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Improving treatment outcome 
assessment in a mouse tuberculosis 
model
Bas C. Mourik1, Robin J. Svensson2, Gerjo J. de Knegt1, Hannelore I. Bax3, Annelies Verbon3, 
Ulrika S. H. Simonsson2 & Jurriaan E. M. de Steenwinkel1

Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs 
compare relapse rates of different regimens at selected time points, but lack information about the 
correlation between treatment length and treatment outcome, which is required to efficiently estimate 
a regimens’ treatment-shortening potential. Therefore we developed a new approach. BALB/c mice 
were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with 
rifapentine-pyrazinamide-isoniazid-ethambutol (RpZHE), rifampicin-pyrazinamide-moxifloxacin-
ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome 
was assessed in n = 3 mice after 9 different treatment lengths between 2–6 months. Next, we created a 
mathematical model that best fitted the observational data and used this for inter-regimen comparison. 
The observed data were best described by a sigmoidal Emax model in favor over linear or conventional 
Emax models. Estimating regimen-specific parameters showed significantly higher curative potentials for 
RZME and RpZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome 
evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship 
between treatment length and predicted cure, (ii) allows for efficient comparison between regimens 
and (iii) adheres to the reduction and refinement principles of laboratory animal use.

Tuberculosis (TB) claimed 1.7 million lives in 2016, which is more than any other infectious disease caused by a 
single pathogen1. The global treatment success rate for drug-susceptible TB is 83%, which falls short of the ≥90% 
target rate set by the WHO1. Moreover, treatment success rates against multi-drug resistant (MDR; 52%) and 
extensively drug resistant (XDR; 28%) TB are markedly lower1. These rates emphasize the need for more effective 
anti-TB drug regimens that can improve treatment success. In addition, new anti-TB regimens should allow for 
shortening of the current 6-months treatment length to increase compliance and minimize further drug resist-
ance development.

Recently, a large clinical Phase III trial failed to reduce anti-TB treatment length from six to four months by 
substituting conventional anti-TB drugs with moxifloxacin2. This trial was conducted based on promising results 
from clinical Phase IIa/b trials and preclinical experiments in mouse TB models3–5. Overall, this has led to the 
conclusion that early surrogates for treatment efficacy assessments as measured in clinical phase IIa/b trials are 
unreliable predictors for cure in TB6,7. This has further inspired efforts to improve preclinical mouse TB models 
aimed at evaluating treatment outcomes8.

Preclinical evaluation of TB treatment outcome occurs primarily in mouse models9. The conventional design 
involves a two-step approach. During the first step, early treatment efficacy is measured by determining mycobac-
terial load reductions in the lungs of small groups of mice (n = 3–5) at preset time points until culture conversion 
is reached10–15. In the second step, relapse of infection is evaluated for regimens that resulted in culture negativity. 
This occurs by determining lung culture status three months after treatment has ended in larger groups of mice 
(n = 12–30), after 1–3 selected treatment lengths)10–15.

This conventional design seems to have several drawbacks. Most importantly, it allows for relapse rate com-
parison between regimens at selected time points, but does not provide an individual regimen’s correlation 
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between treatment length and treatment outcome. This correlation is required to efficiently estimate a regimen’s 
treatment-shortening potential. The conventional design also has limited screening potential for regimens with 
unknown efficacy, as prior knowledge on when a regimen will reach culture-conversion is required before relapse 
can be evaluated. Lastly, recent clinical and preclinical observations suggest that early treatment efficacy assess-
ment as measured in step one of the conventional design has limited predictive value for treatment outcome after 
a full course of anti-TB treatment6,7,16.

In the current study we propose an alternative design for treatment outcome assessment in our mouse TB 
model. We increase the number of treatment schedules assessing outcome three months after the end of treatment 
regardless of culture status at the end of treatment, but decrease the number of mice per treatment length (n = 3 
instead of n = 12–30). This way of data collection allows for mathematical modeling of the observational data 
optimized for establishing a robust and informative link between treatment length and cure.

The mathematical modeling is based on conventional logistic regression, but is designed to be more inform-
ative. This approach differs from survival-, or time-to-event analysis, because the bacterial burden is determined 
after a fixed period of time after stop of treatment. Therefore the time of culture-conversion relative to stop of 
treatment is unknown.

In silico simulations of the mathematical model can be used to visualize and accurately quantify the association 
between treatment length and predicted treatment outcome for each regimen. Advantages include the possibility 
to compare the curative potential of different anti-TB regimens with each other over time instead of at selected 
time points only and simultaneously assess the treatment-shortening potential of each individual regimen.

Material and Methods
Mice, infection and mycobacterial strain.  Specified pathogen-free female BALB/c mice, aged 13–15 
weeks, were infected by intratracheal installation of 1.0–1.8 × 105 drug-susceptible Mycobacterium tuberculosis 
Beijing VN 2002–1585 (BE-1585) under general anesthesia as described previously16,17. The mice were housed 
and experiments were conducted in the Erasmus MC animal biosafety level III facility.

