DOI: 10.1002/adsc.201300704

Dissecting Anion Effects in Gold(I)-Catalyzed Intermolecular **Cycloadditions**

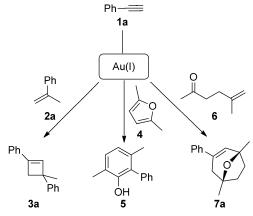
Anna Homs, ** Carla Obradors, ** David Lebœuf, and Antonio M. Echavarren Anna Homs, **

- Institute of Chemical Research of Catalonia (ICIO), Av. Països Catalans 16, 43007 Tarragona, Spain Fax: (+34)-97-792-0225: e-mail: aechavarren@iciq.es
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
- These two authors contributed equally to this work.

Received: August 4, 2013; Revised: October 10, 2013; Published online: January 13, 2014

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201300704.

© 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Abstract: From a series of gold complexes of the type [t-BuXPhosAu(MeCN)]X (X = anion), the best results in intermolecular gold(I)-catalyzed reactions are obtained with the complex with the bulky and soft anion BAr₄^{F-} [BAr₄^{F-}=3,5-bis(trifluoromethyl)phenylborate] improving the original protocols by 10-30% yield. A kinetic study on the [2+2] cycloaddition reaction of alkynes with alkenes is consistent with an scenario in which the rate-determining step is the ligand exchange to generate the (η^2 phenylacetylene)gold(I) complex. We have studied in detail the subtle differences that can be attributed to the anion in this formation, which result in a substantial decrease in the formation of unproductive σ,π -(alkyne)digold(I) complexes by destabilizing the conjugated acid formed.

Keywords: cycloaddition; cyclobutenes; gold catalysis; mechanistic study

Introduction

Gold(I)-catalyzed intramolecular cycloisomerization reactions have been widely studied during the last decade.[1] Gold(I) complexes have been found to be powerful homogeneous catalysts for carbon-carbon, carbon-oxygen or carbon-nitrogen bond formation proceeding by nucleophilic additions to alkynes, allenes and alkenes, giving access to new carbo- and heterocyclic compounds. Despite these major advances, the development of intermolecular cycloadditions using alkynes as the substrates has been shown to be challenging.[2]

By using cationic gold(I) complexes with bulky ligands, we developed the intermolecular reaction of alkynes with alkenes to form regioselectively cyclobutenes of type 3a (Scheme 1).[3,4] More recently, we have developed a synthesis of phenols 5 by the intermolecular reaction of alkynes with furans such as **4**,^[5,6] as well as a synthesis of oxabicyclo[3.2.1]oct-3enes of type 7a by cycloaddition between oxoalkene 6 and **1a**.^[7]

Scheme 1. Gold(I)-catalyzed intermolecular reactions.

Scheme 2. Formation of σ , π -digold(I) complexes from (η ²-al-kyne)gold(I) complexes (L=t-BuXPhos).

During our studies on the [2+2+2] cycloaddition of alkynes with oxoalkenes, we discovered that formation of the active gold species was more complex than expected. Although it was possible to observe the phenylacetylene gold(I) complex (8a) at -60 °C, the resting state under the reaction conditions was the unreactive σ , π -(phenylacetylene)digold(I) complex 9a, which decreases the reaction efficiency (Scheme 2).

Different research groups reported the formation of very similar digold(I) complexes and their influence on the reactivity in catalytic transformations. In this context, we have focused on tuning the catalyst structure to minimize the formation of digold(I) complexes. In intermolecular reactions involving alkynes, we reasoned that the use of a more bulky, non-coordinating, and less basic counterion could slow down the deprotonation of terminal alkynes to form the σ-acetylide gold(I) intermediates. Hence, we have prepared the new gold(I) complexes [*t*-BuXPhosAu-(MeCN)]BAr₄^F **A2** and [IPrAu(PhCN)]BAr₄^F **B2** with the BAr₄^{F-} anion [BAr₄^{F-}= 3,5-bis(trifluoromethyl)-phenylborate] (Figure 1). In the same close relatives

