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Gliomas are primary brain tumors, originating from the glial cells in the brain. In contrast to the more traditional
view of glioma as a localized disease, it is becoming clear that global brain functioning is impacted, evenwith re-
spect to functional communication between brain regions remote from the tumor itself. However, a thorough in-
vestigation of glioma-related functional connectomic profiles is lacking. Therefore, we constructed functional
brain networks using functional MR scans of 71 glioma patients and 19 matched healthy controls using the au-
tomated anatomical labelling (AAL) atlas and interregional Pearson correlation coefficients. The frequency distri-
butions across connectivity values were calculated to depict overall connectomic profiles and quantitative
features of these distributions (full-width half maximum (FWHM), peak position, peak height) were calculated.
Next, we investigated the spatial distribution of the connectomic profile. We defined hub locations based on the
literature and determined connectivity (1) between hubs, (2) between hubs and non-hubs, and (3) between
non-hubs. Results show that patients had broader and flatter connectivity distributions compared to controls.
Spatially, glioma patients particularly showed increased connectivity between non-hubs and hubs. Furthermore,
connectivity distributions and hub-non-hub connectivity differed within the patient group according to tumor
grade, while relating to Karnofsky performance status and progression-free survival. In conclusion, newly diag-
nosed glioma patients have globally altered functional connectomic profiles, whichmainly affect hub connectiv-
ity and relate to clinical phenotypes. These findings underscore the promise of using connectomics as a future
biomarker in this patient population.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gliomas are the most frequently occurring type of primary brain tu-
mors, originating from the glial cells supporting neurons. They can be
subdivided according tomolecular features, in addition to the common-
ly used histopathological techniques according to theWorld Health Or-
ganization (WHO) grading system,which classifies them into grades I to
IV (Kleihues et al., 2002; Louis et al., 2016). The median overall survival
(OS) ranges from seven years in grade II glioma to only fourteenmonths
in grade IV glioma, also termed glioblastoma multiforme (GBM) (Olson
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et al., 2000; Pignatti et al., 2002; Stupp et al., 2005). Furthermore, OS and
progression-free survival (PFS) also depend on age and performance
status (Buckner, 2003; Lote et al., 1997).

Glioma has traditionally been viewed as a focal disease. However, it
has become increasingly clear that gliomas lead to widespread alter-
ations in functional connectivity, i.e. synchronized activity between
brain regions (Aertsen et al., 1989). In glioma patients, a number of
studies have used magnetoencephalography (MEG) to investigate
whole-brain connectivity patterns. Patients show widespread alter-
ations in functional connectivity; compared to healthy controls, they
display higher local connectivity in the lower frequency range and the
opposite in the higher frequency range. Global integration is also altered
in glioma patients, depending on frequency range and tumor grade
(Bartolomei et al., 2006a, 2006b, Bosma et al., 2009, 2008a; Douw et
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al., 2010; van Dellen et al., 2012). Moreover, these general network dis-
turbances relate to the symptoms thatmost patients experience, such as
cognitive deficits and epileptic seizures (Derks et al., 2014). Yet, our un-
derstanding of the spatial properties of these network disturbances is
limited.

Furthermore, the association between connectomic profiles and
clinical phenotypes is largely unknown. Connectivity disturbance relate
to cognitive functioning (Derks et al., 2014), but the direction of associ-
ation and specificity of connectomic features is still ambiguous. There is
also some evidence that low-grade (i.e. grade II) and high-grade (i.e.
grade III and IV) glioma patients show distinct connectivity distur-
bances (Harris et al., 2014; van Dellen et al., 2012; Zhang et al., 2016),
but these investigations concern small cohorts and/or limited investiga-
tion of connectomic profiles.

An important next step in research on the interaction between glio-
ma and the functional connectome is the rigorous investigation of so-
called hub nodes. Functional brain pathology may occur and spread
through the brain according to network-related mechanisms, particu-
larly making use of ‘hubs’ (Aerts et al., 2016; Crossley et al., 2014).
Hubs are generally characterized by high information throughput,
reflected in the brain by high connectivity or centrality of the region.
They are therefore crucial for brain functioning and are intensely used
in the healthy brain (Buckner et al., 2009; Crossley et al., 2013; Power
et al., 2013). Hypothetically, when (localized) neurological disease oc-
curs, such as glioma, hub regions will eventually be implicated, because
all (shortest) routes of communication lead through these areas. In
Alzheimer's disease, hub-mediated network failure and its phases has
been investigated nicely with computational modeling (de Haan et al.,
2012) and in experiments using resting-state functional MRI (fMRI)
(Jones et al., 2015) showing a prominent role for hubs in network de-
generation. We have previously computationally modeled neurophysi-
ological effects of glioma (van Dellen et al., 2013b), suggesting that hubs
indeed have a special role in disease processes, but experimental evi-
dence is lacking.

There is some relevant literature guiding our in-depth analysis of
connectomic (hub) profiles in glioma. Several studies using (resting-
state) fMRI have specifically focused on subnetworks of the brain, par-
ticularly the default mode network (DMN). The DMN, which encom-
passes the posterior cingulate cortex (PCC), precuneus, medial
prefrontal and lateral parietal regions ismost active and connected dur-
ing rest, but also plays a major role in distribution of information pro-
cessing during active tasks (Anticevic et al., 2012; Buckner and
Vincent, 2007; Raichle et al., 2001). In glioma, the DMN seems to
show either reduced or increased connectivity strength depending on
the specific study, which may or may not correlate with clinical status
and/or tumor grade (Esposito et al., 2012; Ghumman et al., 2016;
Harris et al., 2014; Tuovinen et al., 2016; Xu et al., 2013; Zhang et al.,
2016). However, these studies did not assess the fundamental alter-
ations in patients' full connectomic profiles at diagnosis. Moreover,
hub functioning within the context of whole brain connectivity has
not been explored yet.