Ethical approval.  All protocols were approved by the Erasmus MC animal ethics committee under DEC 
number 117-12-13 and EMC number 2887, and were in accordance with the rules laid down in the Dutch Animal 
Experimentation Act and the EU Animal Directive 201/63/EU.

Treatment.  Treatment consisted of either of three regimens: (i) rifapentine, pyrazinamide, isoniazid and 
ethambutol (RpZHE), (ii) rifampicin, pyrazinamide, moxifloxacin and ethambutol (RZME) or (iii) rifampicin, 
pyrazinamide, moxifloxacin and isoniazid (RZMH). The first two months of each regimen consisted of treatment 
with all four drugs (intensive phase) followed by four months of treatment with rifapentine and isoniazid for the 
RpZHE regimen, rifampicin and moxifloxacin for RZME and rifampicin, moxifloxacin and isoniazid for RZMH. 
All drugs were administered 5 days a week via oral gavage in their human pharmacokinetic equivalent dose: 
rifampicin: 10 mg/kg, rifapentine: 10 mg/kg, moxifloxacin: 200 mg/kg, isoniazid: 25 mg/kg, ethambutol: 100 mg/
kg, pyrazinamide: 150 mg/kg18,19.

Treatment outcome evaluation.  Treatment was initiated 2 weeks after infection and was stopped between 
2 and 6 months with intervals of 2 weeks (i.e. nine different treatment lengths per drug regimen). The protocol 
was designed to include three (n = 3) mice per treatment length. A sample size of n = 3 was found to be sufficient 
to detect a 50% difference in potency between different treatments and was expected to give reasonably high pre-
cision in model parameters, according to a statistical power calculation (described in Supplementary data file S1).

One ‘backup’ mouse was added per regimen to reduce the impact of unexpected animal loss. All mice were 
sacrificed 3 months post-treatment to determine mycobacterial loads in the lungs as described previously16.

Statistical analysis.  The statistical analysis involved the development of a logistic regression model based on 
the observational data. These data were treated as a binary outcome variable of either cure (defined as a negative 
solid culture 3 months post-treatment) or failure (defined as a positive solid culture 3 months post-treatment). 
The independent variable was treatment length. The data were analyzed using the non-linear regression software 
NONMEM (version 7.3) with simultaneous estimation of all model parameters20. Only if parameters were esti-
mated close to a parameter boundary (as described below) they were fixed to the value of the respective bound-
ary. NONMEM maximizes the likelihood of a model to fit the observational data. In NONMEM the model fit 
(defined as the likelihood of the model to describe the observational data) was assessed using the objective func-
tion value (OFV), which is equal to - 2 times the log value of the likelihood. In order to generate a model that best 
described (fitted) the data, the OFV between models was compared using the likelihood ratio test (LRT). To this 
aim, for each model comparison a reduced model and a full model were evaluated where the full model always 
included more model parameters than the reduced model. The null hypothesis was that the full model did not 
provide better fit than the reduced model. Testing was performed at the 5% significance level which corresponds 
to a drop in the OFV of at least 3.84 points with one degree of freedom. Data handling and graphical analysis were 
conducted in R (version 3.3.0)21.

The model development was divided into two parts; in the first part, an appropriate relation between probabil-
ity of cure and treatment length was identified (regardless of drug regimen). In the second part we explored if this 
relation between probability of cure and treatment length was significantly different between the drug regimens.

The starting point for the first part of model development was a base model which assumed that the probabil-
ity of cure was identical regardless of treatment lengths according to:

p p p1 (1)failure cure base= − =
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In this model, pfailure and pcure are the predicted probabilities of failure and cure respectively and pbase is the base 
probability of failure. The pbase parameter was constrained to be between 0 and 1. First, this base model was com-
pared to a model assuming linear increase in cure rate with treatment length according to:

= − = × − ×p p p Slope T1 (1 ) (2)failure cure base

In this model ‘Slope’ is the linear increase in probability of cure with treatment length (T). The ‘Slope’ parameter 
was constrained to be between 0 and 1 divided by the maximum treatment duration of 6 months. Secondly, an 
Emax model was tested according to:
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In this model ‘Emax’ is the maximal achievable probability of cure and ‘T50’ is the treatment length at which half 
the Emax is seen. The Emax parameter was constrained to be between 0 and 1. Lastly, a sigmoidal Emax model was 
tested according to:
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In this model ‘γ’ is a shape parameter controlling the steepness of the curve produced by the Emax equation.
In the second part of model development, we explored if the identified relation between cure and treatment 