Figure 1. Cationic gold(I) complexes with SbF_6^- and BAr_4^{F-} anions ($BAr_4^{F-} = 3,5$ -bis(trifluoromethyl)phenylborate).

of the corresponding complexes $\mathbf{A1}^{[10]}$ and $\mathbf{B1}^{[11]}$ with hexafluoroantimonate anion, which have been used as the catalysts of choice in gold(I)-catalyzed intermolecular reactions. Since complex $\mathbf{B2}$ showed slightly better performance than $\mathbf{B1}$ in the intermolecular synthesis of phenols of type $\mathbf{5}$, we decided to study in detail the effect of the anion on the corresponding t-BuXPhos complexes $\mathbf{A1}$ and $\mathbf{A2}$. Analogous complexes with $\mathbf{BF_4}^-$ and $\mathbf{PF_6}^-$ anions $\mathbf{A3}$ and $\mathbf{A4}$ have also been studied. Herein we present a mechanistic

study of the intermolecular [2+2] cycloaddition of alkynes with alkenes in order to understand the influence of the counterion on the reactivity of these processes. This work shows that **A2** is the catalyst of choice for intermolecular reactions of terminal alkynes.

Results and Discussion

The [2+2] cycloaddition of alkynes with alkenes was developed using complex [t-BuXPhosAu(MeCN)] SbF₆ (**A1**) as catalyst, furnishing regioselectively cyclobutenes **3** in moderate to good yields.^[3] This cycloaddition proceeded under mild conditions in dichloromethane at room temperature. Although, as expected, the ligand had a strong influence on the selectivity, we were surprised by the notable difference observed when changing the counterion (Table 1). Thus, replacing SbF₆⁻ in **A1** by BAr₄^{F-} (**A2**) leads to an increase in the yield of the cycloaddition of **1a** with **2a** from 80 to 95% (Table 1, entries 1 and 2). The use of BF₄⁻, PF₆⁻, NTf₂⁻ or OTf⁻ as counterions led to **3a** in lower yields (Table 1, entries 3–6).

The cycloaddition between different terminal alkynes and **2a** using catalysts **A1** and **A2** is shown in Table 2. In most cases, yields using **A2** were 10–30% higher (Table 2), with the exception of MeO-substituted alkynes **1c**, **1g**, and **1l**, which afforded the corresponding cyclobutenes in very similar yields (Table 2,

Table 1. Intermolecular gold(I)-catalyzed [2+2] cycloaddition between phenylacetylene (**1a**) and α -methylstyrene (**2a**) with different gold(I) catalysts **A**.^[a]

Entry	X ⁻	3a (Yield [%]) ^[b]
1	SbF ₆ ⁻	80
2	$\mathrm{BAr_4^{F-}}$	95
3	$\mathrm{BF_4}^{-1}$	62
4	PF_6^-	19
5 ^[c] 6 ^[c]	$\mathrm{NTf_2}^-$	26
$6^{[c]}$	$\mathrm{OTf}^{\overset{\scriptscriptstyle -}{\scriptscriptstyle -}}$	18

[[]a] 2a/1a = 2:1.

[[]b] Yield determined by ¹H NMR using 1,4-diacetylbenzene as internal standard.

^[c] Catalysts generated *in situ* with [LAuCl] and the corresponding silver salts.

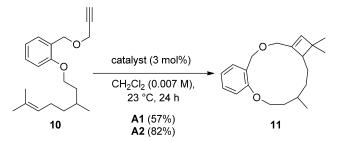
Table 2. Intermolecular gold(I)-catalyzed [2+2] cycloaddition between alkynes (1a-n) and α -methylstyrene (2a). [a]

