each dataset using Bayesian
optimization (again over a validation set different from the final
test set). These parameters included the number of trees to train,
the maximum depth of each decision tree, and the minimum
weight allowed on each decision leaf, the data subsampling
ratio, and the minimum gain required to create a new decision
branch.

Random Forests
We implement random forests here to increase the power of
the ensemble (see below); their performance alone is displayed
in Supplementary Figure 1. It should be noted that the Scikit-
learn implementation currently only minimizes the mean-
squared error of the output, which is not properly applicable
to Poisson processes and may cause poor performance. Despite
this drawback their presence still improves the ensemble scores.
Random forests train multiple parallel decision trees on the
features-to-spikes regression problem (not sequentially on the
remaining residual, as in XGBoost) and averages their outputs
(Ho, 1998). The variance on each decision tree is increased by
training on a sample of the data drawn with replacement (i.e.,
bootstrapped inputs) and by choosing new splits using only a
random subset of the available features. Random forests are
implemented in Scikit-learn (Pedregosa et al., 2011).

Ensemble Method
It is a common machine learning practice to create ensembles of
several trained models. Different algorithms may learn different
characteristics of the data, make different types of errors, or
generalize differently to new examples. Ensemble methods allow
for the successes of different algorithms to be combined. Here
we implemented stacking, in which the output of several models
is taken as the input set of a new model (Wolpert, 1992). After
training the GLM, neural network, random forest, and XGBoost
on the features of each dataset, we trained an additional instance
of XGBoost using the spike rate predictions of the previous
methods as input. The outputs of this “second stage” XGBoost
are the predictions of the ensemble.

Scoring and Cross-Validation
Each of the three methods was scored with the Poisson pseudo-
R2 score, a scoring function applicable to Poisson processes
(Cameron and Windmeijer, 1997). Note that a standard R2 score

assumes Gaussian noise and cannot be applied here. The pseudo-
R2 was calculated as one minus the ratio of the deviances of the
predicted output ŷ to the mean firing rate y.

R2M = 1−
D

(

ŷ
)

D
(

y
)

We can gain intuition into the pseudo-R2 score by writing out
the deviances in terms of log likelihoods L(), and combining the
fraction.

R2M = 1−
log L

(

y
)

− log L
(

ŷ
)

log L
(

y
)

− log L
(

y
) =

log L
(

ŷ
)

− log L
(

y
)

log L
(

y
)

− log L
(

y
)

This expression includes L
(

y
)

, which is the log likelihood of the
“saturated model,” which offers one parameter per observation
and models the data perfectly. The pseudo-R2 can thus be
interpreted as the fraction of the maximum potential log-
likelihood gain achieved by the tested model (Cameron and
Windmeijer, 1997). It takes a value of 0 when the data is as
likely under the tested model as the null model, and a value
of 1 when the tested model perfectly describes the data. It is
empirically a lower value than a standard R2 when both are
applicable (Domencich and McFadden, 1975). The null model
can also be taken to be a model other than the mean firing
rate (e.g., the GLM) to directly compare two methods, in which
case we refer to the score as the “comparative pseudo-R2.” The
comparative pseudo-R2 is referred to elsewhere as the “relative
pseudo-R2,” renamed here to avoid confusion with the difference
of two standard pseudo-R2 scores both measured against the
mean (Fernandes et al., 2014).

We used 8-fold cross-validation (CV) when assigning a final
score to the models. The input and spike data were segmented
into eight equal partitions. These partitions were continuous
in time when spike and covariate history were included as
covariates, and otherwise were segmented randomly in time.
The methods were trained on seven partitions and tested on the
eighth, and this was repeated until all segments served as the test
partition once. Themean of the eight scores are then recorded for
the final score.

Cross-validation for ensemble methods requires extra care
since the inputs for the ensemble are themselves model
predictions for each data point. The training set for the ensemble
must contain predictions frommethods that were themselves not
trained on the validation set. Otherwise, there may be a leak
of information from the validation set into the training set and
the validation score might be better than on a true held-out set.
This rules out using simple k-fold CV with all methods and the
ensemble trained on the same test/train splits. Instead, we used a
nested CV scheme to train and score the ensemble. We create an
outer j = 8 folds to build training and test sets for the ensemble.
On each outer fold we create first-order predictions for each data
point in the following manner. We first run an inner k-fold CV
on just the training set (i.e., 7/8 of the original dataset) with each
first stage method such that we obtain predictions for the whole
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training set of that fold. This ensures that the ensemble’s test set
was never used for training any method. Finally, we build the
ensemble’s test set from the predictions of the first stage methods
trained on the entire training set. The ensemble can then be tested
on a held-out set that was never used to fit anymodel. The process
is repeated for each of the j folds and themean and variance of the
j scores of the ensemble’s predictions are recorded.