length from the first part of model development was significantly different for the different drug regimens by 
comparing the model parameters of the different drug regimens (Slope, Emax, T50 or γ, depending on the model). 
This was done in a step-wise approach, here exemplified for a sigmoidal Emax model, which includes the three 
model parameters Emax, T50 and γ. Firstly, one model was fitted to explore if Emax for each regimen was signif-
icantly different from the other two regimens. This procedure was repeated for the T50 and γ parameters, thus 
resulting in nine different models. Secondly, the models that did not significantly improve the fit (OFV drop of 
less than 3.84 points) were not evaluated further. Of the remaining models that did result in an OFV drop of at 
least 3.84 points, the model with the lowest OFV was accepted. Thirdly, the accepted model with the greatest drop 
in OFV was combined with the remaining models that also improved the fit significantly (i.e. whose OFV drop 
was lesser than the accepted model but at least 3.84 points). If this combination improved the fit significantly, it 
was accepted as the new model. This whole three-step procedure was repeated until no significant improvement 
was seen anymore, which was defined as the final model.

In addition to assessment of OFV, model selection was guided by parameter uncertainty and visual predic-
tive checks (VPC) generated using PsN (http://psn.sourceforge.net/ [cited 19-12-2016]) and Xpose (http://xpose.
sourceforge.net/ [cited 19-12-2016]) using 1000 simulated datasets. The VPC is a visual diagnostic which shows 
how well data simulated from a model agree with the observed data.

Simulations.  The observational data using n = 3 animals can only theoretically generate cure rates of 0%, 
33%, 67% or 100%. Therefore, we used the mathematical model to simulate treatment outcome from 1000 mice 
per time point to increase the resolution in the predicted cure rates (i.e. to allow cure rate to continuously range 
between 0–100%). Simulations were performed using Monte Carlo sampling from a random uniform distribu-
tion ranging from 1 to 0. This was also used to determine the model-predicted treatment length required for each 
regimen to achieve 85%, 90% or 95% cure, respectively.

Data availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary data files).

Results
Observed treatment outcome.  A schematic overview of our method of data collection compared to the 
conventional design is found in Fig. 1. The observed proportions of cured animals for the different treatment 
lengths for the RpZHE, RZME and RZMH regimens are shown in Table 1. RpZHE started to show cure rates above 
0% after 2.5 months of treatment and showed 100% cure after 4 months. RZME displayed similar kinetics and also 
showed complete cure rates from 4 months of treatment onwards. In contrast, RZMH only started to show cure 
rates above 0% after 4 months of treatment and did not reach complete cure even after 6 months of treatment.

Model development.  Part I: Relation between treatment length and probability of cure.  The observational 
data from Table 1 were first converted into a dataset used for modeling (Supplementary data file S2). Compared 
to the base model which does not assume any relationship between cure and treatment length, a linear relation-
ship between treatment length and cure gave a significant improvement in model fit compared to the base model 
(p < 0.001, OFV drop of 32.2 points). An Emax relationship between treatment length and cure did not improve 
model fit compared to a linear relationship (OFV increased with 15.9 points) and was rejected. However, a sig-
moidal Emax relationship improved model fit significantly compared to a linear relationship between treatment 
length and probability of cure (p = 0.001, OFV drop of 13.3 points). Thus, the sigmoidal Emax model was identified 
as appropriate and was brought forward to the second part of model development.

Notably, the baseline probability (pbase) in this sigmoidal Emax model was estimated very close to 1, which 
resulted in an unstable model (not possible to obtain any parameter uncertainty). Fixing pbase to 1 could correct 
for this without affecting the OFV.

http://psn.sourceforge.net/
http://xpose.sourceforge.net/
http://xpose.sourceforge.net/
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Part II: inter-regimen differences.  The generated sigmoidal Emax relationship in part 1 of model development 
assumed a similar relationship between treatment length and probability of cure for all three regimens tested. In 
order to detect if the selected relationship deviated significantly between the different regimens, we determined if 
implementing drug regimen-specific model parameters (including γ, Emax and T50) improved model fit and could 
detect significant differences between the different regimens.

Initially, the following models improved the model fit to the observational data significantly: Model 1: separate 
T50 for RZMH (p < 0.001, OFV drop of 18.6 points), Model 2: separate Emax for RZMH (p = 0.00298, OFV drop 
of 8.82 points), Model 3: separate γ for RZMH (p = 0.0408, OFV drop of 4.18 points) and Model 4: separate T50 
for RpZHE (p = 0.0377, OFV drop of 4.32 points). Model 1 (separate T50 for the RZMH regimen) had the lowest 
OFV and was therefore accepted. When combined with model 2–4, no significant improvements were observed. 
Therefore only model 1, which included simultaneous estimation of separate T50 parameters for RZMH only and 
for RZME and RpZHE, respectively was selected.