Entry	R	Catalyst	Product (Yield [%])
1	Ph (1a)	A1	3a (80) ^[c]
2		A2	3a (95)
3	<i>p</i> -Tol (1b)	A1	3b (74) ^[c]
4		A2	3b (86)
5	$p\text{-MeOC}_6\text{H}_4$ (1c)	A1	3c (68) ^[c]
6		A2	3c (64)
7	$p\text{-FC}_6\text{H}_4$ (1d)	A1	3d (75) ^[c]
8		A2	3d (84)
9	$p\text{-ClC}_6\text{H}_4$ (1e)	A1	3e (61) ^[c]
10	- , , ,	A2	3e (91)
11	p-BrC ₆ H ₄ (1f)	A1	3f (74) ^[c]
12	,	A2	3 f (97)
13	m-MeOC ₆ H ₄ (1g)	A1	3g (80)
14	* . (0)	A2	3g (78)
15	<i>m</i> -Tol (1h)	A1	3h (78) ^[c]
16		A2	3h (91)
17	$m\text{-HOC}_6\mathrm{H}_4$ (1i)	A1	3i (74) ^[c]
18		A2	3i (98)
19	m-FC ₆ H ₄ (1j)	A1	3j (67)
20		A2	3j (77)
21	m-ClC ₆ H ₄ (1k)	A1	3k (60)
22	,	A2	3k (83)
23	$o\text{-MeOC}_6\text{H}_4$ (11)	A1	3l (30)
24	· · · /	A2	3l (24)
25	3-thienyl (1m)	A1	3m (84)
26	• \ /	A2	3m (86)
27	cyclopropyl (1n)	A1	3n $(46)^{[c]}$
28	, , , , ,	A2	3n (35)

- a 2a/1a-n = 2:1.
- [b] Isolated yields.
- [c] Ref.[3]

entries 6, 14, and 24). In the case of **1n**, a lower yield was obtained (Table 2, entry 28). Cyclobutene **3a** was also obtained in 95% yield by performing the reaction on a larger scale (2.0 mmol). Generating *in situ* **A2** by simple mixing of (*t*-BuXPhos)gold(I) chloride and NaBAr₄^F did not mean any drop in the yield.

Improved yields were also obtained in general when phenylacetylene (1a) was used with different alkenes (Table 3). The reaction can also be extended to allylsilane 2d, allyl ether 2e and allyl silyl ether 2f, although yields were modest due to the lower nucleophilicity of these alkenes.


The yield in the macrocyclization of 1,14-enyne **10** to form 13-membered derivative **11** was also improved from 57% using **A1** to 82% with **A2** (Scheme 3).^[7]

We also explored the influence of the counterion in the intermolecular [2+2+2] cycloaddition of alkynes

Table 3. Intermolecular gold(I)-catalyzed [2+2] cycloaddition between phenylacetylene (1a) and alkenes $2\mathbf{b} - \mathbf{\hat{t}}^{[a]}$

Entry	R^1 R^3	Catalyst	Product (Yield [%])
1	2b	A1	3o (74) ^[b,c]
2	2.0	A2	3o (79) ^[b]
3	2c	A1	3p (53) ^[b,c]
4		A2	3p (69) ^[b]
5	$\operatorname{Si}(i-\operatorname{Pr})_3$	A1	3q (48) ^[d]
6		A2	3q (71) ^[d]
7	OPh 2e	A1	3r (26) ^[d]
8		A2	3r (31) ^[d]
9	OSiPh ₃	A1	3s (21) ^[d]
10	41	A2	3s (31) ^[d]

- [a] **2b-f/1a**=2:1.
- [b] Isolated yields.
- [c] Ref.[3]
- ^[d] Yield determined by ¹H NMR using 1,4-diacetylbenzene as internal standard.

Scheme 3. Gold(I)-catalyzed macrocyclization of a 1,14-enyne.

with oxoalkene 6 to furnish 8-oxabicyclo[3.2.1]oct-3-enes 7a-d using A1 and A2. For this more challenging cascade reaction, we could also observe a moderate improvement of the yields using catalyst A2 (Table 4, entries 2, 4, 6, and 8).