RESULTS

We applied several machine learning methods to predict spike
counts in three brain regions and compared the quality of the
predictions to those of a GLM. Our primary analysis centered
on neural recordings from the macaque primary motor cortex
(M1) during reaching (Figure 1). We examined the methods’
relative performance on several sets of movement features with
various levels of preprocessing, including one set that included
spike and covariate history terms. Analyses of data from rhesus
macaque S1 and rat hippocampus indicate how these methods
compare for areas other than M1. On each of the three datasets
we trained a GLM and compared it to the performance of a
feedforward neural network, XGBoost (a gradient boosted trees
implementation), and an ensemble method. The ensemble was
an additional instance of XGBoost trained on the predictions of
all three methods plus a random forest regressor. The application
of these methods allowed us to demonstrate the potential of
a modern approach to be able to identify whether there are
typically neural nonlinearities that are not captured by a GLM.
The code implementing these methods can be used by any
electrophysiology lab to benchmark their own encoding models.

To test that all methods work reasonably well in a trivial case,
we trained each to predict spiking from a simple, well-understood
feature. Some neurons in M1 have been described as responding
linearly to the exponentiated cosine of movement direction
relative to a preferred angle (Amirikian and Georgopulos, 2000).
We therefore predicted the spiking of M1 neurons from the
cosine and sine of the direction of hand movement in the
reaching task. (The linear combination of a sine and cosine curve
is a phase-shifted cosine, by identity, allowing the GLM to learn
the proper preferred direction). We observed that each method
identified a similar tuning curve (Figure 2B) and that the bulk
of the neurons in the dataset were just as well predicted by
each of the methods (Figures 2A,C) {though the ensemble was
slightly more accurate than the GLM, with mean comparative
pseudo-R2 above zero, 0.06 [0.043 – 0.084], 95% bootstrapped
confidence interval (CI)}. The similar performance suggested
that, for the majority of neurons, an exponentiated cosine
successfully approximates the response to movement direction
alone, as has been previously found (Paninski et al., 2004b). All
methods can in principle estimate tuning curves, and machine
learning can indicate if the proper features are used.

If the form of the nonlinearity is not known, machine learning
can still attain good predictive ability. To illustrate the ability
of modern machine learning to find the proper nonlinearity,
we performed the same analysis as above but omitted the
initial cosine feature-engineering step. Trained on only the hand

velocity direction, in radians, which changes discontinuously at
±π, all methods but the GLM closely matched the predictive
power they attained using the engineered feature (Figure 3A).
The GLM failed at generating a meaningful tuning curve, which
was expected since the exponentiated velocity direction is not
equal to cosine tuning (Figure 3B). Both trends were consistent
across the population of recorded neurons (Figure 3C). The
neural net, XGBoost, and ensemble methods can learn the
nonlinearity of single features without requiring manual feature
transformation.

The inclusion of multiple features raises the possibility of
nonlinear feature interactions that may elude a GLM. As a simple
demonstration of this principle, we trained all methods on the
four-dimensional set of hand position and velocity

(

x, y, ẋ, ẏ
)

.
While all methods gained predictive power relative to models
using movement direction alone, the GLM failed to match the
other methods (Figures 4A,C). If the GLM was fit alone, and
no further featuring engineering been attempted, these features
would have appeared to be relatively uninformative of the neural
response. If nonlinear interactions exist between preselected
features, machine learning methods can potentially learn these
interactions and indicate if more linearly-related features exist.