We therefore investigated whole-brain functional connectomic pro-
files as well as the spatial distribution by investigating hub versus non-
hub related connectivity in glioma patients. We expected to find overall
shifts in connectomic profiles. Spatially, we expected hub-mediated
connectivity alterations in patients. Furthermore, we hypothesized
that these disturbances relate to distinct clinical phenotypes.

2. Materials and methods

2.1. Participants

All newly diagnosed glioma patients undergoing preoperative lan-
guage fMRI at the VUmc CCA Brain Tumor Center Amsterdam between
2006 and July 2015 were eligible for participation. Inclusion criteria
were (1) histologically confirmed glioma WHO grade II-IV (grade I
was excluded, since these represent mostly non-growing, indolent
types of glioma), (2) language fMRI, and (3) structural 3D MRI neces-
sary for co-registration. Exclusion criteria were (1) previous cranioto-
my, (2) previous chemo- or radiotherapy, and (3) neurological or
psychiatric comorbidity, such as cerebrovascular accidents. Karnofsky
Performance Status (KPS) is a widely used clinical measure of daily
functional impairment in brain tumor patients, ranging from 100 (no
symptoms) to 0 (death) (Karnofsky et al., 1948). KPS is measured in
steps of 10 units, e.g. the second best score is 90 and not 99. In this
study, KPS was summarized categorically as either 90–100 or 70–80
(none of the patients had a KPS lower than 70), with the latter indicat-
ing a poorer clinical phenotype. Overall survival (OS)was defined as the
number of months between the date of diagnosis and date of death,
while progression-free survival (PFS) related to the number of months
between date of diagnosis and date of clinical and/or radiological pro-
gression as determined by the multidisciplinary tumor board of the
VUmc CCA Brain Tumor Center Amsterdam. Patients who had not died
at analysis in August 2016 were censored as of the last contact date
with their treating neuro-oncologist. Furthermore, age and gender
matched healthy controls were used for comparison (Hulst et al., 2012).

The VUmc Medical Ethics Committee approved the study and all
subjects provided written informed consent.

2.2. MRI acquisition

Imaging was performed on a 1.5TMR scanner (Siemens Sonata), in-
cluding an anatomical 3DT1-weightedMPRAGE scan (sequence param-
eters: TR = 2700 ms, TE = 5.2 ms, TI = 950 ms, 1 mm isotropic
resolution, 176 slices). Furthermore, a 3D fluid-attenuated inversion re-
covery (FLAIR) scan was performed in glioma patients to facilitate
tumor masking (TR = 6500 ms, TE = 384 ms, TI = 2200 ms, 1.3 mm
isotropic resolution, 160 slices).

In patients, fMRI was performed using a standard echo-planar imag-
ing (EPI) sequence (TR = 2850 ms, TE = 60 ms, 144 volumes, 3.3 mm
isotropic resolution, 2 runs of 7 min). The fMRI scan consisted of a lan-
guage task in which 9 volumes word generation were alternated with
9 volumes rest (imagery of a landscape). No task participation data
was available, however, results of this fMRI scan held valuable clinical
information and patient were therefore very willing to cooperate.

In controls, EPI was performed during an episodicmemory encoding
task (Hulst et al., 2012; Van Der Werf et al., 2009), while scanning pa-
rameters were comparable to the fMRI collected in patients (TR =
2220 ms, TE = 60 ms, 204 volumes, 3.3 mm isotropic resolution,
~7.7 min acquisition). Since this task was different from patients, we
also analysed resting-state fMRI data of the same healthy controls,
with identical scanning parameters to the patient data (TR =
2850 ms, TE = 60 ms, 190 volumes, 3.3 mm isotropic resolution,
~9 min acquisition) (Hulst et al., 2015). It would have been preferable
to use the same task in patients and controls, or use resting-state fMRI
in both, but these data were not available due to the retrospective na-
ture of the fMRI analyses in the glioma patients. However, previous
studies have shown that functional connectivity patterns highly corre-
late across task states (correlation coefficient between 0.7 and 0.8),
supporting the use of these data (Krienen et al., 2014).

2.3. MRI analysis

The imaging processing steps were performed using FSL 5 (FMRIB's
software library, http://www.fmrib.ox.ac.uk/fsl). First, non-brain tissue
was removed from the 3D T1-weighted images using the Brain Extrac-
tion Tool (Smith, 2002), and grey and white matter segmentation was
performed using FAST (Zhang et al., 2001). To construct each
individual's functional brain network, the Automated Anatomical Label-
ing (AAL) atlas was used to define 78 cortical regions in each subject
(Tzourio-Mazoyer et al., 2002). This atlas was warped from standard
space to native space, and masked with each subject's native grey
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matter mask. In addition to the AAL atlas, 264 regionswere defined and
the data was analysed in parallel (Power et al., 2011). Furthermore,
tumor masks were created manually for each patient, by drawing the
tumor on 3D anatomical images slice by slice [LD]. Both contrast en-
hanced T1-weighted (mainly for high-grade glioma) and FLAIR (mainly
for low-grade glioma) images were used to determine which voxels
contained tumor. Consequently, AAL regionswere excluded on a subject
level if fully covered by the tumor mask, since tumor tissue may theo-
retically alter the BOLD response locally, thereby confounding our net-
work analysis. We therefore excluded these regions from our analysis
and used the number of regions overlapping the tumor as a covariate
in our analyses. Furthermore, to control for the extent to which the
tumor influenced the hub regions, we calculated the number of hub re-
gions that contained tumor and controlled for this variable in our anal-
yses of hub connectivity. In order to exclude partial voluming effects,we
calculated this overlap in twoways: (1) by defining overlap as any over-
lap between the tumor and the AAL hub areas, and (2) by defining over-
lap if the tumor spread across N50% of all voxels within the AAL hub
area.

