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Abstract

Three key elements are the drivers of Aedes-borne disease: mosquito infestation, virus cir-

culating, and susceptible human population. However, information on these aspects is not

easily available in low- and middle-income countries. We analysed data on factors that influ-

ence one or more of those elements to study the first chikungunya epidemic in Rio de

Janeiro city in 2016. Using spatio-temporal models, under the Bayesian framework, we esti-

mated the association of those factors with chikungunya reported cases by neighbourhood

and week. To estimate the minimum temperature effect in a non-linear fashion, we used a

transfer function considering an instantaneous effect and propagation of a proportion of

such effect to future times. The sociodevelopment index and the proportion of green areas

(areas with agriculture, swamps and shoals, tree and shrub cover, and woody-grass cover)

were included in the model with time-varying coefficients, allowing us to explore how their

associations with the number of cases change throughout the epidemic. There were 13627

chikungunya cases in the study period. The sociodevelopment index presented the stron-

gest association, inversely related to the risk of cases. Such association was more pro-

nounced in the first weeks, indicating that socioeconomically vulnerable neighbourhoods

were affected first and hardest by the epidemic. The proportion of green areas effect was

null for most weeks. The temperature was directly associated with the risk of chikungunya

for most neighbourhoods, with different decaying patterns. The temperature effect persisted

longer where the epidemic was concentrated. In such locations, interventions should be

designed to be continuous and to work in the long term. We observed that the role of the

covariates changes over time. Therefore, time-varying coefficients should be widely incor-

porated when modelling Aedes-borne diseases. Our model contributed to the understanding

of the spatio-temporal dynamics of an urban Aedes-borne disease introduction in a tropical

metropolitan city.
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Author summary

Viruses transmitted by the Aedes mosquitoes represent a major public health concern.

With the abundance of the mosquito and susceptible human population, the entry of

new Aedes-transmitted viruses brings the risk of large epidemics. The first-ever chikun-

gunya epidemic in Rio de Janeiro city, Brazil, happened in 2016. We used neighbour-

hood information on the environment, socioeconomic status, and weekly temperature,

to study the disease spread within the city. Our results show that better socioeconomic

status plays a major role in preventing the disease, with poorer areas being affected first

and harder by the epidemic. This highlights that improving sanitary and socioeconomic

conditions is essential for Aedes-borne diseases prevention and control. The tempera-

ture increased the risk of chikungunya cases, and this effect persisted for longer in areas

where the epidemic was concentrated. This indicates that interventions should be

designed to be long-lasting in such locations. Our results contribute to understanding

better the dynamics of a first urban Aedes-borne disease epidemic in a tropical metro-

politan city, with the potential to help design better interventions for disease prevention

and control.

Introduction

The first chikungunya virus (CHIKV) epidemic in Rio de Janeiro city, the second most popu-

lated city in Brazil and its leading tourist destination, occurred in 2016 [1]. CHIKV is transmit-

ted to humans by the same vectors as dengue viruses (DENV), the Aedes mosquitoes [2].

Vector-control activities have not prevented Rio de Janeiro from being endemic for dengue

for years, nor from having experienced large dengue epidemics every three to four years, in

general [3–5].

For a chikungunya epidemic to occur, three main elements are necessary, represented by

the blue area in Fig 1: mosquito population, susceptible human population, and the virus cir-

culating [6–8]. The Ae. aegypti mosquito is present all over the city of Rio de Janeiro, facilitat-

ing the establishment of a new arbovirus. Because CHIKV and DENV belong to different

families, previous immunity to DENV does not protect against CHIKV infection, and the pop-

ulation of Rio de Janeiro can be considered equally naïve to CHIKV before 2016. Therefore,

given the presence of the mosquito population and susceptible human population, the occur-

rence of local CHIKV transmission in Rio de Janeiro was conditioned by the entry of the virus.

Once the virus is circulating and established, how it will spread within the city depends on

multiple factors. As a consequence, some areas of the city will experience the epidemic at dif-

ferent times, and will also have different attack rates.

Reliable data regarding the intra-urban level of vector population, the susceptible human

population over time, and the entry time of the virus in each location are necessary to under-

stand the spatio-temporal dynamics of an epidemic. However, these data are not usually avail-

able. Alternatively, measured factors–such as temperature, socioeconomic and environmental

factors–indirectly associated with the number of chikungunya cases (represented by red

arrows in Fig 1) can be used as proxies. These factors have a direct effect (represented by black

arrows in Fig 1) on the necessary elements for an epidemic to occur (inside the blue area),

which are unmeasured. The temperature varies with time, and also present different effects on

the epidemic over time. Socioeconomic and environmental characteristics take long periods to

show important changes and can be considered fixed during the period of an epidemic.
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can be downloaded at the Rio de Janeiro Municipal

Secretariat of Heath website at http://www.rio.rj.

gov.br/web/sms/exibeConteudo?id=4769664.