While feature engineering can improve the performance
of GLMs, it is not always simple to guess the optimal set
of processed features. We demonstrated this by training all
methods on features that have previously been successful at
explaining spike rate in a similar center-out reaching task
(Paninski et al., 2004a). These extra features included the sine
and cosine of velocity direction (as in Figure 2), and the speed,
radial distance of hand position, and the sine and cosine of
position direction. The training set was thus 10-dimensional,
though highly redundant, and was aimed at maximizing the
predictive power of the GLM. Feature engineering improved the
predictive power of all methods to variable degrees, with the
GLM improving to the level of the neural network (Figure 5).
XGBoost and the ensemble still predicted spike rates better
than the GLM (Figure 5C), with the ensemble scoring on
average nearly double the GLM (ratio of population means
of 1.8 [1.4 – 2.2], 95% bootstrapped CI). The ensemble was
significantly better than XGBoost (mean comparative pseudo-
R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI) and was
thus consistently the best predictor. Though standard feature
engineering greatly improved the GLM, the ensemble and
XGBoost still could identify that neural nonlinearity was missed
by the GLM.

It is important to note that the specific ordering of methods
depends on features such as the amount of data available for
training. We investigated this dependence for the M1 dataset
by plotting the cross-validated performance as a function of the
fraction of the data used for training (Supplementary Figure 3).
Some neurons are best fit by the GLM when very little data is
available, while other neurons are best fit by XGBoost and the
ensemble for any amount of data tested. The neural network
is most sensitive to training data availability. This sensitivity to
the domain of data emphasizes the importance of the applied
ML paradigm of evaluating (and potentially ensembling) many
methods.
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FIGURE 2 | Encoding models of M1 performed similarly when trained on the sine and cosine of hand velocity direction. All methods can in principle estimate tuning

curves. (A) The pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3–5 the example neuron is the same, and is not the

neuron for which method hyperparameters were optimized. (B) We constructed tuning curves by plotting the predictions of spike rate on the validation set against

movement direction. The black points are the recorded responses, to which we added y-axis jitter for visualization to better show trends in the naturally quantized

levels of binned spikes. The tuning curves of the neural net and XGBoost were similar to that of the GLM. The tuning curve of the ensemble method was similar and is

not shown. (C) Plotting the pseudo-R2 of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single

neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error bars represent the 95% bootstrap

confidence interval.

FIGURE 3 | Modern ML models learn the cosine nonlinearity when trained on hand velocity direction, in radians. (A) For the same example neuron as in Figure 2, the

neural net and XGBoost maintained the same predictive power, while the GLM was unable to extract a relationship between direction and spike rate. (B) XGBoost and

neural nets displayed reasonable tuning curves, while the GLM reduced to the average spiking rate (with a small slope, in this case). (C) Most neurons in the

population were poorly fit by the GLM, while the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

The single neuron plotted at left is marked with black arrows.
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FIGURE 4 | Modern ML methods can learn nonlinear interactions between features. Here the methods are trained on the feature set
(

x, y, ẋ, ẏ
)

. Note the change in

axes scales from Figures 2, 3. (A) For the same example neuron as in Figure 3, all methods gained a significant amount of predictive power, indicating a strong

encoding of position and speed or their correlates. The GLM showed less predictive power than the other methods on this feature set. (B) The spike rate in black, with

jitter on the y-axis, again overlaid with the predictions of the three methods plotted against velocity direction. The projection of the multidimensional tuning curve onto

a 1D velocity direction dependence leaves the projected curve diffuse. (C) The ensemble method, neural network, and XGBoost performed consistently better than

the GLM across the population. The mean pseudo-R2 scores show the hierarchy of success across methods. The single neuron plotted at left is marked with black

arrows.

FIGURE 5 | Modern ML methods outperform the GLM with standard featuring engineering. For this figure, all methods were trained on the features
(

x, y, ẋ, ẏ
)

plus the

engineered features. (A) For this example neuron, inclusion of the computed features increased the predictive power of the GLM to the level of the neural net. All

methods increased in predictive power. (B) The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a

high-dimensional dependence. (C) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM, though

the neural net does not. The neuron selected at left is marked with black arrows.

Studies employing a GLM often include activity history as
a covariate when predicting spike rates, as well as past values

of the covariates themselves, and it is known that this allows
GLMs to model a wider range of phenomena (Weber and Pillow,
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FIGURE 6 | ML algorithms outperform a GLM when covariate history and

neuron spike history are included. The feature set of Figure 5 (in macaque M1)

was augmented with spike and covariate history terms, so that spike rate was

predicted for each 5ms time bin from the past 250ms of covariates and neural

activity. Cross-validation methods for this figure differ from other figures (see

methods) and pseudo-R2 scores should not be compared directly across

figures. All methods outperform the GLM, indicating that the inclusion of

history terms does not alone allow the GLM to capture the full nonlinear

relationship between covariates and spike rate.