2.4. fMRI analysis

Preprocessing of the fMRI data was performed using standard FSL
procedures (Smith et al., 2004) included in Melodic (Beckmann et al.,
2005),which includeddiscarding thefirst 5 volumes,motion correction,
spatial smoothing (6mm full width at half maximum Gaussian kernel),
and high-pass filtering (100 s cut-off). Following these steps, the func-
tional images were co-registered to the anatomical scans using linear
and non-linear co-registration methods (Jenkinson et al., 2002).

Subsequently, only regionswith at least 30% of the voxels remaining
after registration were included in the analyses using a custom-made
fMRI mask based on healthy controls. This custom-mademask was cre-
ated in order to remove any residual non-brain tissue and to reduce the
effect of EPI-distortions, by excluding voxels with signal intensities in
the lowest quartile of the robust range. Based on these criteria, ten re-
gionswith low signal-to-noise ratioswere excluded,mainly in the bilat-
eral orbitofrontal areas. The final atlas therefore segmented the fMRI
sequence into 68 grey matter regions for which mean time-series
were obtained.

To ascertain that our connectivity results would not be due to mo-
tion during fMRI (Van Dijk et al., 2010), we applied strict exclusion
criteria for motion: (1) average relative motion ≥4 mm, and (2) more
than five frame-to-framemovements ≥5mm. Furthermore, average rel-
ative motion was calculated per subject to test group differences there-
in. In order to exclude a confounding effect of frame-to-frame
movement on our connectivity analyses we also analysed our patient
data after scrubbing time points with N0.5 mm frame-to-frame dis-
placements. We replicated our main significant results with this meth-
od. All connectivity and hub analyses were performed using in-house
scripts and the Brain Connectivity Toolbox (Rubinov and Sporns,
2010) in Matlab R2012a (Mathworks, Natick, MA, US). A 68 × 68 con-
nectivitymatrix per subject was first created by calculating Pearson cor-
relation coefficients between time series from all 68 regions. The
absolute values were then used as a weighted indication of connectivity
between all region pairs.

2.5. Connectomic profiles

In order to visualize differences in connectomic profiles, we first cre-
ated two vectors. Each contained every connectivity value from all ma-
trices in all subjects per group, yielding a patient vector and a control
vector of connectivity. Differences between these group-level distribu-
tions were tested using Kolmogorov-Smirnov tests for two samples.

Next, we created distribution functions per subject, using the kernel
smoothing density function in Matlab. This algorithm does not assume
any distribution, but creates equally spaced bins (n = 100) and
smoothed frequencies of occurrence according to subjects' individual
connectivity values. The advantage of this approach is that no assump-
tion is made regarding to distribution of the values, while being maxi-
mally sensitive to between-subject differences in the shape of the
underlying distribution, but not the absolute connectivity values.

To further characterize these individual distributions we calculated
several measures. First, we calculated full-width half maximum
(FWHM), which is the width of the curve measured between those
counts that are half the maximum. In other words, FWHM measures
thewidth of the distribution relative to its peak. Higher FWHMindicates
a flatter distribution, meaning less variance in the connectivity values
on whole brain level. Furthermore, the peak height (i.e. maximum of
connectivity occurrences) and peak position (i.e. connectivity value oc-
curring most frequently) were calculated.

2.6. Spatial distribution of the connectomic profile

To investigate the spatial distribution of the connectomic profile we
focused on the connectivity between hub regions and non-hub regions.
To avoid possible distortion of hubs and/or their locations due to the
presence of the tumor in our patient population, we chose to adhere
to previously published definitions of hub areas in the brain. The DMN
has been amply shown to mainly contain hub areas, using for instance
measures of (degree and betweenness) centrality (Buckner et al.,
2009; van den Heuvel and Hulshoff Pol, 2010). Other recent studies
have also indicated the frontoparietal network (FPN) regions to be
hubs, based on their extent of connectivity with other subnetworks in
the brain (Cole et al., 2013; Power et al., 2013). Therefore, hubswere de-
fined as regions belonging to the DMNor FPNwith selection of these re-
gions from the AAL atlas based on previous work (Tewarie et al., 2013;
van Dellen et al., 2013a).

Then, in order to specifically test our hypothesis concerning the spa-
tial distribution of the connectomic profile, we calculated connectivity
between hubs, between hubs and non-hubs, and between non-hubs
(Fig. 1). All measures were individually normalized for mean intra-indi-
vidual functional connectivity, since previous work has shown globally
altered connectivity in these patients (Bartolomei et al., 2006b; Bosma
et al., 2008a, 2008b), and we were specifically interested in the altered
topology of hub connectivity. However, this normalization approach
may induce overestimation of differences in hub-hub connectivity,
since a larger number of regions is a non-hub. We therefore also tested
non-normalized values of hub connectivity.

2.7. Second cohort

To attempt to scope the generalizability of our results, a second co-
hort of glioma patients and healthy controls obtained from a different
medical centerwere used. Datawere kindly provided byDr.M. Raemae-
kers, Dept. Neurology and Neurosurgery, Brain Center Rudolf Magnus,
University Medical Center Utrecht. All images were obtained with a
whole body 3.0 Tesla (3T) Philips Achieva MRI scanner (Philips Medical
Systems, Best, The Netherlands). The participant's head was held in
place with padding. Heartbeat was recorded using a pulse-oximeter
placed on the left index finger. Respiration was measured with a pneu-
matic belt positioned at the level of the abdomen (Birn et al., 2006).