Figure 1.  Schematic examples of the conventional design and the proposed design for treatment outcome 
evaluation in mouse TB models. (A) Shows an example of the conventional design in which bactericidal activity 
is determined by measuring reductions in Mtb-loads in the lungs until culture negativity is reached, followed  
by cross-sectional evaluation/comparison of relapse rates 3 months post-treatment (x in upper right figure).  
(B) Shows our proposed design in which treatment outcome is determined regardless of lung culture-status 
at stop of treatment. This allows for more informative mathematical modeling of the data and subsequent 
simulation of large numbers of mice to generate a high resolution correlation between treatment duration and 
treatment success.

Treatment length RpZHE RZME RZMH

2 months 0/3 0/3a 0/3

2.5 months 1/3 0/3 0/3

3 months 2/3 3/3 0/3

3.5 months 2/3 2/3 0/3

4 months 3/3 2/2b 1/3

4.5 months 2/2c 3/3 2/3

5 months 3/3 3/3 3/3

5.5 months 3/3 2/2b 3/3

6 months 3/3 3/3 3/4d

Table 1.  Observational data on cure. a0/3 = 0 of 3 mice was cured (culture-negative lungs 3 months post-
treatment) after indicated treatment duration; bAnimal died of a non-tuberculosis cause prior to time point; 
cThe plates for colony counting were contaminated and no counting could be performed; dThe backup mouse 
included for the RZMH regimen was still alive at the 6 month time point. R = rifampicin, Rp = rifapentine, 
Z = pyrazinamide, M = moxifloxacin, H = isoniazid, E = Ethambutol.
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Notably, The Emax parameter for the sigmoidal Emax model with a separate T50 for the RZMH regimen was 
estimated very close to 1 which also resulted in an unstable model. Fixing Emax to 1 could correct for this and 
improved the model fit slightly (p = 0.827, OFV drop of 0.048 points).

Taken together, the final model included a sigmoidal Emax relationship where the probability of cure increased 
with treatment length. The Emax parameter had the value of 1 which implies that all included regimens can achieve 
100% cure if the treatment length is sufficiently long. The baseline probability (pbase) also had a value of 1 which 
implies that at very short or no treatment duration at all (i.e. T = 0) treatment failure will occur in all mice. Apart 
from pbase and Emax, all parameters were simultaneously estimated.

Importantly, our finding that estimating a separate T50 for the RZMH regimen significantly improved our 
model fit indicates that RZMH has reduced curative potential compared to the other regimens. The final model 
parameters are shown in Table 2. The final model code is supplied in Supplementary data file S3.

Model validation.  To verify the model, a visual predictive check (VPC) was performed where the obser-
vational data and simulated data (presented as 95% confidence interval based on 1000 simulated datasets) were 
compared in the same plot (Fig. 2). As can be seen in the VPC, the observed proportions of cure fell within the 
95% confidence of the simulated data. The confidence intervals may appear large at some time points which is 
due to the relatively low number of animals per time point and thus, given the data, the model can describe the 
observed data well.

Part I: Cure rate predictions based on model simulation.  Simulations of high numbers of mice (n = 1000 per arm) 
using the developed model enabled us to provide a high-resolution estimate of the predicted cure rates of each 
regimen for different treatment lengths as shown in Fig. 3. For RpZHE and RZME this estimates that mice must 
be treated at least 3.5 months to reach 85% cure and 4 months to reach 90% or 95% cure. In contrast, mice must 
be treated with RZMH for at least 5.5 months to reach 85% or 90% cure and a full 6 months to reach 95% cure.

Part II: Model comparison to conventional relapse assessment other mouse TB models.  Next, we aimed to evaluate 
if the predicted cure rates generated in our model were comparable to observational data obtained from other 
mouse TB models using pulmonary infection. These data are shown in Table 35,12,13,22,23. A direct advantage of our 
model-based approach is the possibility to compare our predicted cure rates for any treatment length evaluated in 
other mouse TB models (Fig. 3 and Table 3).

Our model predicted a cure rate of 60% for RZME after three months of treatment. This was lower than the 
observed cure rates from three other mouse TB models, which were 80–100% (Table 3: models 2, 4, 5), but higher 
than the observed cure rate of 40% in model 612. After four months of treatment no data on RZME was available 
in other mouse TB models and we could only compare our data to the RZM regimen. A 97% predicted cure rate 
for RZME in our model showed similar cure rates as observed for RZM in models 1 and 4 and a 13% higher cure 
rate than RZM in model 3 (Table 3). After five months of treatment, results were similar compared to one other 
mouse TB model, which also showed 100% cure.

For RZMH, our predicted cure rate of 2% after three months of treatment was lower compared to the observed 
cure rates of 27%, 93% and 80% in models 2, 4 and 5, respectively, but higher than the 0% cure observed in model 
6 (Table 3). After four months, RZMH in our model could only be compared to RZM in other mouse TB models. 
Our predicted cure rate of 29% for RZMH at this point was markedly lower than the cure rates observed for RZM 
of 100–95%, 84% and 95% in models 1, 3 and 4 respectively. In this regard it is of note to mention that after three 
months of treatment RZMH also showed inferior results compared to RZM in mouse TB models 1 and 4 and 
inferior results compared to RZME in mouse TB models 2, 4 and 6 (Table 3).