2016). We tested various ML methods on the M1 dataset using
this history-augmented feature set to see if all methods would
still explain a similar level of activity. We binned data by 5ms
(rather than 50ms) to agree in timescale with similar studies,
and built temporal filters by convolving 10 raised-cosine bases
with features and spikes. We note that smaller time bins result in
a sparser dataset, and thus pseudo-R2 scores cannot be directly
compared with other analysis in this paper. On this problem, our
selected ML algorithms again outperformed the GLM (Figure 6).
The overall best algorithm was the LSTM, which we include
here as it specifically designed for modeling time series, though
for most neurons XGBoost performed similarly. Thus, for M1
neurons, the GLM did not capture all predicable phenomena
even when spike and covariate history were included.

To ensure that these results were not specific to the motor
cortex, we extended the same analyses to primary somatosensory
cortex (S1) data. We again predicted neural activity from hand
movement and speed, and here without spike or covariate history
terms. The ML methods outperformed the GLM for all but three
of the 52 neurons, indicating that firing rates in S1 generally
relate nonlinearly to hand position and velocity (Figure 7A).
Each of the three ML methods performed similarly for each
neuron. The S1 neural function was thus equally learnable by
each method, which is surprising given the dissimilarity of the
neural network and XGBoost algorithms. This situation would
occur if learning has saturated near ground truth, though this
cannot be proven definitively to be the case. It is at least clear from
the underperformance of the GLM that the relationship of S1
activity to these covariates is nonlinear beyond the assumptions
of the GLM.

We asked if the same trends of performance would hold
for the rat hippocampus dataset, which was characterized by
very low mean firing rates but strong effect sizes. All methods
were trained on a list of squared distances to a grid of place
fields and on and the rat head orientation, as described in
methods. Far more even than the neocortical data, neurons were
described much better by XGBoost and the ensemble method
than by the GLM (Figure 7B). Many neurons shifted from being
completely unpredictable by the GLM (pseudo-R2 near zero) to
very predictable by XGBoost and the ensemble (pseudo-R2 above
0.2). These neurons thus have responses that do not correlate
with firing in any one Gaussian place field. We note that the
neural network performed poorly, likely due to the very low
firing rates of most hippocampal cells (Supplementary Figure
2). The median spike rate of the 58 neurons in the dataset was
just 0.2 spikes/s, and it was only on the four neurons with rates
above 1 spikes/s that the neural network achieved pseudo-R2

scores comparable to the GLM. The relative success of XGBoost
was interesting given the failure of the neural network, and
supported the general observation that boosted trees can work
well with smaller and sparser datasets than those that neural
networks generally require (Supplementary Figure 3). Thus for
hippocampal cells, a method leveraging decision trees such as
XGBoost or the ensemble is able to capture more structure in
the neural response and thus demonstrate a deficiency of the
parameterization of the GLM.

DISCUSSION

We analyzed the ability of various machine learning techniques
at the task of predicting binned spike counts in three brain
regions. We found that of the tested ML methods, XGBoost and
the ensemble routinely predicted spike counts more accurately
than did the GLM, which is a popular method for neural data.
Feedforward neural networks did not always outperform the
GLM and were often worse than XGBoost and the ensemble.
Machine learning methods, especially LSTMs, also outperformed
GLMs when covariate and spike history were included as inputs.
The ML methods performed comparably well with and without
feature engineering, even for the very low spike rates of the
hippocampus dataset. These findings indicate that a standard
ML approach can serve as a reliable benchmark to test if data
meets the assumptions of a GLM. Furthermore, it may be quite
common that standard ML outperforms GLMs given standard
feature choices.