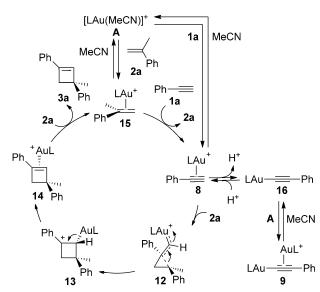

To define the role of the anion in intermolecular reactions, we studied experimentally the mechanism of the [2+2] cycloaddition between alkynes and alkenes. According to previous theoretical work, [7,12] the catalytic cycle for the [2+2] cycloaddition of alkynes with alkenes was expected to proceed by a rate-determining attack of the electron-rich alkene to the (η^2 -alkyne)gold(I) complex **8** forming the cyclopropyl

Table 4. Intermolecular gold(I)-catalyzed cyclization of 5-methylhex-5-en-2-one (6) with terminal alkynes (1a-h). [a]

Entry	R	Catalyst	Product (Yield [%])[b]
1	Ph (1a)	A1	7a (68) ^[c]
2	, ,	A2	7a (72)
3	$p\text{-ClC}_6\text{H}_4$ (1e)	A1	7b $(51)^{[c]}$
4	,	A2	7b (62)
5	$m\text{-HOC}_6\mathrm{H}_4$ (1i)	A1	7c (65) ^[c]
6	0 /	A2	7c (81)
7	<i>m</i> -Tol (1h)	A1	7d (70) ^[c]
8	` /	A2	7d (72)

- [a] 6/1a-h=1:3.5.
- [b] Isolated yields.
- [c] Ref.[7]

Scheme 4. Mechanism of the [2+2] cycloaddition between alkynes and alkenes considering all the gold(I) species in equilibrium.

gold(I) carbene 12 (Scheme 4). Then, the ring expansion occurs to form benzylic carbocation 13, which forms cyclobutene 3a after demetallation. An associative ligand exchange between $(\eta^2$ -cyclobutene)gold(I) complex 14 and the starting alkyne closes the catalytic cycle, regenerating 8.

However, in our previous study on the [2+2+2] cycloaddition of alkynes with oxoalkenes, we had observed that the formation of the $(\eta^2$ -alkyne)gold(I) complex **8a** is complicated by the competitive formation of σ , σ -digold(I) alkyne complex **9a** (Scheme 2). Therefore, we determined the order of the reagents in the rate equation to gain further insight in the mecha-

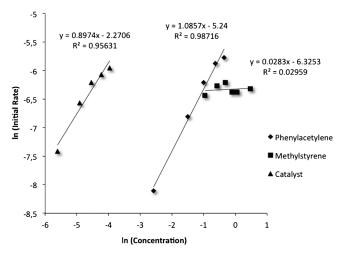
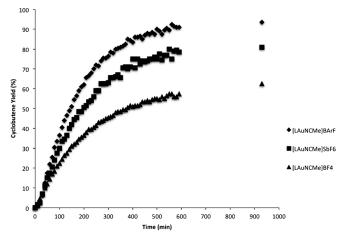



Figure 2. Order of the reagents in the [2+2] cycloaddition between phenylacetylene (1a) and α -methylstyrene (2a) with complex A2.

nism. Initial rates were calculated for each component by ¹H NMR using diphenylmethane as internal standard (Figure 2). First order was observed for both the alkyne **1a** and the gold(I) catalyst **A2**, whereas the reaction showed zero order dependence for the alkene **2a**.

These results are consistent with a scenario in which the actual rate-determining step is the ligand exchange to generate the active species 8 (Scheme 4). Complex A undergoes ligand exchange with 2a forming 15. Generation of 8 is the slowest step due to its unstability and rapid evolution to 9 or 3a.

Monitoring the [2+2] cycloaddition reaction by ¹H NMR showed a significant dependence on the anion (Figure 3). Besides the difference in the final yields, the reaction rate increases with the bulkiness

Figure 3. Kinetics of the [2+2] cycloaddition between phenylacetylene (**1a**) and α -methylstyrene (**2a**) with different gold(I) complexes (L=t-BuXPhos).

and the softness of the counterion: $BAr_4^{F-} > SbF_6^- > BF_4^-$.

Analysis of the reaction mixture by ^{31}P NMR showed only the (alkene)gold(I) complex **15** and the digold complex **9**. The ratio between these species [**15**]/[**9**] increased following the same trend: BAr₄^{F-}(**b**) > SbF₆⁻ (**a**) > BF₄⁻ (**c**). Thus, [**15**]/[**9**] drops from 115 (BArF₄^{F-}) to 30 (SbF₆⁻) and finally to 4 for BF₄⁻ resulting in a smaller reservoir of the cationic gold(I) species.