Taken together, our finding that RZMH has significantly lower curative potential compared to RZME is 
reflected in trends observed in other mouse TB models. Moreover, the discrepancy between our predicted cure 
rates for RZMH compared to RZM in other mouse TB models, suggests a negative effect of H on the efficacy of 
RZM in mouse TB models.

Discussion
In this study we demonstrated that a model-based analysis of observational in vivo data on TB treatment out-
comes can be used to generate a high resolution association between treatment length and probability of cure. The 
developed model could detect statistically significant differences in the curative potentials of RpZHE and RZME 

Parameter Description Parameter estimate Standard error (%CV)a

pbase Baseline probability of no cure 1 FIX —

Emax Maximum achievable probability of cure 1 FIX —

T50RpZHE/RZME (months)b The treatment time at which half the Emax is reached for RpZHE 
and RZME 2.87 5.4

T50RZMH (months)b The treatment time at which half the Emax is reached for RZMH 4.35 6.0

γ Shape factor 9.82 23.0

Table 2.  Final parameter estimates. Rp = rifapentine, Z = pyrazinamide, M = moxifloxacin, H = isoniazid, 
E = Ethambutol; CV coefficient of variance; aThe standard errors were calculated using the covariance step in 
NONMEM; bT50 was significantly different between treatment arms (no statistically significant differences were 
found in other parameters).
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compared to RZMH, which could not have been identified based on the observational data alone. Validation 
of our model against other mouse TB models supported a negative effect of isoniazid on the efficacy of RZM in 
mouse studies.

In our model RZMH showed significantly reduced curative potential compared to RZME. Interestingly, a 
similar trend was observed in other mouse TB models where RZMH consistently showed a trend towards inferior 
results compared to RZME and/or RZM12. One explanation for this phenomenon might be a species-dependent, 
antagonistic effect of isoniazid on the therapeutic efficacy of rifampicin. Rifampicin is more essential for cure than 
isoniazid in mice16. It has been demonstrated that concomitant administration of isoniazid negatively affects the 
pharmacokinetics of rifampicin by lowering the highest observed plasma concentration (Cmax) and area under the 
plasma concentration-time curve (AUC)24. However, pharmacokinetics is an unlikely cause in our model as iso-
niazid co-administration previously did not affect rifampicin Cmax and AUC compared to rifampicin monother-
apy25. Also in patients no clinically significant pharmacokinetic interactions between isoniazid and rifampicin 
have been reported26. Nevertheless, addition of isoniazid (H) to the combination of rifampicin and pyrazinamide 
(RZ) significantly reduced bactericidal activity and cure in other mouse TB models24,27,28. In addition, an earlier 
study in our mouse TB model showed that RZ-treated mice had higher cure rates than mice treated with RH 
or RHZ after a six-months treatment course (95% vs. 87% and 80%, respectively)16. This previous comparison 
between RZ, RH and RHZ using the conventional design as shown in Fig. 1 did not yield significant differences, 
but the observed inferiority of RZMH compared to RZME in the current study supports earlier observations of 
an antagonistic effect of isoniazid on the therapeutic efficacy of rifampicin in mice.

Figure 2.  Visual predictive check (VPC) of the final model for each regimen. (A) rifapentine, pyrazinamide, 
isoniazid and ethambutol (RpZHE), (B) rifampicin, pyrazinamide, moxifloxacin and ethambutol (RZME) and 
(C) rifampicin, pyrazinamide, moxifloxacin and isoniazid (RZMH). The open circles connected by the solid 
black lines are the observed probabilities of cure following different treatment lengths and the shaded areas are 
the 95% non-parametric confidence interval of the predicted cure rates following different treatment lengths.
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Advantages of the combination of animal research and mathematical modeling are the ability to detect sig-
nificant differences in the curative potential of different regimens, and the ability to compare our data with other 
studies that evaluated treatment outcome after any given treatment length as demonstrated in Table 3. In addi-
tion, animal research experiments should always strive towards the 3R-principles of replacement, reduction and 
refinement29. Our method adheres to the reduction and refinement principles. Firstly, the implementation of 
mathematical modeling and simulations can be considered a refinement as it enabled us to detect significant 
differences between regimens and allowed efficient comparison with other mouse TB models, which could not 
be derived from our observational data alone. Secondly, our approach enables assessment of treatment outcome 
without requiring early treatment efficacy data. This reduces the total number of mice required (Fig. 1).