When a GLM fails to explain data as well as more expressive,
nonlinear methods, the current parameterization of inputs must
relate to the data with a different nonlinearity than is assumed
by the GLM. Such situations have been identified several times
in the literature (Butts et al., 2011; Freeman et al., 2015; Heitman
et al., 2016; McIntosh et al., 2016). This unaccounted nonlinearity
may produce feature weights that do not reflect true feature
importance. A GLM will incorrectly predict no dependence on
feature x whatsoever, for example, in the extreme case when
the neural response to some feature x does not correlate with
exp(x). The only way to ensure that feature weights can be reliably
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FIGURE 7 | XGBoost and the ensemble method predicted the activity of neurons in S1 and in hippocampus better than a GLM. The diagonal dotted line in both plots

is the line of equal predictive power with the GLM. (A) All methods outperform the GLM in the macaque S1 dataset. Interestingly, the neural network, XGBoost and the

ensemble scored very similarly for each neuron in the 52 neuron dataset. (B) Many neurons in the rat hippocampus were described well by XGBoost and the

ensemble but poorly by the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing of most neurons

in the dataset (Supplementary Figure 2). Note the difference in axes; hippocampal cells are generally more predictable than those in S1.

interpreted is to find an input parameterization that maximizes
the GLM’s predictive power. ML methods can assist this process
by indicating how much nonlinearity remains to be explained.
New features can then be tested, such as those suggested by
a search for maximally informative dimensions (Sharpee et al.,
2004). In our analysis, then, the GLM underperforms because
we have selected the suboptimal input features. It is always
theoretically possible to linearize features such that a GLM
obtains equal predictive power. ML methods can highlight
the deficiency of features that might have otherwise seemed
uncontroversial. When applying a GLM or any simple model to
neural data, it is important to compare its predictive power with
standard ML methods to ensure the neural response is properly
understood.

There are other ways of estimating the performance of a
method besides benchmark nonlinear methods. For example,
if the same exact stimulus can be given many times in a
row, then we can estimate neural variability without having
to model how activity depends on stimulus features (Schoppe
et al., 2016). This approach, however, requires that we can model
how neural responses vary with repetition (Grill-Spector et al.,
2006). This approach also makes it difficult to include spike
history as an input, since the exact history is rarely repeated. We
note that in some cases it may also be impossible to show the
same stimulus multiple times, e.g., because eyes move. However,
comparing these two classes of benchmark would be interesting
on applications where both are feasible.

Advanced ML methods are not widely considered to be
interpretable. Interpretation is not necessary for performance
benchmarks, but it would be desirable to use these methods as
standalone encoding models. We can better discuss this issue
with a more precise definition of interpretability. Following
Lipton, we make the distinction between a method’s post-hoc

interpretability, the ease of justifying its predictions, and
transparency, the degree to which its operation and internal
parameters are human-readable or easily understandable (Lipton
et al., 2016). A GLM is certainly more transparent than
many ML methods due to its algorithmic simplicity. Certain
nonlinear extensions of the GLM have also been designed to
remain transparent (McFarland et al., 2013; Theis et al., 2013;
Latimer et al., 2014; Williamson et al., 2015; Maheswaranathan
et al., 2017). For high-level areas, though, such as V4, the
linearized features may be difficult to be interpreted themselves
(Yamins et al., 2014), though it may be possible to increase
the interpretability of features (Kaardal et al., 2013). A GLM
is also generally more conducive to post-hoc interpretations,
though this is also possible with modern ML methods. It is
possible, for example, to visualize the aspects of stimuli that
most elicit a predicted response, as has been implemented in
previous applications of neural networks to spike prediction (Lau
et al., 2002; Prenger et al., 2004). Various other methods exist
in the literature to enable post-hoc explanations (McAuley and
Leskovec, 2013; Simonyan et al., 2013). Here we highlight Local
InterpretableModel-Agnostic Explanations (LIME), an approach
that fits simple models in the vicinity of single examples to
allow a local interpretation (Ribeiro et al., 2016). On problems
where interpretability is important, such capabilities for post-hoc
justifications may prove sufficient.

Not all types of interpretability are necessary for a given
task, and many scientific questions can be answered based
on predictive ability alone. Questions of the form, “does
feature x contribute to neural activity?” for example, or “is
past activity necessary to explain current activity?” require no
method transparency. One can simply ask whether predictive
power increases with feature x’s inclusion or decreases upon
its exclusion. Importance measures based on inclusion and
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exclusion, or upon the strategy of shuffling a covariate of interest,
are well-studied in statistics and machine learning (Bell and
Wang, 2000; Strobl et al., 2008). Depending on the application,
it may thus be worthwhile to ask not just whether different
features could improve a GLM but also whether it is enough to
use ML methods directly. It is possible for many questions to
stay agnostic to the form of linearized features and directly use
changes in predictive ability.