Population, sociodevelopment index and land use

data from the Instituto Pereira Passos can be found

at www.data.rio. Temperature data were obtained

from the Brazilian National Institute of Meteorology

(https://tempo.inmet.gov.br/), the Brazilian

Airspace Control Department (https://www.

redemet.aer.mil.br/?i=produtos&p=consulta-de-

mensagens-opmet), the Rio de Janeiro State

Environmental Institute (http://200.20.53.25/

qualiar/home/index), the Rio de Janeiro Municipal

Environmental Secretariat (http://www.data.rio/

datasets/dados-hor%C3%A1rios-do-

monitoramento-da-qualidade-do-ar-monitorar?

orderBy=Data) and the Alerta Rio System (http://

alertario.rio.rj.gov.br/download/dados-

meteorologicos/), and can be downloaded at their

websites. However we made the co-variables

datasets available in the format used for the

statistical analysis at https://github.com/

laispfreitas/ICAR_chikungunya.
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However, the way these factors impact the number of cases can change as the epidemic pro-

gresses, i.e., with time-varying effects.

The temperature affects the Ae. aegypti population, the virus, and the mosquito-virus inter-

action [9]. Ideal temperature conditions accelerate all stages of the mosquito life cycle, increas-

ing the population in the long term. In the short term, the temperature influences the

mosquito activity as well as the length of the virus incubation period, with maximal transmis-

sion occurring around 26–29˚C [10]. Regarding the environment, the Ae. aegypti mosquitoes

are highly adapted to urban settings, and the level of urbanisation is inversely correlated with

the proportion of green areas [11]. In Rio de Janeiro city, previous studies found the Ae.
aegypti mosquito to be more abundant in urban locations compared to rural and forested

areas [12,13]. The socioeconomic status impacts the mosquito population as disorderly urbani-

sation and inadequate sanitary conditions favour the presence of the mosquito most common

reproduction site: containers filled with water found inside or in the surroundings of domiciles

[12,14]. Furthermore, high population densities favour contact between mosquitoes and

humans, increasing the chance of infection and transmission [15].

In the last decades, models that take into account the spatial dependency structure of the

cases have been applied to better estimate covariates’ association with Aedes-borne diseases

epidemics [16–19]. The application of spatial models for intra-urban settings is growing more

recently [20–23]. These model types, including intrinsic conditional autoregressive (ICAR)

models [24], are built under the assumption that adjacent areas share similar characteristics.

The inclusion of a latent spatial random effect accounts for both the spatial structure and

unmeasurable factors [25]. The inclusion of time-varying coefficients allows us to explore how

the effect of the covariates change throughout the epidemic. The temperature is usually

included in statistical models for Aedes-borne diseases in a linear fashion and with a pre-

Fig 1. A theoretical model for a chikungunya epidemic in a given region. Direct associations are represented by black arrows and indirect associations by red

arrows. The blue area includes the necessary elements for the epidemic to occur.

https://doi.org/10.1371/journal.pntd.0009537.g001
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defined lag. We propose to estimate the temperature effect in a non-linear framework using a

transfer function, including an immediate effect and a memory effect that propagates to future

times. Another advantage of using a transfer function is that the estimation of the lag of the

effect is data-driven [26].

We used this methodological approach (ICAR models with time-varying coefficients and a

transfer function) to identify how temperature, socioeconomic and environmental factors are

related to the space-time progression of an Aedes-borne disease epidemic in an intra-urban

setting. The first chikungunya epidemic in Rio de Janeiro, a large tropical city with environ-

mental and socioeconomic disparities, presents ideal conditions to this end.

Methods

Ethics statement

This study was approved by the Research Ethics Committee of Escola Nacional de Saúde

Pública Sergio Arouca (ENSP)–Fundação Oswaldo Cruz, approval number 2.879.430.

Informed consent was not required as this is a study using secondary data and the data were

analysed anonymously.

Study site

Rio de Janeiro is the second-largest city in Brazil, with 6.3 million inhabitants (2010), and its

primary tourist destination. Rio’s area is 1204 km2, with 160 neighbourhoods grouped into

four large regions (Downtown, South, North and West). These regions are subdivided in 10

health districts called programmatic areas: area 1.0 (Downtown region); areas 2.1 and 2.2

(South region); areas 3.1, 3.2, 3.3 (North region); and areas 4.0, 5.1, 5.2 and 5.3 (West region)

(Fig 2).