Early treatment efficacy as measured through bactericidal activity might be of limited predictive value for 
treatment outcome in TB16. However, it remains an important screening tool in the setting of early drug discov-
ery. The similar principle of observational data and mathematical modeling can be applied to bactericidal activity 
experiments as well using ‘culture negativity’ as outcome parameter in order to improve data interpretation.

One initial concern with the proposed design was that with only n = 3 mice per time point, the treatment out-
come in a single mouse on a crucial time point might have a disproportional impact, e.g. if in the RZMH group 
4/4 mice would be cured after 6 months or if only 2/3 mice would be cured in the RZME group after 6 months 

Figure 3.  Model-predicted cure at different treatment lengths for each regimen. The black horizontal lines 
indicate 95% (dashed line), 90% (dotted line) and 85% (dashed-dotted line) cure rates. R = rifampicin, 
Rp = rifapentine, Z = pyrazinamide, M = moxifloxacin, H = isoniazid, E = Ethambutol.

Regimen

% cured at:

Ref.3 months 4 months 5 months

Our model BALB/c, Beijing, HDIT

2 RpZHE/1,2,3 RpHa 62% 97% 100%

2 RZME/1,2,3 RMa 60% 97% 100%

2 RZMH/1,2,3 RMHa 2% 29% 81%

Model 1 BALB/c, H37Rv, HDA

2 RpZM/1,2 RpM 100% 22

3,4,5 RZM 75% 100% 100% 5

2 RZM/1,2,3 RM 83% 100% 100% 5

2 RZM/2,3 RM 95% 100% 23

Model 2 BALB/c, H37Rv, LDA
2 RZME/1 RM 80% 12

2 RZMH/1 RMH 27% 12

Model 3 BALB/c, Erdman, HDA 2 RZM/2 RM 84% 13

Model 4 BALB/c, Erdman, LDA

3 RZME 100% 12

3 RZMH 93% 12

2 RZM/1 RM, 2 RM 100% 95% 13

Model 5 C3HeB/FeJb, H37Rv, LDA
2 RZME/1 RM 80% 12

2 RZMH/1 RMH 80% 12

Model 6 C3HeB/FeJb, Erdman, LDA
3 RZME 40% 12

3 RZMH 0% 12

Table 3.  Comparison of our model-based predictions of cure rates with observational data. aPredicted cure 
for 3,4 and 5 months of treatment is shown as estimated in Fig. 3, bC3HeB/FeJ mice can develop cavitating 
lesions that more closely resemble human disease, Abbreviations for route of infection: HDIT = high 
dose intratracheally, HDA = high dose aerosol, LDA = low dose aerosol, R = rifampicin, Rp = rifapentine, 
Z = pyrazinamide, M = moxifloxacin, H = isoniazid, E = Ethambutol.
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(Table 1). However, sensitivity analysis of such scenarios did not alter the conclusions based on the model (results 
not shown). This can be explained by the notion that the fit of a model involves all mice evaluated at all time 
points and thus reduces the impact of potential outliers at a single time point.

A common method to analyze binary data is standard logistic regression but in this work we applied a new 
alternative to standard logistic regression. The main advantage with our new method is that it is more widely 
applicable than standard logistic regression. Observational data may not always behave similar to a logistic 
curve and in such situation our new method will outperform logistic regression. Additionally our new method 
can detect differences in the maximum probability of cure which standard logistic regression cannot provide. 
Furthermore, if different mouse models are compared, the treatment failure rate at no treatment may be different 
(i.e. different pbase between mouse models) which is another example of a scenario that can be handled using our 
approach but not using conventional logistic regression.

A potential improvement of our model in its current form might be evaluation of the (re)growth curve of M. 
tuberculosis during treatment failure. In the current design, the data were analyzed as a binary outcome because 
cure or failure was based on the absence or presence of mycobacteria in the lungs at a single time point three 
months after stop of treatment. If mycobacterial loads were measured at multiple time points after stop of treat-
ment, e.g. after one, two and three months, as opposed to only three months, a time-to-event approach could have 
been used to analyze the data. A time-to-event analysis is considered more informative than analyzing the data 
as a binary outcome because it can provide information on the time course of cure or relapsing treatment failure. 
This could allow for better estimation of treatment success rates, but would also require substantially more mice.

In conclusion, we provide a new design for treatment outcome evaluation in our mouse TB model, which (i) 
provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows 
for efficient comparison between regimens, (iii) can be readily compared to other studies and (iv) adheres to the 
reduction and refinement principles of laboratory animal use.