First, a T1-weighted structural image of the whole brain in sagittal
orientation was acquired for anatomical reference (3D FFE pulse se-
quence; acquisition parameters: TR 8.4 ms, TE 3.8 ms; FOV
288 × 288 × 175 mm; voxel size 1 mm isotropic; SENSE p-reduction/
s-reduction 2/1.3; flip-angle 8°; 175 slices; scan duration 265.8 s). For
functional scans, 3D-PRESTO (Neggers et al., 2008) was used covering
the whole brain with the following parameters: TR 22.5 ms; effective
TE 32.4ms; FOV256× 224× 160mm, voxel size 4mm isotropic;matrix
64 × 56× 40; SENSE p-reduction/s-reduction, 1.8/2; flip-angle 10°; scan
duration 0.6075 s (for the whole volume). 400 functional images were
acquired in sagittal orientation with a foot-head frequency encoding



Fig. 1. Visualization of the analysis pipeline. (A) depicts an exemplar patient MR image in the top row (coronal, axial and sagittal views), with the second row containing the lesion mask
and the third row indicating the automated anatomical labelling (AAL) atlas regions in native space. In (B), the hub regions, i.e. those areas belonging to the default mode network (DMN,
blue) and the frontoparietal network (FPN, red), are displayed on a surface plot. Grey areas are non-hub regions. (C) depicts our first main outcome parameter, namely frequency
distribution. This is a smoothed curve depicting connection strength distribution for a single subject, based on the binning of each element in the adjacency matrix. In (D), the second
set of outcome parameters is indicated. The connections between hubs (red), between hubs and non-hubs (blue), and between non-hubs (green) were used to obtain three averages
in each subject. Hubs are displayed as larger circles while non-hub regions are represented by the smaller circles.
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direction. Finally, a PRESTO scan with the same field of view and scan
parameters, but with a flip-angle of 27° (called FA27), was acquired in
0.72 s and used in the image coregistration routine (see Section 2.7).

The functional images of the second cohort were first realigned and
resliced to the Fa27 of the first scanning session using SPM5 (http://
www.fil.ion.ucl.ac.uk/spm/). Then, custom Matlab scripts were used
(Aztec, http://www.ni-utrecht.nl/downloads/aztec) for correction of
cardio-respiratory artefacts. The correction method used has been de-
scribed in detail previously (van Buuren et al., 2009). After these correc-
tions, the functional images were high-pass filtered (Gaussian-
weighted least squares straight-line fitting, with sigma = 50 s) in FSL,
version 5.92 (http://www.fmrib.ox.ac.uk/fsl/) (Smith et al., 2004). Final-
ly, the functional images were skull stripped (Smith, 2002) and normal-
ized by a single scaling factor (grand mean scaling) in FSL. No spatial
smoothing was performed on these functional images.

2.8. Statistical analysis

For the statistical analysis, customized scripts in Matlab R2012a
(Mathworks, Natick, MA, US) and SPSS 22.0 (IBM Corp, Armonk, NY,
US) were employed. Basic differences between patients and healthy
controls were investigated using Student's t-tests for independent sam-
ples in variables showing a normal distribution (age, average motion),
Mann-Whitney U tests for variables not following a normal distribution
(number of frame-to-frame movements ≥5 mm), and an exact chi-
square test for the categorical variable gender. The same tests were
used to investigate differences regarding these characteristics between
patients based on WHO grade of their glioma, in addition to additional
Mann-Whitney U tests for patient-specific non-normally distributed
variables (tumor volume, overlap of tumor with hub regions) and chi-
square tests for categorical variables (presence of epilepsy, KPS, his-
topathological type of glioma, and dexamethasone use). To further
explore characteristics of our patient cohort, Cox proportional
hazards regression analyses were used to investigate OS and PFS in
relation to tumor grade, while controlling for KPS, age, and tumor
volume.

Connectivity profiles of gliomapatients versus healthy controlswere
first compared using two-sample Kolmogorov-Smirnov tests, which
tests the null hypothesis that the summed connectivity profile per
group follow the same distribution. We then proceeded to test group
differences in the individual quantitative connectivity profile measures
(i.e. FWHM, peak position, peak height, hub connectivity, hub-non-hub
connectivity, non-hub connectivity) usingANOVAswith age and gender
as covariates. Bonferroni correction for multiple comparisons was used
on these six tests. Tests of normality showed that three of these mea-
sures (FWHM, peak height, and hub-hub connectivity) were not
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Table 1
Subject characteristics.

Variable Controls
(n = 19)

All patients
(n = 71)

WHO grade II patients
(n = 41)

WHO grade III patients
(n = 17)

WHO grade IV patients
(n = 13)