With three mountain massifs and 84 km of beaches, Rio has a diverse geography that is

directly associated with the history of occupation and with socioeconomic disparities [27]. The

Downtown region is the historical, commercial and financial centre of the city, with many cul-

tural establishments. The South region is the most popular tourist destination, with famous

beaches and wealthy neighbourhoods. In the North region, there are very large slums (“fave-
las”) and nearly 27% of the population, almost 2.4 million people, live in such communities

[28]. The West region has more heterogeneous characteristics among its neighbourhoods,

being the area 5.1 more densely populated, areas 5.2 and 5.3 less urbanised, and area 4.0

wealthier.

Data

Chikungunya cases. In Brazil, all suspected chikungunya cases attending a health care

facility must be notified to the Ministry of Health. This is done by a health care worker–usu-

ally, the physician–filling a form at the Notifiable Diseases Information System (Sistema de
Informação de Agravos de Notificação–SINAN).

We obtained data on chikungunya cases from SINAN via the Rio de Janeiro Municipal Sec-

retariat of Heath and are publicly available [29]. The data corresponded to notified cases of chi-

kungunya (confirmed by laboratory or clinical-epidemiological criteria) occurring in Rio de

Janeiro municipality between January and December 2016, by week and neighbourhood of the

patient’s residence.

Case definitions follow the Ministry of Health protocols. A suspected case of chikungunya

is defined as a patient with sudden fever of over 38.5˚C and severe arthralgia or arthritis not

explained by other conditions, and who either lives in endemic areas or has visited one up to
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two weeks before the onset of symptoms or has an epidemiological link with a confirmed case.

A confirmed case is a suspected case with at least one positive specific laboratory test for

CHIKV or confirmed by clinical-epidemiological criteria [30].

Socioeconomic data. To characterise the socioeconomic status, we obtained the sociode-

velopment index data by neighbourhood from the Instituto Pereira Passos [31]. This index is

based on eight indicators from the 2010 Demographic Census: 1) the percentage of domiciles

with adequate water supply; 2) the percentage of domiciles with adequate sewage; 3) the per-

centage of domiciles with garbage collection; 4) the average number of toilets per resident; 5)

the percentage of illiteracy among residents between 10 and 14 years old; 6) per capita income

of the domiciles, expressed as minimum wages; 7) the percentage of domiciles with per capita

income up to one minimum wage, and 8) the percentage of domiciles with per capita income

greater than five minimum wage. The sociodevelopment index is calculated as the arithmetic

average of the normalised indicators (each ranging from 0 to 1, being 0 the worst socioeco-

nomic condition and 1, the best) [31].

We also obtained data on the population by neighbourhood from the Instituto Pereira Pas-
sos [32].

Environment and temperature data. Land use data for the city of Rio de Janeiro were

obtained from the Instituto Pereira Passos as a shapefile [33]. We created the category “green

areas” by aggregating: agricultural areas, areas with swamps and shoals, areas with tree and

shrub cover, and areas with woody-grass cover. After that, we calculated the proportion of

green areas for each neighbourhood.

Temperature information for 2016 was obtained from 38 meteorological weather stations in Rio

de Janeiro, from five different meteorological and environmental institutes. The institutes are the

Brazilian National Institute of Meteorology [34], the Brazilian Airspace Control Department [35],

Fig 2. Rio de Janeiro city by programmatic areas and neighbourhoods, 2010, Brazil. Map created using QGIS version 3.12. Map layers by Instituto Pereira Passos

(https://www.data.rio/) and Instituto Brasileiro de Geografia e Estatı́stica (https://www.ibge.gov.br/). Map tiles by Stamen Design (http://maps.stamen.com/), under CC

BY 3.0. Data by OpenStreetMap.

https://doi.org/10.1371/journal.pntd.0009537.g002
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the Rio de Janeiro State Environmental Institute [36], the Rio de Janeiro Municipal Environmental

Secretariat [37] and the Alerta Rio System [38]. All measurements are made according to the rec-

ommendations of the World Meteorological Organization [39]. The institutes make their meteoro-

logical data publicly available, being that the frequency of measurements of the first four

organisations is hourly, while the Alerta Rio System measurements are made every 15 minutes.

From the temperature measurements, we computed the daily maximum, minimum and

mean temperature. We also evaluated the availability of daily data in terms of missing measure-

ments. The daily records that had more than 60% of missing measurements were excluded. We

decided to use the minimum temperature as in tropical climates it acts as a limiting factor for the

Ae. aegypti activity and population [40,41]. We then obtained the minimum temperature for

each week and station, and, to obtain the minimum temperature by neighbourhood, we applied

universal kriging. Briefly, kriging is a method that uses a sample of data points to estimate the

value of a given variable over a continuous space [42]. First, we interpolated the minimum tem-

perature to a grid with each unit measuring 500m x 500m. The grid with the meteorological

weather stations locations is displayed in the S1 Fig. Then we obtained the minimum temperature

of the neighbourhood by calculating the average of the minimum temperature of the grid units

whose centroids were within the boundaries of the neighbourhood.