The equilibrium constants for the formation of 9 and 15 from A1 and A2 were also determined, endothermic and exothermic, respectively (Scheme 5). For-

Scheme 5. Determination of the equilibrium constants from A to 9 and 15.

mation of digold(I) complex with SbF₆⁻ (9a) anion is more favored than with BAr₄^{F-} (9b), probably due to the minor stability of the bulkier conjugated acid. We also checked that **A2** binds stronger to 2a than **A1**.

These results suggest that when BAr₄^{F-} is used, the concentration of catalytically active species **8b** (BAr₄^{F-} as counteranion) is higher than with SbF₆⁻ (**8a**). We also studied the evolution of the gold(I) species formed with **A1** or **A2** and **1a** from -60 to 20 °C by ³¹P NMR. With **A1**, the digold(I) complex **9a** was observed from -60 °C, becoming the only species at -20 °C (Scheme 6). However, in the case of **A2**, the corresponding digold(I) complex **9b** was not observed until 0 °C. Furthermore, the catalytically active species **8b** was clearly observed up to the same temperature.

Complexes **15b** and **9b** (Figure 4) could be isolated and were fully characterized by X-ray crystallography.^[13] The main divergence between **9a** and **9b** in the

$$[LAu(MeCN)]^{+} \xrightarrow{1a} Ph \xrightarrow{B} AuL^{+} H^{+}$$

$$AuL^{+} H^{+}$$

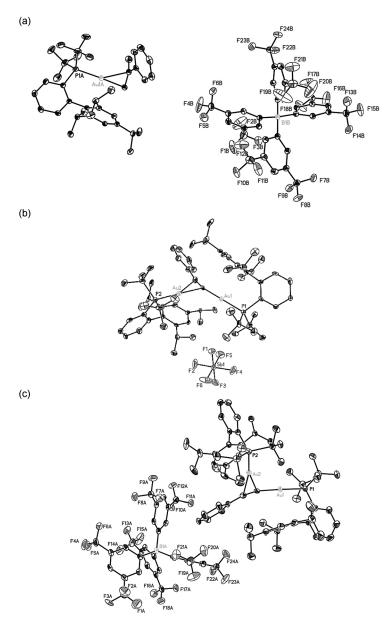
$$X^{-} = SbF_{6}^{-} : observed up to -40 °C$$

$$X^{-} = BAr_{4}^{F-} : observed up to 0 °C$$

$$AuL^{+}$$

$$LAu \xrightarrow{Ph} Ph \xrightarrow{LAu \xrightarrow{-1} Ph} Ph$$

 $X^- = SbF_6^-$: not observed $X^- = SbF_6^-$: observed from -60 °C $X^- = BAr_4^{F-}$: observed at 20 °C $X^- = BAr_4^{F-}$: observed from 0 °C


Scheme 6. Gold(I) species formed between phenylacetylene (1a) and A1 or A2 from 213 to 293 K.

solid state (Figure 4b and c, respectively) is the radically different position of the counterions. Whereas $BAr_4^{F^-}$ is located alongside the phenylacetylene moiety in the same plane, SbF_6^- is placed between both gold atoms bending slightly the cation entity. Thus, the angle of the $\pi\text{-coordinated gold}(I)$, the alkyne and the counterion is 130.3° for $BAr_4^{F^-}$ (Au–B 10.22 Å) and 77.3° for SbF_6^- (Au–Sb 8.23 Å) and the angle of the $\sigma\text{-gold}$ is 210.0° for $BAr_4^{F^-}$ (Au–B 11.52 Å) and 60.6° for SbF_6^- (Au–Sb 7.34 Å). Complex **16** was independently prepared by reaction of the neutral gold(I) complex with lithium phenylacetylide and its structure was determined by X-ray diffraction. $^{[13,14]}$