References
	 1.	 Global tuberculosis report 2017. Geneva: World Health Organization; Licence: CC BY-NCSA3.0 IGO (2017).
	 2.	 Gillespie, S. H. et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371, 1577–1587, 

https://doi.org/10.1056/NEJMoa1407426 (2014).
	 3.	 Conde, M. B. et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled 

phase II trial. Lancet 373, 1183–1189, https://doi.org/10.1016/s0140-6736(09)60333-0 (2009).
	 4.	 Dorman, S. E. et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J 

Respir Crit Care Med 180, 273–280, doi:200901-0078OC (2009).
	 5.	 Nuermberger, E. L. et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J 

Respir Crit Care Med 170, 1131–1134, https://doi.org/10.1164/rccm.200407-885OC (2004).
	 6.	 Phillips, P. P., Fielding, K. & Nunn, A. J. An evaluation of culture results during treatment for tuberculosis as surrogate endpoints for 

treatment failure and relapse. PLoS One 8, e63840, https://doi.org/10.1371/journal.pone.0063840 (2013).
	 7.	 Phillips, P. P. et al. A new trial design to accelerate tuberculosis drug development: the Phase IIC Selection Trial with Extended Post-

treatment follow-up (STEP). BMC medicine 14, 51, https://doi.org/10.1186/s12916-016-0597-3 (2016).
	 8.	 Nuermberger, E., Sizemore, C., Romero, K. & Hanna, D. Toward an Evidence-Based Nonclinical Road Map for Evaluating the 

Efficacy of New Tuberculosis (TB) Drug Regimens: Proceedings of a Critical Path to TB Drug Regimens-National Institute of 
Allergy and Infectious Diseases In Vivo Pharmacology Workshop for TB Drug Development. Antimicrob Agents Chemother 60, 
1177–1182, https://doi.org/10.1128/aac.02041-15 (2016).

	 9.	 Gumbo, T., Lenaerts, A. J., Hanna, D., Romero, K. & Nuermberger, E. Nonclinical models for antituberculosis drug development: a 
landscape analysis. The Journal of infectious diseases 211(Suppl 3), S83–95, https://doi.org/10.1093/infdis/jiv183 (2015).

	10.	 Tasneen, R. et al. Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a 
Mouse Model of Tuberculosis. Antimicrob Agents Chemother 60, 270–277, https://doi.org/10.1128/aac.01691-15 (2015).

	11.	 Ahmad, Z. et al. Contribution of moxifloxacin or levofloxacin in second-line regimens with or without continuation of pyrazinamide 
in murine tuberculosis. American journal of respiratory and critical care medicine 188, 97–102, https://doi.org/10.1164/rccm.201212-
2328OC (2013).

	12.	 Li, S. Y. et al. Evaluation of moxifloxacin-containing regimens in pathologically distinct murine tuberculosis models. Antimicrob 
Agents Chemother 59, 4026–4030, https://doi.org/10.1128/aac.00105-15 (2015).

	13.	 De Groote, M. A. et al. Comparative studies evaluating mouse models used for efficacy testing of experimental drugs against 
Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy 55, 1237–1247, https://doi.org/10.1128/AAC.00595-10 (2011).

	14.	 Gupta, S. et al. Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. American journal 
of respiratory and critical care medicine 188, 600–607, https://doi.org/10.1128/AAC.00595-10 (2013).

	15.	 Dutta, N. K. & Karakousis, P. C. PA-824 is as effective as isoniazid against latent tuberculosis infection in C3HeB/FeJ mice. Int J 
Antimicrob Agents 44, 564–566, https://doi.org/10.1016/j.ijantimicag.2014.07.012 (2014).

	16.	 Mourik, B. C. et al. Assessment of Bactericidal Drug Activity and Treatment Outcome in a Mouse Tuberculosis Model Using a 
Clinical Beijing Strain. Antimicrob Agents Chemother 61 https://doi.org/10.1128/aac.00696-17 (2017).

	17.	 de Steenwinkel, J. E. et al. Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB. Emerg 
Infect Dis 18, 660–663, https://doi.org/10.3201/eid1804.110912 (2012).

	18.	 Ahmad, Z. et al. Comparison of the ‘Denver regimen’ against acute tuberculosis in the mouse and guinea pig. J Antimicrob 
Chemother 65, 729–734, https://doi.org/10.1093/jac/dkq007 (2010).

	19.	 Rosenthal, I. M. et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of 
tuberculosis. Antimicrob Agents Chemother 56, 4331–4340, https://doi.org/10.1128/aac.00912-12 (2012).

	20.	 Beal, S., Sheiner, L., Boeckmann, A. & Bauer, R. NONMEM User’s Guide. (1989–2009), Icon Development Solutions, Ellicott City, 
MD, USA (2009).

	21.	 R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
URL: http://www.R-project.org/ (2013).

	22.	 Rosenthal, I. M. et al. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS medicine 4, 
e344, https://doi.org/10.1371/journal.pmed.0040344 (2007).

	23.	 Nuermberger, E. et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide 
in a murine model of tuberculosis. Antimicrob Agents Chemother 52, 1522–1524, https://doi.org/10.1128/aac.00074-08 (2008).