To process and organise the environmental data, we used R version 3.6.1 [43] and packages

sf [44], geoR [45] and tidyverse [46].

Statistical analysis

We used the Stan platform [47,48] to fit spatio-temporal models, more specifically ICAR mod-

els, to a dataset consisting of neighbourhoods counts of chikungunya cases, exploring the rela-

tionship with sociodevelopment index, the proportion of green areas and minimum

temperature. Let Yi,t be the counts of chikungunya cases at neighbourhood i = 1, 2, . . .,

n = 160, and week t = 1, 2, . . ., T, where Yi,t*Poisson(μi,t). We explored different structures for

μi,t, presented in the S1 Appendix along with each Watanabe-Akaike information criterion

(WAIC) [49]. The model selected based on the WAIC has the following structure:

logðmi;tÞ ¼ logðeiÞ þ b0 þ X0ibk;t þ Ui;t þ �i

Ui;t ¼ riUi;t� 1 þ ziTemperaturei;t
ð1Þ

The latent spatial effect is represented by ϕ, which, a priori, follows a conditional autore-

gressive distribution [24]; that is, the conditional distribution of each ϕi follows a normal dis-

tribution whose mean and variance depend on the neighbourhood structure wij. Assuming a

binary neighbourhood structure, where wij = 1 if areas i and j share borders and 0 otherwise,

each ϕi follows a conditional normal distribution whose mean is equal to the average of its

neighbours, and its variance is inversely proportional to the number of neighbours di, that is:

p �ij�i�j

� �
¼ N

P
i�j�i

di
;
s2

di

� �

ð2Þ

The expected number of chikungunya cases at neighbourhood i (ei) represents the number

of cases that would have been observed if there were no differences in the incidence of cases

across time and space:

ei ¼
Pn

i¼1

PT
t¼1

Yi;tPn
i¼1

populationi
populationi

 !

=T; ð3Þ
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β0 is the intercept, X’i represents a vector of k covariates and βk,t is the coefficient of covari-

ate k in week t. We decided to allow for time-varying coefficients for the covariates to explore

if their association with the number of cases vary as the epidemic progresses. The covariates

included in the X’i vector were the sociodevelopment index and the proportion of green areas.

The proportion of green areas showed a skewed distribution. Therefore, this variable was

transformed to the cubic root. We also fitted models including the population density. How-

ever, the 90% credible interval (CI) of the population density coefficient included 0 for most

weeks, and the inclusion of this variable increased the WAIC. Therefore, the population den-

sity was not considered in the final model.

We estimated the temperature effect in a non-linear fashion using a transfer function (Ui,t),

considering that the temperature has an immediate effect (zi) and that a proportion (ρi) of this

effect propagates to future times. This proportion ρi is called the memory effect and we consid-

ered it to be any value between 0 and 1 [26]. To combine and visualise both effects of the tem-

perature, we obtained the impulse response function of the temperature for each

neighbourhood. This function expresses the effect of a 1 unit increase in the temperature of

one week propagating in time [26]. The temperature was standardised.

The models were fitted under the Bayesian framework using the Stan platform [47,48] to

run four chains of 10000 iterations each where the first 5000 were the warmup. Relatively

vague, proper prior distributions were used. We visually inspected the chains and used the R-

hat statistic to check convergence [47,50,51]. Model validation was performed by comparing

the fitted number of cases (mean and 90% CI) with the observed number of cases [49]. We

also computed the Bayesian p-values of the different models and the nonrandomized Probabil-

ity Integral Transform (PIT) [52] to investigate model adequacy (S2 Appendix). It is worth

mentioning that we also fitted models that considered the reparametrisation of the Besag-

York-Mollié (BYM2) as proposed by Riebler et al. [53]. However, the random component was

over 90% spatial, and the unstructured effect 90% CI included zero for all neighbourhoods.

For the statistical analysis, we used R version 3.6.1 [43] and packages RStan [54] and loo,

which was used to obtain the WAIC [55]. The R script and models codes in Stan are available

at https://github.com/laispfreitas/ICAR_chikungunya [56]. Maps and graphs were created

using QGIS version 3.12 [57] and ggplot2 version 3.2.0 [58].

Results

Between January and December 2016, 13,627 cases of chikungunya were notified in the city of

Rio de Janeiro, corresponding to an incidence of 21.6 cases per 10,000 inhabitants. The num-

ber of cases peaked at week 17/2016, with 1118 chikungunya cases (Fig 3A). The cumulative

number of cases by neighbourhood ranged from 0 (Grumari, area 4.0) to 721 (Realengo, area

5.1). The highest incidence was found in Catumbi (area 1.0), of 211.0 cases per 10,000 inhabi-

tants (Fig 3B).