We performed DFT calculations of the key complexes $[t\text{-BuXPhosAu}(\eta^2\text{-phenylacetylene})]X$ 8 (X= BF₄⁻, SbF₆⁻, BAr₄^{F-}) [M06, 6-31G(d) (C, H, P, B, F) and SDD (Au, Sb), CH₂Cl₂]. First, we evidenced the steric congestion around the substrate hampering its deprotonation depending on the counterion. We analyzed the charge distribution by electron density from total SCF density mapped with ESP ($\rho = 0.03 \text{ e Å}^3$) and the positive charge is widely distributed around the ligand instead of being concentrated in the metal center (Figure 5). We also checked the pattern between the bulkiness of the counterion and the acidity of phenylacetylene by determining the Mulliken atomic charges. The electron density decreases with the anion size: $BF_4^- < SbF_6^- < BAr_4^{F-}$, although the differences are modest: 0.250 for BF_4^- (8c), 0.243 for SbF_6^- (8a) and 0.237 for BAr_4^{F-} (8b). Presumably, the large cation forms a more stable complex 8 with a softer counterion as BAr₄^{F-}.

Finally, we performed some additional experiments to exclude other mechanistic pathways. [14] We started by reacting the isolable intermediates under stoichiometric conditions with α -methylstyrene (2a). Neither complex 9 nor 16 reacted with 2a in CH₂Cl₂ at 23 °C for 8 h in the absence or presence of A2 as a catalyst. On the other hand, complex 15b (Figure 4) reacts with 1a to form cyclobutene 3a in 72% (CH₂Cl₂, 23 °C, 8 h) therefore that equilibrium is not inhibiting the process.

Complex **16** is not catalytically active for the formation of **3a** by [2+2] cycloaddition, although the activity is restored upon addition of HSbF₆, which cleaves the Au–C bond generating the gold(I) catalyst (Table 5, entries 1 and 2). More significantly, as we observed before in another context, ^[7] digold complexes **9a** and **9b** are very poor catalysts for the [2+2] cycloaddition between **1a** with **2a** (Table 5, entries 3 and 4), although the reaction proceeds smoothly after addition HSbF₆ (Table 5, entry 5).

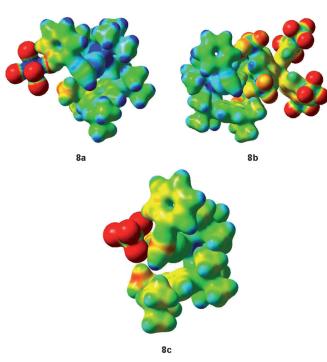
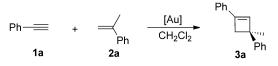


Figure 4. X-Ray crystal structures: (a) α-methylstyrene gold(I) complex **15b**, (b) $[(t\text{-BuXPhosAu})_2C \equiv CPh]^+[SbF_6]^-$ **9a** (taken from ref.^[7]) and (c) $[(t\text{-BuXPhosAu})_2C \equiv CPh]^+[BAr_4^F]^-$ **9b**. ORTEP plot (50% thermal ellipsoids). Hydrogens are omitted for clarity.

Conclusions


We have designed a new generation of gold(I) complexes bearing $BAr_4^{F^-}$ as counterion $[BAr_4^{F^-}=3,5-bis(trifluoromethyl)phenylborate]. These have proven to be more efficient in different intermolecular gold(I)-catalyzed reactions, improving the yields between 10 and 30%. We have then studied in detail the subtle anion effects in the gold(I)-catalyzed [2+2] cycloaddition of terminal alkynes with alkenes, which sum up in a substantial decrease in the formation of unproductive <math display="inline">\sigma_{,}\pi_{-}(alkyne)digold(I)$ complex when the $BAr_4^{F^-}$ anion is used.

Our kinetic study of the gold(I)-catalyzed [2+2] cycloaddition reaction of terminal alkynes with alkenes is consistent with a scenario in which the rate-determining step is the first ligand exchange of [LAu(MeCN)]X to generate the active (η^2 -phenylace-tylene)gold(I) complex, which is more stable with softer counterions according to DFT calculations. From a general practical perspective, we have found that the best results in intermolecular gold(I)-catalyzed reactions are obtained using [t-BuXPhosAu-(MeCN)]BAr₄^F as catalyst.