Age in years (SD) 43.7 (8.7) 43.8 (11.2) 42.5 (9.5) 42.6 (12.6) 49.5 (13.4)
Number of males (females) 8 (11) 46 (25) 23 (18) 12 (5) 11 (2)
Number of patients with KPS 90–100 (KPS 70–80)⁎ NA 30 (41) 21 (20) 8 (9) 1 (12)
Mean motion (SD) 0.081 (0.039) 0.089 (0.039) 0.082 (0.037) 0.092 (0.029) 0.110 (0.052)
Median number of movements N5 mm (range) 0 (0–3) 0 (0–5) 0 (0–5) 0 (0–5) 1 (0–5)
Number of patients with 0/1/N2 missing regions NA 44/18/9 30/8/3 10/4/3 4/6/3
Median hub overlap strict/proportional (range)⁎ NA 3/2 (0–9/0–6) 2/2 (0–8/0–6) 4/3 (0–9/0–6) 2/2 (0–5/0–5)
Mean tumor volume in cm3 (SD) NA 685 (545) 542 (488) 860 (536) 909 (574)
Number of patients with A/O/OA/GBM NA 26/21/11/13 19/13/9/0 7/8/2/0 0/0/0/13
Number of patients with LOH/no LOH/unknown NA 14/4/53 4/1/36 10/3/4 0/0/13
Number of patients with left (right) tumor lateralization NA 40 (31) 23 (18) 9 (8) 8 (5)
Median OS in months (number of censored patients) NA 30 (50) 48 (33) 38 (14) 16 (3)
Median PFS in months (number of censored patients) NA 19.5 (25) 23 (14) 51 (10) 7.5 (1)
Number of patients with epilepsy (without) NA 53 (18) 31 (10) 12 (5) 10 (3)
Number of patients on DEX/not on DEX/unknown NA 6/63/2 0/39/2 1/16/0 5/8/0

⁎ Indicates p b 0.05 difference between tumor grades. WHO=World Health Organization; SD= standard deviation; KPS= Karnofsky performance status; NA= not applicable; A =
astrocytoma; O = oligodendroglioma; OA = oligoastrocytoma; GBM = glioblastoma multiforme; LOH = loss of heterozygosity; OS = overall survival; PFS progression free survival;
DEX = dexamethasone.
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normally distributed (Kolmogorov-Smirnof test for normality p b 0.05).
However, ANOVAs are relatively robust to violations of normality in
larger datasets (Lumley et al., 2002), while non-parametric tests do
not allow for the important corrections for covariates we performed.
However, we replicated all main findings using non-parametric tests,
to ascertain the validity of our results. To confirm that abovementioned
group differences between patients and controls would not be due to
the assumption of normality, Mann-Whitney U tests were employed
in case of significant ANOVA results.

In order to investigate differences between patients in connectivity
profiles depending on tumor grade, general linear modeling took
place, using each connectivity measure as the dependent variable,
tumor grade as the categorical predictor, and age, tumor volume, KPS,
tumor lateralization, and presence of epilepsy as covariates. For the
analyses of FWHM and peak characteristics, we controlled for the num-
ber of missing regions due to tumor location, while we corrected for
tumor overlapwith hubs in the hub connectivity analyses. In case of sig-
nificance, post-hoc testing took place (with Bonferroni correction for
multiple comparisons). Again, non-parametricU testswere used to con-
firm our main findings.

Cox regression analyses were again employed to investigate the rel-
evance of connectivity profiles for OS and PFS. Unfortunately, no non-
parametric tests are available for this type of analysis.

A p-value lower than 0.05 (two-tailed) after correction for multiple
tests was considered statistically significant. For all main analyses, rele-
vant estimators of effect size are reported.
Fig. 2. Kaplan-Meier survival plots of glioma patients depending onWHO tumor grade. In (A), o
corrected for Karnofsky performance status (KPS) and tumor volume). (B) Shows progression-
3. Results

3.1. Subject characteristics

In total, 120 glioma patients were screened for inclusion, but 8 pa-
tients were excluded because of neurological comorbidities. Another
41 patients had to be excluded because of poor quality fMRI (n = 30)
or extensive motion during functional scans (n = 11). Patient charac-
teristics of the final sample (n = 71) can be found in Table 1.

In addition, 19 healthy control subjects were included (see Table 1),
after exclusion of 3 subjects with extensive motion during functional
scans. Healthy controls did not differ from patients in terms of age
(t(88) = 0.584, p = 0.561), gender (χ2 = 3.213, p = 0.112), average
motion (t(88) = −0.801, p = 0.425), or the number of frame-to-
frame movements ≥5 mm (Mann-Whitney U = 716.5, p = 0.517).

When comparing patients with different WHO tumor grades, there
were no differences regarding age (F(2,70) = 2.142, p = 0.124), aver-
age motion (F(2,70) = 2.314, p = 0.107), number of movements
≥5 mm (Kruskal-Wallis = 3.230, p = 0.199), gender (χ2 = 3.848,
p = 0.132), number of missing regions due to tumor overlap (χ2 =
8.061, p = 0.061), or tumor lateralization (χ2 = 0.224, p = 0.947).
There was a significant difference in KPS based on grade (χ2 = 7.877,
p = 0.015), with all but one GBM patient having KPS 70–80, whereas
approximately half of grade II and III patients had KPS 90–100.

Tumor volume was significantly different between grades
(F(2,70) = 3.797, p = 0.027), although post-hoc tests comparing two
verall survival is plotted as a function of WHO tumor grade (II, III or IV (GBM), p= 0.004,
free survival per tumor grade (p = 0.007, corrected for KPS and tumor volume).

Image of Fig. 2


Fig. 3. Smoothed connectivity profiles for glioma patients and healthy controls. In all
panels, smoothed frequencies of occurrence according to subjects' individual
connectivity values (y-axes) were determined for 100 equally spaced bins (x-axes), and
depicted in black. Averaged distributions over the entire group are shown in red. (A)
Depicts the frequency distribution (FD) of functional connectivity for glioma patients
during task-state fMRI (n = 71). In (B), the FD of the healthy controls using task-state
fMRI is shown. In (C), the FD of the resting-state data of the same healthy controls is
depicted.
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patient groups with different grades, did not specifically show any
significance.