The mean sociodevelopment index was 0.6080, ranging from 0.282 in Grumari (area

4.0) to 0.819 in Lagoa (area 2.1). Higher sociodevelopment indexes were observed in

areas 2.1 and 4.0 (Fig 4A). Fifteen neighbourhoods did not have any green areas, mostly

located in areas 1.0, 3.1, 3.2 and 3.3 (Fig 4B). Alto da Boa Vista (area 2.2) presented the

highest percentage of green areas, of 90.4%. The average minimum temperature was

19.9˚C, ranging from 10.7˚C in Campo dos Afonsos (area 5.1) to 26.1˚C in Cidade Nova

(area 1.0). Neighbourhoods in the east coastal region of Rio had higher temperatures on

average (Fig 4C). The temperature decreased in the city around week 17, starting to

increase again around week 35 (Fig 4D).
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Due to the small numbers of chikungunya cases at the beginning of 2016, we decided to

model the cases starting at week 9, when the number of cases in the city exceeded 50 for the

first time.

The posterior summary (mean and 90% CI) of the time-varying coefficients for the sociode-

velopment index and the proportion of green areas is presented in Fig 5. The

Fig 3. Notified chikungunya cases by week (A) and chikungunya cases cumulative incidence per 10,000 inhabitants by neighbourhood (B), January to December

2016, Rio de Janeiro city, Brazil. Map created using R version 3.6.1. Map layers by Instituto Pereira Passos (https://www.data.rio/).

https://doi.org/10.1371/journal.pntd.0009537.g003
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sociodevelopment index presented a strong protective effect at the beginning of the epidemic.

The sociodevelopment index effect was inversely associated with the epidemic curve: as the

number of cases increased, the protective effect decreased, remaining almost constant during

the peak of the epidemic, and increasing again once the number of cases started decreasing.

The effect of the sociodevelopment index was null during the peak of the epidemic (around

week 17). The proportion of green areas effect included 0 in the 90% CI in most of the weeks.

However, when the spatial component was not included in the model, it presented a protective

effect (S2C Fig).

The latent spatial structure has a clear trend of positive spatial effects in areas where the epi-

demic was concentrated (areas 1.0, 2.2, the mainland part of 3.1, 3.2, 3.3 and 5.1) and negative

spatial effects in less affected areas (Fig 6). The inclusion of the covariates in the final model

decreased the spatial effects in 102 of the 160 neighbourhoods compared to the model with

only the spatial effect (S3 Fig).

The posterior distributions (mean and 90% CI) of the instantaneous and memory effects of

the minimum temperature are displayed in Fig 7. For most neighbourhoods (113/160, or

70.6%) the instantaneous effect of the temperature increased the risk of chikungunya cases

(Fig 7A). The instantaneous temperature effect, however, was in general small, reaching its

maximum in Catumbi (area 1.0), where the temperature relative risk was 2.28 (90%CI 2.07–

2.53). The memory effect (Fig 7B) represents the propagation in time of the instantaneous

effect. Therefore, in neighbourhoods where the instantaneous temperature effect was null, the

memory effect is irrelevant.

Fig 4. Sociodevelopment index in 2010 (A), percentage of green areas in 2015 (B), minimum temperature (˚C) average in 2016 by neighbourhood (C) and boxplot

of the minimum temperature (˚C) by neighbourhood and week (D), Rio de Janeiro city, Brazil. Maps created using R version 3.6.1. Map layers by Instituto Pereira

Passos (https://www.data.rio/).

https://doi.org/10.1371/journal.pntd.0009537.g004

PLOS NEGLECTED TROPICAL DISEASES Spatio-temporal modelling of the first Chikungunya epidemic in an intra-urban setting

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009537 June 18, 2021 9 / 21

https://www.data.rio/
https://doi.org/10.1371/journal.pntd.0009537.g004
https://doi.org/10.1371/journal.pntd.0009537


Fig 5. Time-varying coefficients (in the log scale, mean and 90% credible interval) for sociodevelopment index (SDI) (A) and proportion of green areas (B) for a spatial

model for chikungunya cases from weeks 9 to 52 2016 and controlling for minimum temperature, Rio de Janeiro city, Brazil.

https://doi.org/10.1371/journal.pntd.0009537.g005

Fig 6. Chikungunya cases mean spatial effects (in the log scale) controlling for sociodevelopment index, proportion of green areas, and minimum

temperature, weeks 9 to 52 2016, Rio de Janeiro city, Brazil. Map created using R version 3.6.1. Map layers by Instituto Pereira Passos (https://www.data.rio/).

https://doi.org/10.1371/journal.pntd.0009537.g006
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The combined effect of the minimum temperature, represented by the impulse response

function, presented three patterns. These patterns are exemplified with nine selected neigh-

bourhoods in Fig 8: null effect (Fig 8 first row), rapid decay of the effect (second row), and

slow decay of the effect (third row). The impulse response functions for all neighbourhoods

are available in the S4 Fig.