With ongoing progress in machine learning, many standard
techniques are easy to implement and can even be automated.
Ensemble methods, for example, remove the need to choose
any one algorithm. Moreover, the choice of model-specific
parameters is made easy by hyperparameter search methods
and optimizers. We hope that this ease of use might
encourage use in the neurosciences, thereby increasing the
power and efficiency of studies involving neural prediction
without requiring complicated, application-specific methods
development (e.g., Corbett et al., 2012). Community-supported
projects in automated machine learning, such as autoSklearn and
auto-Weka, are quickly improving and promise to handle the
entire regression workflow (Feurer et al., 2015; Kotthoff et al.,
2016). Applied to neuroscience, these tools will allow researchers
to gain descriptive power over current methods even with simple,
out-of-the-box implementations.

Machine learning methods perform quite well and make
minimal assumptions about the form of neural encoding. Models
that seek to understand the form of the neural code can test if they
systematicallymisconstrue the relationship between stimulus and

response by comparing their performance to these benchmarks.
Encoding models built with machine learning can thus greatly

aid the construction of models that capture arbitrary nonlinearity
and more accurately describe neural activity.

The code used for this publication is available at https://
github.com/KordingLab/spykesML. We invite researchers to
adapt it freely for future problems of neural prediction.
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et al. (2017). Pyglmnet 1.0.1. (Chicago, IL).

Ramkumar, P., Lawlor, P. N., Glaser, J. I., Wood, D. K., Phillips, A. N., Segraves,

M. A., et al. (2016). Feature-based attention and spatial selection in frontal

eye fields during natural scene search. J. Neurophysiol. 116, 1328–1343.

doi: 10.1152/jn.01044.2015

Ribeiro, M. T., Singh, S., and Guestrin, C. (eds). (2016). “Why should i trust you?:

Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(San Francisco, CA: ACM).

Saleh, M., Takahashi, K., and Hatsopoulos, N. G. (2012). Encoding of coordinated

reach and grasp trajectories in primary motor cortex. J. Neurosci. 32,

1220–1232. doi: 10.1523/JNEUROSCI.2438-11.2012

Schmidhuber, J. (2015). Deep learning in neural networks: an

overview. Neural Netw. 61:85–117. doi: 10.1016/j.neunet.2014.

09.003

Schoppe, O., Harper, N. S., Willmore, B. D., King, A. J., and Schnupp, J. W. (2016).

Measuring the performance of neural models. Front. Comput. Neurosci. 10:10.

doi: 10.3389/fncom.2016.00010

Schwartz, O., Pillow, J. W., Rust, N. C., and Simoncelli, E. P. (2006).

Spike-triggered neural characterization. J. Vis. 6:13. doi: 10.1167/

6.4.13

Sharpee, T., Rust, N. C., and Bialek, W. (2004). Analyzing neural responses

to natural signals: maximally informative dimensions. Neural Comput. 16,

223–250. doi: 10.1162/089976604322742010

Simoncelli, E. P., Paninski, L., Pillow, J., and Schwartz, O. (2004). “Characterization

of neural responses with stochastic stimuli,” in The cognitive neurosciences, 3rd

edn ed M. Gazzaniga (MIT Press), 327–338.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional

networks: Visualising image classification models and saliency maps.

arXiv:13126034[preprint].

Snoek, J., Larochelle, H., and Adams, R. P. (2012). “Practical Bayesian

optimization of machine learning algorithms,” in Advances in Neural

Information Processing Systems, Vol. 25, eds F. Pereira, C. J. C. Burges, L.

Bottou, and K. Q. Weinberger (Curran Associates, Inc.), 2951–2959. Available

online at: http://papers.nips.cc/paper/4522-practical-bayesian-optimization-

of-machine-learning-algorithms.pdf

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958.

Stevenson, I. H., Cherian, A., London, B. M., Sachs, N. A., Lindberg, E., Reimer,

J., et al. (2011). Statistical assessment of the stability of neural movement

representations. J. Neurophysiol. 106, 764–774. doi: 10.1152/jn.00626.