Tumor overlap with the hub regions was present in 91% of patients
when using the strictest definition, and in 79% of patients when using
the proportional measure of hub overlap. For both measures, the over-
lap of the glioma with hub regions was significantly different between
tumor grades (strict definition: Kruskal-Wallis=8.287, p=0.016; pro-
portional definition: Kruskal-Wallis = 7.799, p = 0.020), with grade III
tumors showing greater overlap of the tumorwith the hub regions than
the other two groups. In all following analyses, the proportional mea-
sure of hub overlap was used as a covariate.

In terms of survival, our cohort showed a significantly shorter OS for
GBMs than the two other tumor grades (χ2=23.916, p=0.005, see Fig.
2A), while KPS, age, and tumor volume were non-significant covariates
(p= 0.101, p= 0.936 and p=0.858, resp.). Unexpectedly, the Kaplan-
Meier curve showed that grade III tumors had longer PFS than grade II
patients in our dataset (χ2 = 14.705, p = 0.006, Fig. 2B), independent
of KPS (p = 0.333), age (p = 0.262), and tumor volume (p = 0.996).
Upon further investigation, the prognostic beneficial loss of heterozy-
gosity (LOH) at 1p/19qwas present in 10 out of 17 grade III glioma, ver-
sus 4 of the 41 grade II glioma. Unfortunately, LOH status was not
known in most patients, while isocitrate dehydrogenase (IDH) muta-
tion status was unknown in all patients, precluding more in-depth ex-
ploration of these important factors in relation to connectomic profiles.

The second cohort included 23 glioma patients (16 grade II, 5 grade
III, and 1 grade IV glioma) and 17 age and gender matched healthy
controls.

3.2. Glioma patients show altered connectivity profiles

We compared the frequency distribution (FD) of all connectivity
values in patients versus controls controls. Patients had significantly dif-
ferent FD compared to controls, both when using the AAL atlas (D =
0.59, p b 0.001) and the 264 region Power atlas (D = 0.08, p b 0.001).
Fig. 3 depicts the individually created kernel smoothed density func-
tions of patient and healthy controls.

To ascertain that differenceswere robust and not due to the different
fMRI tasks, we also compared patients' average FD to that of the same
HC group, but in this case using the resting-state data of the controls.
Again, therewas a significant difference in FD (D=0.44, p b 0.001). Fur-
thermore, the second, independent cohort showed a comparable differ-
ence in FD (D = 0.1165, p b 0.001).

In order to further investigate this shift in connectivity, group differ-
ences in full-width half maximum (FWHM), peak position, and peak
height of each subjects' kernel smoothed density function were tested
using ANOVAs with age and gender as covariates. Patients had signifi-
cantly higher FWHM and peak position, but lower peak height, than
controls (see Table 2 and Fig. 4A),whichwas confirmed usingnon-para-
metric tests (FWHM: Mann-Whitney U = 1057, p b 0.001; peak posi-
tion U = 1052, p b 0.001, peak height U = 238, p b 0.001). When
comparing with the resting-state HC data, results were identical. We
therefore proceed only using the task-state data in both populations.
After parcellation with the Power atlas, peak height remained signifi-
cantly different between groups (p = 0.025). In the second cohort,
these measures were not significantly different (FWHM p = 0.999,
peak position p = 0.350, peak height p = 0.706, all corrected for age
and sex).

3.3. Glioma patients show altered spatial distributions of the connectomic
profile

Overall, patients had higher connectivity over all links in their
connectome (p b 0.001, corrected for age, gender, and motion). Alter-
ations in hub and non-hub connectivity were subsequently investigat-
ed. While normalized connectivity between non-hub regions was not
statistically different between groups (p = 0.096, see Table 2), glioma
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Table 2
Group differences in connectivity profiles between patients and controls.

Measure Mean HC (SD) Mean PT (SD) F-statistic (df) ƞ2 p

FWHM 0.539 (0.149) 0.725 (0.191) 15.752 (1,89) 0.152 b0.001**
Peak position 0.303 (0.180) 0.527 (0.227) 15.306 (1,89) 0.151 0.001**
Peak height 1.952 (0.370) 1.528 (0.406) 17.607 (1,89) 0.169 b0.001**
Hub conn 1.180 (0.208) 1.040 (0.126) 11.270 (1,89) 0.114 0.001**
Hub-non-hub conn 0.931 (0.071) 0.974 (0.040) 12.351 (1,89) 0.129 0.001**
Non-hub conn 1.028 (0.439) 1.013 (0.034) 2.833 (1,89) 0.033 0.096

ANOVAs were corrected for sex, age, and motion, which were not significant in any model. As a measure of effect size, eta squared is reported. **Denotes p b 0.01 (after correction for
multiple comparisons). Values inbold represent identical significancewhen using the 264 region atlas instead of the AAL atlas. HC=healthy controls (n= 19); SD= standard deviation;
PT = glioma patients (n = 71), FWHM= full-width half maximum, conn = connectivity.
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patients had higher hub-non-hub connectivity (p = 0.001) and lower
hub connectivity (p = 0.001) than healthy controls (see Fig. 4B). How-
ever, non-normalized values of hub-hub connectivity were not signifi-
cantly different (p = 0.659), suggesting that the spatial connectivity
shift was particularly present in connections of non-hubs. Indeed,
hub-non-hub connectivity remained significantly increased in patients
(p = 0.001), even after correcting for their globally increased level of
connectivity. The same patterns of difference were seen when applying
the Power atlas to these data (normalized hub-hub connectivity
p b 0.001, non-normalized hub-hub connectivity p= 0.637, normalized
hub-non-hub connectivity p = 0.056). The result with respect to non-
normalized hub-hub connectivity reached near significance in the
smaller second cohort (p = 0.073), but hub-non-hub connectivity was
not significantly different (p = 0.156).