The impulse response function is represented in time and space in Fig 9 and S1 Video. The

first map depicts the mean temperature instantaneous relative risk, the impulse. The following

maps show the propagation of the impulse on subsequent weeks. When the temperature rela-

tive risk is null (90% CI includes the 1), the neighbourhood is depicted blank. The strong

memory effect in some neighbourhoods (Fig 7B) is observed by the persistence of the tempera-

ture effect for several weeks after the impulse. However, such effect declines to values very

close to 1. These neighbourhoods were concentrated in areas 1.0, 2.2, mainland 3.1, 3.2, 3.3

and 5.1.

The mean estimated chikungunya relative risk increased rapidly in the first weeks, peaking

at week 17 and then decaying progressively (S2 Video and Fig 10). The decrease in the chikun-

gunya relative risk coincided with the decrease in the minimum temperature in the city (Fig

4D). High relative risks for chikungunya were mostly observed in areas 1.0, 2.2, 3.1, 3.2, 3.3

Fig 7. Minimum temperature instantaneous effect (in the same week) (A) and memory effect (B) on chikungunya cases (in the log scale) by neighbourhood, mean and

90% credible interval, controlling for sociodevelopment index and proportion of green areas, and the latent spatial effect, weeks 9 to 52 2016, Rio de Janeiro city, Brazil.

https://doi.org/10.1371/journal.pntd.0009537.g007
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and 5.1. The neighbourhoods of the remaining areas presented chikungunya relative risks

below 1 for almost the entire study period. The classification of the neighbourhoods in terms

of chikungunya relative risk considering the 90% CI is available in the S5 Fig.

Discussion

In this study, we estimated the associations of socioeconomic status, environment, and tem-

perature with the spatio-temporal distribution of the first chikungunya epidemic in Rio de

Janeiro city. The sociodevelopment index and the proportion of green areas were included in

Fig 8. Impulse response function of the minimum temperature effect on chikungunya cases over time, posterior mean and 90% credible interval, controlling for

sociodevelopment index and proportion of green areas, and the latent spatial effect, in selected neighbourhoods, Rio de Janeiro city, Brazil.

https://doi.org/10.1371/journal.pntd.0009537.g008
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the model with time-varying coefficients, allowing us to explore how the effects of these factors

changed throughout the epidemic. The temperature was included in the model in a non-linear

fashion using a transfer function, considering that the temperature has an immediate effect

and that a proportion of this effect propagates to future times. To the best of our knowledge,

this is the first time a transfer function is applied for temperature when modelling Aedes-
borne diseases.

The sociodevelopment index was inversely associated with the risk of chikungunya in all

models (Figs 5A and S2A and S2B). In fact, the sociodevelopment index presented the stron-

gest effect in the models, which strengthens the hypothesis of chikungunya being a disease of

social determination. This index is composed of sanitary conditions indicators, among others,

and poor sanitary conditions are known to favour the reproduction of the Ae. aegypti mosqui-

toes. The association of low socioeconomic locations with increased risk of chikungunya was

also found in a study in French Guiana [59] and a study in Barraquilla, a Colombian city [22].

Our results indicate that poor neighbourhoods were affected first and hardest by the chikungu-

nya epidemic, highlighting the importance of vector control activities in socioeconomically

vulnerable locations.

When the spatial dependency was not included in the model, the proportion of green areas

was negatively associated with the number of chikungunya cases (S2C Fig). Such association

Fig 9. Minimum temperature instantaneous effect on chikungunya cases and its propagation in time by neighbourhood in selected weeks, controlling for

sociodevelopment index and green areas proportion, and the latent spatial effect, Rio de Janeiro city, Brazil. Maps created using R version 3.6.1. Map layers by

Instituto Pereira Passos (https://www.data.rio/).

https://doi.org/10.1371/journal.pntd.0009537.g009
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was observed for dengue in São Paulo, where low vegetation cover areas presented higher den-

gue incidence rates [23]. However, with the inclusion of the spatial component, the effect of

the proportion of green areas moved towards the null. This is possible due to spatial confound-

ing, which happens when covariates that are spatially smooth are collinear with spatial random

effects [60]. In Rio de Janeiro, the majority of the green areas are in the mountain massifs

(Fig 2), which trespasses different neighbouring borders.