2010

Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., and Zeileis, A. (2008).

Conditional variable importance for random forests. BMCBioinformatics 9:307.

doi: 10.1186/1471-2105-9-307

Team, T. T. D., Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau,

D., et al. (2016). Theano: a Python framework for fast computation of

mathematical expressions. arXiv: 160502688[preprint].

Frontiers in Computational Neuroscience | www.frontiersin.org 12 July 2018 | Volume 12 | Article 56

https://doi.org/10.1162/089976600300015015
https://doi.org/10.3389/fncom.2010.00012
https://doi.org/10.1016/j.tics.2005.11.006
https://doi.org/10.1101/045336
https://doi.org/10.1162/NECO_a_00465
http://blog.kaggle.com/
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1073/pnas.122173799
https://doi.org/10.1101/120956
https://doi.org/10.1371/journal.pcbi.1003143
http://papers.nips.cc/paper/6388-deep-learning-models-of-the-retinal-response-to-natural-scenes.pdf
http://papers.nips.cc/paper/6388-deep-learning-models-of-the-retinal-response-to-natural-scenes.pdf
https://doi.org/10.6080/K0Z60KZ9
https://doi.org/10.1016/j.neuron.2009.08.037
https://doi.org/10.2307/2344614
https://doi.org/10.1088/0954-898X_15_4_002
https://doi.org/10.1152/jn.00587.2002
https://doi.org/10.1523/JNEUROSCI.0919-04.2004
https://doi.org/10.1523/JNEUROSCI.3305-05.2005
https://doi.org/10.1038/nature07140
https://doi.org/10.1016/j.neunet.2004.03.008
https://doi.org/10.1152/jn.1994.72.5.2280
https://doi.org/10.1152/jn.01044.2015
https://doi.org/10.1523/JNEUROSCI.2438-11.2012
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.3389/fncom.2016.00010
https://doi.org/10.1167/6.4.13
https://doi.org/10.1162/089976604322742010
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://doi.org/10.1152/jn.00626.2010
https://doi.org/10.1186/1471-2105-9-307
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Benjamin et al. Machine Learning for Neural Prediction

Theis, L., Chagas, A. M., Arnstein, D., Schwarz, C., and Bethge, M. (2013). Beyond

GLMs: a generative mixture modeling approach to neural system identification.

PLoS Comput. Biol. 9:e1003356. doi: 10.1371/journal.pcbi.1003356

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N.

(2005). A point process framework for relating neural spiking activity to spiking

history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93,

1074–1089. doi: 10.1152/jn.00697.2004

Weber, A. I., and Pillow, J. W. (2016). Capturing the dynamical repertoire of single

neurons with generalized linear models. arXiv: 160207389[preprint].

Williamson, R. S., Sahani, M., and Pillow, J. W. (2015). The equivalence of

information-theoretic and likelihood-based methods for neural dimensionality

reduction. PLoS Comput. Biol. 11:e1004141. doi: 10.1371/journal.pcbi.1004141

Wolpert, D. H. (1992). Stacked generalization. Neural Netw. 5, 241–259.

Wu, M. C. K., David, S. V., and Gallant, J. L. (2006). Complete functional

characterization of sensory neurons by system identification. Annu. Rev.

Neurosci. 29, 477–505. doi: 10.1146/annurev.neuro.29.051605.113024

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and DiCarlo, J.

J. (2014). Performance-optimized hierarchical models predict neural responses

in higher visual cortex. Proceed. Natl. Acad. Sci. U.S.A. 111, 8619–8624.

doi: 10.1073/pnas.1403112111

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Benjamin, Fernandes, Tomlinson, Ramkumar, VerSteeg,

Chowdhury, Miller and Kording. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 July 2018 | Volume 12 | Article 56

https://doi.org/10.1371/journal.pcbi.1003356
https://doi.org/10.1152/jn.00697.2004
https://doi.org/10.1371/journal.pcbi.1004141
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1073/pnas.1403112111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Modern Machine Learning as a Benchmark for Fitting Neural Responses
	Introduction
	Materials and Methods
	Data
	Treatment of Spike and Covariate History 
	Generalized Linear Model
	Neural Network
	Gradient Boosted Trees
	Random Forests
	Ensemble Method
	Scoring and Cross-Validation

	Results
	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References