	24.	 Grosset, J., Truffot-Pernot, C., Lacroix, C. & Ji, B. Antagonism between isoniazid and the combination pyrazinamide-rifampin 
against tuberculosis infection in mice. Antimicrob Agents Chemother 36, 548–551 (1992).

http://dx.doi.org/10.1056/NEJMoa1407426
http://dx.doi.org/10.1016/s0140-6736(09)60333-0
http://dx.doi.org/10.1164/rccm.200407-885OC
http://dx.doi.org/10.1371/journal.pone.0063840
http://dx.doi.org/10.1186/s12916-016-0597-3
http://dx.doi.org/10.1128/aac.02041-15
http://dx.doi.org/10.1093/infdis/jiv183
http://dx.doi.org/10.1128/aac.01691-15
http://dx.doi.org/10.1164/rccm.201212-2328OC
http://dx.doi.org/10.1164/rccm.201212-2328OC
http://dx.doi.org/10.1128/aac.00105-15
http://dx.doi.org/10.1128/AAC.00595-10
http://dx.doi.org/10.1128/AAC.00595-10
http://dx.doi.org/10.1016/j.ijantimicag.2014.07.012
http://dx.doi.org/10.1128/aac.00696-17
http://dx.doi.org/10.3201/eid1804.110912
http://dx.doi.org/10.1093/jac/dkq007
http://dx.doi.org/10.1128/aac.00912-12
http://www.R-project.org/
http://dx.doi.org/10.1371/journal.pmed.0040344
http://dx.doi.org/10.1128/aac.00074-08


www.nature.com/scientificreports/

9SCIENTIfIC REPOrTS |  (2018) 8:5714  | DOI:10.1038/s41598-018-24067-x

	25.	 de Steenwinkel, J. E. et al. Optimization of the rifampin dosage to improve the therapeutic efficacy in tuberculosis treatment using a 
murine model. Am J Respir Crit Care Med 187, 1127–1134, https://doi.org/10.1164/rccm.201207-1210OC (2013).

	26.	 Yew, W. W. Clinically significant interactions with drugs used in the treatment of tuberculosis. Drug Saf 25, 111–133 (2002).
	27.	 Almeida, D. et al. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide combination in a mouse model of 

tuberculosis. Antimicrob Agents Chemother 53, 4178–4184, https://doi.org/10.1128/AAC.00830-09 (2009).
	28.	 Grosset, J. et al. Modeling early bactericidal activity in murine tuberculosis provides insights into the activity of isoniazid and 

pyrazinamide. Proceedings of the National Academy of Sciences 109, 15001–15005, https://doi.org/10.1073/pnas.1203636109 (2012).
	29.	 Flecknell, P. Replacement, reduction and refinement. Altex 19, 73–78 (2002).

Acknowledgements
Authors thank Carla Roodbol, Marian ten Kate, Aart van der Meijden and Sanne van den Berg for their technical 
assistance and Sake de Vlas for his scientific comments and critical reading of the manuscript. Research was 
conducted on behalf of the PreDiCT-TB Consortium (http://predict-tb.eu). This work was supported by the 
Innovative Medicines Initiative Joint Undertaking (115337), resources of which are composed of financial 
contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA 
companies’ in kind contribution.

Author Contributions
B.M. and R.S. wrote the main manuscript text and prepared the figures and tables. G.K. and B.M. collected the 
experimental data. U.S. and J.S. contributed to the conception and design of the work, drafting the article and 
funding. G.K., H.B. and A.V. critically revised the paper and aided in drafting the article. All authors reviewed the 
manuscript prior to submission.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24067-x.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1164/rccm.201207-1210OC
http://dx.doi.org/10.1128/AAC.00830-09
http://dx.doi.org/10.1073/pnas.1203636109
http://predict-tb.eu
http://dx.doi.org/10.1038/s41598-018-24067-x
http://creativecommons.org/licenses/by/4.0/

	Improving treatment outcome assessment in a mouse tuberculosis model

	Material and Methods

	Mice, infection and mycobacterial strain. 
	Ethical approval. 
	Treatment. 
	Treatment outcome evaluation. 
	Statistical analysis. 
	Simulations. 
	Data availability. 

	Results

	Observed treatment outcome. 
	Model development. 
	Part I: Relation between treatment length and probability of cure. 
	Part II: inter-regimen differences. 

	Model validation. 
	Part I: Cure rate predictions based on model simulation. 
	Part II: Model comparison to conventional relapse assessment other mouse TB models. 


	Discussion

	Acknowledgements

	Figure 1 Schematic examples of the conventional design and the proposed design for treatment outcome evaluation in mouse TB models.
	Figure 2 Visual predictive check (VPC) of the final model for each regimen.
	Figure 3 Model-predicted cure at different treatment lengths for each regimen.
	Table 1 Observational data on cure.
	Table 2 Final parameter estimates.
	Table 3 Comparison of our model-based predictions of cure rates with observational data.