The temperature was associated with an increase in the risk of chikungunya in most neigh-

bourhoods. In our models, we assumed that the temperature presents an effect that is a combi-

nation of an instantaneous effect and of a proportion of this that propagates in time (the

memory effect). Although the instantaneous association is relatively low across the different

neighbourhoods, it can persist for a long period of time for some of the districts. This was only

possible because we allowed the parameters present in the transfer function to change across

neighbourhoods. Different areas experiencing heterogeneous temperature effects for Aedes-
borne diseases were also observed in previous studies [61,62]. The inclusion of space-varying

coefficients for the temperature improved the fitting of our models.

The instantaneous association represents the effect of the temperature on the activity of the

mosquito, human behaviour and the mosquito-virus interaction. The biting rate of the Ae.

Fig 10. Posterior mean chikungunya relative risk by neighbourhood in selected weeks, controlling for sociodevelopment index, proportion of green areas, and

minimum temperature, and the latent spatial effect, Rio de Janeiro city, Brazil. Maps created using R version 3.6.1. Map layers by Instituto Pereira Passos (https://

www.data.rio/).

https://doi.org/10.1371/journal.pntd.0009537.g010
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aegypti increases with the temperature until around 35˚C [10], and people become more

exposed to mosquitoes in warm temperatures. The temperature also accelerates the virus

extrinsic incubation period in the mosquito, and transmission was estimated to peak around

28.5˚C [10]. On the other hand, the temperature affects the population of mosquitoes by

increasing fecundity, egg-to-adult survival, development rate and lifespan [10]. This effect is

not only on the same week but also accumulates in time, which is captured by the memory

effect.

Interestingly, the CHIKV epidemic in Rio de Janeiro in 2016 did not reach the whole city,

with high-risk areas mostly concentrated in the North and Downtown regions. The decrease

in the number of cases coincided with the drop in the minimum temperature, around week 17

(Figs 3A and 4D). These two observations combined suggest that the epidemic was interrupted

not because of susceptible human population depletion in the city, but because the drop in

temperature caused a reduction in the transmission in such a way that the epidemic was not

sustained. It is important to note that although the number of cases diminished substantially,

there were still chikungunya cases being reported until the end of the year. Rio de Janeiro is a

tropical city, and the minimum temperature rarely is below the minimum temperature needed

for transmission to occur, of 13.5˚C [10]. A previous study conducted in the city showed that

the Ae. aegypti population varies seasonally, but the mosquito is endemic all over the year [63].

This could explain the long persistence of the temperature effect in time in some neighbour-

hoods (Fig 9 and S1 Video).

The application of spatial models considering intra-urban scenarios is still growing for

Aedes-borne diseases. Our study identified high-risk neighbourhoods for the first chikungunya

epidemic in Rio de Janeiro city, which concentrated mostly in the North and Downtown

regions (Fig 10 and S2 Video). Such regions were already identified as high-risk locations for

dengue [64]. In our previous study, neighbourhoods from these regions were more likely to

constitute simultaneous clusters for dengue, Zika and chikungunya [65]. These regions have a

combination of factors that favours the Ae. aegypti’s ecology and transmission of diseases: low

vegetation, low socioeconomic status and increased temperature (Fig 4). Vector control activi-

ties should be prioritised and intensified in the identified high-risk areas, as they also appear to

be the first ones affected by the epidemic. Additionally, the long persistence of the temperature

effect (Fig 9 and S1 Video) and a small number of cases even after the decline of the epidemic,

indicate that the mosquito continues to circulate and transmit the disease throughout the year.

Therefore, interventions must be designed to be continuous and to work in the long term in

these locations.

Our study has some limitations. As for any study using passive surveillance data on Aedes-
borne diseases, there is an uncertainty on the diagnosis of the reported cases as well as under-

reporting. Because the data are generated from suspected cases attending health care facilities,

asymptomatic and mild cases who do not seek medical assistance are usually not detected.

However, SINAN has been implemented for decades, representing an important and robust

data source for the study of Aedes-borne diseases in Brazil [66]. It should be noted that, in the

same year, the city of Rio de Janeiro was also experiencing dengue and Zika epidemics [65].

Because of the association between Zika and severe congenital manifestations, the disease

awareness around Zika may have improved the search for medical care and the reporting rates

[67]. On the other hand, the simultaneous occurrence of three arbovirus epidemics may have

impaired the differential diagnosis, as they cause similar symptoms. Another limitation is the

spatial unit. We analysed the data aggregated at the neighbourhood level. Although the data

are more reliable at this spatial unit, smaller areas inside the same neighbourhood can present

different socioeconomic and environmental characteristics. Finer scales such as census tracts

should be considered in future studies. Finally, an important limitation is the assumption that
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the chikungunya risk is related to the neighbourhood of residence, while some people may get

infected in other locations. This is an unavoidable limitation when using surveillance data. It is

not a trivial task to identify where the person was infected when dealing with Aedes-borne dis-

eases. Entomological surveillance research and human population mobility data could be

explored in future studies and potentially bring insight on where the most common places of

transmission are.