Figure 5. Electron density from total SCF density mapped with ESP ($\rho = 0.03 \text{ e Å}^3$) for complexes **8** [t-BuXPhosAu(η^2 -phenylacetylene)X, X=SbF₆⁻ (**8a**), BAr₄^{F-} (**8b**), and BF₄⁻ (**8c**)].

Table 5. Regeneration of the catalytic activity in the intermolecular gold(I)-catalyzed [2+2] cycloaddition between **1a** and **2a** in the presence of a Brønsted acid.^[a]

Entry	[Au] (mol%)	Additive (mol%)	Yield [%] ^[b]
1	16 (3)	_	_
2	16 (3)	$HSbF_6 \cdot 6H_2O$ (3)	75
3	9a (1.5)	_	13
4	9b (1.5)	_	13
5	9a (1.5)	$HSbF_6 \cdot 6H_2O (1.5\%)$	70

^[a] 23 °C, 8 h.

Experimental Section

Procedure for the Synthesis of Gold(I) Complex A2

Chloro[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-*tert*-butyl-phosphine]gold(I) (100.0 mg, 0.152 mmol) and acetonitrile (9.5 μL, 0.183 mmol) were dissolved in dichloromethane (6.6 mL). Then, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (135.0 mg, 0.152 mmol) was added and the reaction mixture was stirred at room temperature for 30 min. The crude was filtered through Celite, then Teflon 0.22 and

concentrated to obtain a white powder; yield: 224 mg (97%).

Procedure for the Synthesis of Cyclobutenes (3)

Alkyne (1 equiv.) and alkene (2 equiv.) were dissolved in dichloromethane (0.48 M) and the cationic gold(I) catalyst (3 mol%) was added. The reaction mixture was stirred at room temperature until no alkyne was observed by TLC. Then, it was quenched by adding a drop of a solution of Et_3N in cyclohexane (1 M) and the solvent was removed. Preparative TLC was used to purify the resulting cyclobutenes.

Acknowledgements

We thank the MICINN (CTQ2010-16088/BQU and FPI fellowship to A. H.), the AGAUR (project 2009 SGR 47 and Beatriu de Pinós postdoctoral fellowship to D. L.), the MEC (FPU fellowship to C. O.), the European Research Council (Advanced Grant No. 321066), and the ICIQ Foundation for financial support. We also thank the ICIQ X-ray diffraction, the Nuclear Magnetic Resonance and the Spectroscopic and Kinetics units.

References

- [1] a) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271–2296; b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2006, 118, 8064-8105; Angew. Chem. Int. Ed. 2006, 45, 7896-7936; c) A. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478-3519; Angew. Chem. Int. Ed. 2007, 46, 3410-3449; d) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; e) Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239-3265; f) A. Arcadi, Chem. Rev. 2008, 108, 3266-3325; g) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; h) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; i) V. Michelet, P. Y. Toullec, J.-P. Genêt, Angew. Chem. 2008, 120, 4338-4386; Angew. Chem. Int. Ed. 2008, 47, 4268-4315; j) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; k) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 2011, 111, 1954-1993; 1) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994-2009.
- [2] For selected examples, see: a) C. Ferrer, C. H. M. Amijs, A. M. Echavarren, Chem. Eur. J. 2007, 13, 1358–1373; b) R. B. Dateer##, B. S. Shaibu, R. S. Liu, Angew. Chem. 2012, 124, 117–121; Angew. Chem. Int. Ed. 2012, 51, 113–117; c) H.-S. Yeom, J. Koo, H.-S. Park, Y. Wang, Y. Liang, Z.-X. Yu, S. Shin, J. Am. Chem. Soc. 2012, 134, 208–211; d) S. Kramer, T. Skrydstrup, Angew. Chem. 2012, 124, 4759–4762; Angew. Chem. Int. Ed. 2012, 51, 4681–4684; e) Y. Luo, K. Ji, Y. Li, L. Zhang, J. Am. Chem. Soc. 2012, 134, 17412–17415.
- [3] V. López-Carrillo, A. M. Echavarren, *J. Am. Chem. Soc.* **2010**, *132*, 9292–9294.
- [4] Conceptually analogous macrocyclization by cycloaddition of alkynes with alkenes, see: C. Obradors, D.