3.4. Connectomic profiles distinctly relate to tumor grade

We sought to further investigate hub connectivity profiles within
the main cohort of glioma patients for all measures differing between
patients and controls (see Table 3). Grade II glioma patients showed sig-
nificantly higher peak position than both grade III and IV patients (see
also Fig. 4A). Results were also significant when using non-parametric
Kruskal-Wallis testing (test statistic = 6.5, p = 0.039). When looking
at the difference in peak position of grade II glioma patients with high
(90–100) or low (70–80) KPS, patients with lower KPS tended to have
higher, i.e. more disturbed, peak position than patients with higher
KPS (t(39) = 1.931, p = 0.061).

Upon visual inspection of Fig. 4B, we see that grade III glioma pa-
tients overall show the most distinct pattern compared to the grade II
Fig. 4. Connectivity profiles per subgroup. This figure depicts boxplots for all connectivity profi
grade (II, III, and IV). In the top row, the whole-brain measures based on the frequency distrib
indicated. In the bottom row, average normalized connectivity (D) between hubs, (E) between
and grade IV glioma patients, while the latter two groups have largely
comparable hub connectivity patterns. However, none of these differ-
ences were objectified statistically.

3.5. Connectomic profiles relate to progression-free survival in GBM
patients

For each tumor grade separately, we performed Cox regression anal-
ysis on both PFS and OS. In grade II and III glioma, connectivity profile
measures were not significantly related to survival. However, higher
FWHM was a significant predictor of shorter PFS in GBM patients
(beta = 1536, 95% confidence interval [1.294 1824193], p = 0.042),
while using age (p = 0.134), KPS (p = 0.086), and tumor volume
(p = 0.175) as covariates (see Fig. 5 for the Kaplan-Meier curve based
on the median split FWHM).

4. Discussion

The brain network of newly diagnosed glioma patients is character-
ized by shifts in functional connectomic profiles compared to healthy
controls, as is shown across cohorts and methods of analysis. The
connectomic profile of glioma patients is characterized by a broader
and flatter frequency distribution showing less variance in connectivity.
On the spatial level, our results confirm that most significant changes
occur in connectivity between hub and non-hub regions: patients
have increased connectivity between non-hubs and hubs across nor-
malized and non-normalized connectivity values and atlases. However,
connectivity between non-hubs is not significantly different.
les of healthy controls (HC), as well as glioma patients specified according toWHO tumor
ution ((A) full-width half maximum (FWHM), (B) peak position and (C) peak height) are
hubs and non-hubs, and (F) between non-hubs is shown.

Image of Fig. 4


Table 3
Group differences in connectivity profiles between tumor grades.

Measure F-statistic (df) A priori statistics Post-hoc statistics

ƞ2 p Grade Cohen's d p

FWHM 0.322 (2,60) 0.010 0.726 NA NA NA
Peak position 5.147 (2,60) 0.137 0.009** II vs III 0.707 0.026*

II vs IV 0.592 0.048*
Peak height 0.393 (2,60) 0.012 0.676 NA NA NA
Hub conn 2.990 (2,62) 0.076 0.058 NA NA NA
Hub-non-hub conn 3.513 (2,62) 0.097 0.036* III vs IV 1.404 0.037*

ANOVAs were corrected for several covariates (see Statistical analysis section), which
were not significant in any model. As measures of effect size, eta squared and Cohen's d
are reported. Post-hoc statistics are Bonferroni corrected for multiple comparisons. *De-
notes p b 0.05, **denotes p b 0.01. FWHM= full-width halfmaximum, conn= connectiv-
ity; NA = not applicable.
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Hubs are implicated in a variety of neurological diseases including
glioma (Aerts et al., 2016; Crossley et al., 2014). A theoretical explana-
tion for the particular redistribution of connectivity in glioma patients
relates to cascadic network failure (Stam, 2014). In line with all (inter-
dependent) complex networks (Buldyrev et al., 2010), a final common
pathological pathway across neurological diseases may be the global
spread of brain network failure. This cascade is hypothetically due to
the altered role and eventual loss of hub regions (Crossley et al., 2014;
Stam, 2014): when (localized) neurological disease occurs, such as glio-
ma, the inflicted region may develop diminished communication with
other brain regions due to disconnection or altered activity patterns.
This network dysfunction then spreads to other regions in the vicinity,
as they take over functioning from the lesioned region. Next, more
and more information is relayed to these regions as well as to hubs
higher up in the network hierarchy. In this initial phase of hub overload,
connectivity likely increases between non-hub and hub regions, as the
latter aggregatemore andmore information. This increase in hub enlist-
mentmay initially support functioning, after which hub-hub connectiv-
ity should decrease as hubs start failing due to their increased usage. In
Alzheimer's disease, cascadic brain network failure and its phases has
been investigated nicely with computational modeling (de Haan et al.,
2012) and in experiments using resting-state fMRI (Jones et al., 2015).
Furthermore, the abovementioned recent review on the impact of le-
sions on the brain network also concludes that the damaging effects of
for instance glioma may propagate throughout the brain network via
Fig. 5. Progression-free survival relates to connectivity profile in grade IV glioma. Full-
width half maximum (FWHM), based on the frequency distribution, was dichotomized
using a median split in order to draw this Kaplan-Meier plot of progression-free survival
(PFS) in grade IV glioma patients (p = 0.042, while correcting for Karnofsky
performance status and tumor volume).
hubs, thereby inducing clinical deterioration (Aerts et al., 2016). Our
current results corroborate this idea, showing particularly increased
connectivity between non-hub and hubs. Longitudinal or computation-
al studies are necessary to further scope network failure over time in gli-
oma patients.