The model here presented has the potential to be applied to other cities and other urban

Aedes-borne diseases. Mosquito population information is expensive to collect and often unre-

liable. Therefore not depending on such data is a strength of our model. Another strength is

the application of a transfer function to estimate the non-linear effect of the temperature and

its duration. By using temperature, socioeconomic status and proportion of green areas data as

proxies of the key elements of CHIKV transmission, our model contributed to the better

understanding of the spatio-temporal dynamics associated with first chikungunya epidemic in

a tropical metropolitan city. Importantly, our results indicate that even considering the envi-

ronment and the temperature, the socioeconomic status plays a major role in affecting the

incidence and distribution of a first Aedes-borne disease epidemic in a large city. This strength-

ens the importance of improving sanitary conditions and taking measures to diminish social

inequality as necessary actions to control and prevent Aedes-borne diseases.

Supporting information

S1 Fig. Meteorological weather stations (red dots) in the 500m X 500m grid and neigh-

bourhoods, Rio de Janeiro city, Brazil. Maps created using R version 3.6.1. Map layers by

Instituto Pereira Passos (https://www.data.rio/).

(PNG)

S2 Fig. Time-varying coefficients (in the log scale, mean and 90% credible interval) for socio-

development index (SDI) (A,B) and proportion of green areas (C,D) without (model 1) and

with (model 2) spatial dependency, for chikungunya cases from weeks 9 to 52 2016, Rio de

Janeiro city, Brazil.

(PNG)

S3 Fig. Correlation between the spatial effects (in the log scale) of Model 0 versus Model 4,

by neighbourhood, weeks 9 to 52 2016, Rio de Janeiro city, Brazil.

(PNG)

S4 Fig. Impulse response of the minimum temperature, posterior mean and 90% credible

interval, by neighbourhood, Rio de Janeiro city, Brazil.

(PDF)

S5 Fig. Classification of the chikungunya relative risk by neighbourhood in selected weeks

based on the 90% credible interval (controlling for sociodevelopment index, proportion of

green areas and minimum temperature, and the latent spatial effect), Rio de Janeiro city,

Brazil. Risk: 90%CI >1. Protection: 90%CI <1. None: 90%CI includes 1. Maps created using

R version 3.6.1. Map layers by Instituto Pereira Passos (https://www.data.rio/).

(PNG)

S1 Video. Minimum temperature instantaneous effect on chikungunya cases and its propa-

gation in time by neighbourhood, controlling for sociodevelopment index and proportion

of green areas, and the latent spatial effect, Rio de Janeiro city, Brazil. Maps created using R

version 3.6.1. Map layers by Instituto Pereira Passos (https://www.data.rio/).

(MP4)

PLOS NEGLECTED TROPICAL DISEASES Spatio-temporal modelling of the first Chikungunya epidemic in an intra-urban setting

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009537 June 18, 2021 16 / 21

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009537.s001
https://www.data.rio/
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009537.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009537.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009537.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009537.s005
https://www.data.rio/
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009537.s006
https://www.data.rio/
https://doi.org/10.1371/journal.pntd.0009537


S2 Video. Posterior chikungunya relative risk by neighbourhood, controlling for sociode-

velopment index, proportion of green areas and minimum temperature, and the latent

spatial effect, weeks 9 to 52 2016, Rio de Janeiro city, Brazil. Maps created using R version

3.6.1. Map layers by Instituto Pereira Passos (https://www.data.rio/).

(MP4)

S1 Appendix. Models structures explored to estimate μi,t and each Watanabe-Akaike

information criterion (WAIC).

(PDF)

S2 Appendix. Model checking.

(PDF)

Acknowledgments

The authors would like to thank the Municipal Secretariat of Health for providing the data on

reported cases, and the meteorological and environmental institutes (INMET, DECEA, INEA,

SMAC and Alerta Rio), for making their meteorological data publicly available.

Author Contributions

Conceptualization: Laı́s Picinini Freitas, Alexandra M. Schmidt, Oswaldo Gonçalves Cruz,
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12. Honório NA, Castro MG, Barros FSM de, Magalhães M de AFM, Sabroza PC. The spatial distribution of

Aedes aegypti and Aedes albopictus in a transition zone, Rio de Janeiro, Brazil. Cadernos de Saúde
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Regiões de Planejamento (RP), Regiões Administrativas (RA), Bairros e Favelas do Municı́pio do Rio

de Janeiro—2010. In: Data Rio [Internet]. 29 May 2019 [cited 10 Sep 2019]. Available: http://www.data.

rio/datasets/fa85ddc76a524380ad7fc60e3006ee97

32. Prefeitura do Rio de Janeiro. População residente, por idade e por grupos de idade, segundo as Áreas
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