^[b] Yield determined by ¹H NMR using 1,4-diacetylbenzene as internal standard.

- Lebœuf, J. Aydin, A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.
- [5] N. Huguet, D. Lebœuf, A. M. Echavarren, Chem. Eur. *J.* **2013**, *19*, 6581–6585.
- [6] First example of an intramolecular gold-catalyzed formation of phenol with a furan and an alkyne, see: a) A. S. K. Hashmi, E. Kurpejovic, M. Wölfle, W. Frey, J. W. Bats, Adv. Synth. Catal. 2007, 349, 1743-1750; b) A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709-713; c) A. S. K. Hashmi, M. C. Blanco, Eur. J. Org. Chem. 2006, 4340-4342.
- [7] C. Obradors, A. M. Echavarren, Chem. Eur. J. 2013, 19, 3547-3551.
- [8] a) C. Wei, C. J. Li, J. Am. Chem. Soc. 2003, 125, 9584-9585; b) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. USA 2007, 104, 13569–13573; c) P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526; d) T. N. Hooper, M. Green, C. A. Russell, Chem. Commun. 2010, 46, 2313–2315; e) A. Simonneau, F. Jaroschik, D. Lesage, M. Karanik, R. Guillot, M. Malacria, J.-C. Tabet, J.-P. Goddard, L. Fensterbank, V. Gandon, Y. Gimbert, Chem. Sci. 2011, 2, 2417–2422; f) A. Grirrane, H. Garcia, A. Corma, E. Álvarez, ACS Catal. 2011, 1, 1647–1653; g) T. J. Brown, R. A. Widenhoefer, Organometallics 2011, 30, 6003-6009; h) M. Raducan, M. Moreno, C. Bour, A. M. Echavarren, Chem. Commun. 2012, 48, 52-54; i) A. S. K. Hashmi, T. Lauterbach, P. Nösel, M. H. Vilhelmsen, M. Rudolph, F. Rominger, Chem. Eur. J. 2013, 19, 1058–1065; j) A. Gómez-Suárez, S. Dupuis, A. M. Z. Slawin, S. P. Nolan, Angew. Chem. 2013, 125, 972–976; Angew. Chem. Int. Ed. **2013**, 52, 938–942;
- k) A. Zhdanko, M. Ströbele, M. E. Maier, Chem. Eur. J. Chem. -Eur. J. 2012, 18, 14732-14744; 1) A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, F. Rominger, Angew. Chem. 2012, 124, 4532-4536; Angew. Chem. Int. Ed. 2012, 51, 4456-4460; m) B. Rubial, A. Ballesteros, J. M. González, Adv. Synth. Catal. 2013, 355, 3337-3343.
- [9] A gold(I) carbene with tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the counterion has been reported to undergo C-B cleavage to from an aryl-gold(I) complex due to the high electrophilic of the metal center. However, we never observed this behavior with complex A2: S. G. Weber, D. Zahner, F. Rominger, B. F. Straub, Chem. Commun. 2012, 48, 11325–11327.
- [10] P. Pérez-Galán, N. Delpont, E. Herrero-Gómez, F. Maseras, A. M. Echavarren, Chem. Eur. J. 2010, 16, 5324-5332.
- [11] C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. Chem. 2008, 73, 7721-7730.
- [12] a) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárdenas, E. Buñuel, C. Nevado, A. M. Echavarren, Angew. Chem. 2005, 117, 6302-6304; Angew. Chem. Int. Ed. 2005, 44, 6146–6148; b) A. Escribano-Cuesta, Pérez-Galán, E. Herrero-Gómez, M. Sekine, A. A. C. Braga, F. Maseras, A. M. Echavarren, Org. Biomol. Chem. 2012, 10, 6105-6111.
- [13] CCDC 953708 (12b), CCDC 953710 (9b), and CCDC 953709 (16) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [14] See the Supporting Information for details.

228