Although glioma patients with different tumor grades all showed
the same type of connectivity disturbances compared to healthy con-
trols, our study additionally highlights distinct connectomic profiles re-
lating to clinical phenotype. Peak position was particularly disturbed in
low-grade glioma patients, in whom the connectivity value of the peak
occurrence was significantly higher than in high-grade glioma patients.
In other words, grade II glioma patients most often had connectivity in-
dices higher than the other tumor grades, whichwas spatially unspecif-
ic, as it was not reflected in the hub-related connectivity measures. This
increase tended to relate to lower Karnofsky performance status, sug-
gesting a pathological mechanism. Since low-grade glioma grow slowly
and in an infiltrativemanner, it is possible that these tumors cause even
greater connectivity pathology than the high-grade glioma, as has been
shown with MEG before (van Dellen et al., 2012).

Interestingly, the grade III gliomas formed a special subgroup in our
cohort. First, progression-free survival of our grade III patients was bet-
ter than expected and even exceeded that of grade II patients. Upon fur-
ther investigation, loss of heterozygosity at 1p/19q, which is a favorable
prognostic factor (Cairncross et al., 1998), was often present in the
grade III tumors, suggesting that these patients were representative
only of a subgroup of all anaplastic gliomas with relatively favorable
prognosis. In terms of connectivity profiles, grade III patients tended
to show less disturbances than both grade II and IV glioma patients.
This was particularly true with respect to hub-non-hub connectivity,
which was within the normal range. Interestingly grade III glioma pa-
tients did have the strongest decrease in hub-hub connectivity of all pa-
tient subgroups. However, in grade III glioma patients the tumor was
more frequently localized in the hub areas, whichwill certainly have in-
fluenced connectivity between hub nodes specifically. The small sample
of grade III patients (n=17) limits our options to further investigate the
mechanism underlying connectivity profile shifts in these patients. Fu-
ture studies will have to elucidate whether the combination of pre-
served hub-non-hub connectivity but decreased hub connectivity is
representative of grade III glioma as a whole, or relates to the favorable
aspects of this particular cohort (i.e. 1p/19q LOH, long progression-free
survival).

All patients in our cohort were newly diagnosed with glioma. How-
ever, one must keep in mind that it is near impossible to determine the
exact disease duration in these patients, which could influence connec-
tivity profiles as well as clinical status. A glioma may be present for
years, before the patient experiences symptoms and a diagnosis is
reached. Our findings, particularly with respect to the differences be-
tween tumor grades, were corrected for covariates possibly reflecting
differences in disease duration and/or clinical phenotype, such as
tumor volume and presence of epilepsy. Therefore, only longitudinal
studies taking growth speed into account may delve into the
mechanisms of change according to clinical phenotypes. A foreseeable
problem in this respect is the tumor treatment (e.g. resection, chemo-
therapy, radiotherapy) thatmost if not all gliomapatients undergo, pos-
sibly confounding the natural course of connectivity shifts.

Some limitations of the current study should be kept inmind. Firstly,
fMRI tasks differed between patients and controls in our main analyses.
Moreover, areas of the DMN and FPN networks have been found to be
hubs consistently across brain states, with differences in connectivity
between states being small (James et al., 2015; Krienen et al., 2014).
In addition, pre-operative language fMRI has been used in previous
work investigating connectivity in brain tumor patients (Esposito et
al., 2012). Furthermore, our findings regarding the differences between
patient groups are completely independent of the healthy control co-
hort. However, we attempted to scope the generalizability of our results
by including a smaller second cohort of glioma patients. This database
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wasmuch smaller and did not contain clinical information, but patients
(n=23) and controls (n=17) did undergo identical resting state fMRI.
We observed altered FD in these groups as well, corroborating ourmain
analyses. Furthermore, there were trend-level differences between
healthy controls and glioma patients regarding hub connectivity. In ad-
dition to the smaller size, this sample was characterized by a different
distribution of tumor grades compared to the original cohort, which in
addition to limited statistical power may explain some of the non-sig-
nificant findings. Second, the boundaries of gliomas are challenging to
define, due to infiltration of tumor into the healthy tissue at a micro-
scopic scale and the lack of specificity of imaging. Therefore, the study
design could neither guarantee exclusion of all regions of the AAL atlas
covered by tumor on a subject level, nor complete accuracy of themea-
surement of overlap between tumor and hubs. Third, due to tumor
masking and subsequent exclusion of regions on an individual level,
the number of regions taken into account for calculation of connectivity
differed between subjects, which may have impacted our results, even
though tumor volume, individual tumor overlap with the hubs, and
number of regions excluded did not reach any statistical significance.
Fourth, glioma patients selected to undergo preoperative language
mappingmay not be representative of glioma patients in general, as pa-
tients with a priori disrupted language or highly aggressive tumors are
unlikely to undergo such awork-up. Thus, this samplemay bebiased to-
wards relatively high functioning patients and/or less acute disease,
which is corroborated by patient characteristics, particularly for the
grade III glioma.

To conclude, our current results reveal distinct connectomic profiles
as compared to healthy subjects. Glioma patients seem to lose structure
in their connectivity profile, which is spatially reflected by increased
connectivity betweenperiphery andhubs. Furthermore, even in this rel-
atively small sample, we are able to report distinct connectomic profiles
for different clinical phenotypes, relating to performance status and
survival. This study firstly provides a conceptual framework for
connectomic dysfunction in glioma patients, and secondly underlines
the promise of using connectomics as a biomarker in this patient
population.
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