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Reference gene selection for RT-
qPCR analysis in Harmonia axyridis, 
a global invasive lady beetle
Xiaowei Yang1,2, Huipeng Pan1,3, Ling Yuan4 & Xuguo Zhou   1

Harmonia axyridis is a voracious predator, a biological control agent, and one of the world most invasive 
insect species. The advent of next-generation sequencing platforms has propelled entomological 
research into the genomics and post-genomics era. Real-time quantitative PCR (RT-qPCR), a primary 
tool for gene expression analysis, is a core technique governs the genomic research. The selection of 
internal reference genes, however, can significantly impact the interpretation of RT-qPCR results. 
The overall goal of this study is to identify the reference genes in the highly invasive H. axyridis. Our 
central hypothesis is that the suitable reference genes for RT-qPCR analysis can be selected from 
housekeeping genes. To test this hypothesis, the stability of nine housekeeping genes, including 18S, 
28S, ACTB, ATP1A1, GAPDH, HSP70, HSP90, RP49, and ATP6V1A, were investigated under both biotic 
(developmental time, tissue and sex), and abiotic (temperature, photoperiod, in vivo RNAi) conditions. 
Gene expression profiles were analyzed by geNorm, Normfinder, BestKeeper, and the ΔCt method. Our 
combined results recommend a specific set of reference genes for each experimental condition. With 
the recent influx of genomic information for H. axyridis, this study lays the foundation for an in-depth 
omics dissection of biological invasion in this emerging model.

The multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), a generalist predator, preys 
on aphids and scale insects on crops and other plants1. Harmonia axyridis is native to central and eastern Asian. 
To exploit its ecosystem services, numerous releases were attempted in North America and Europe, as early as 
19162,3. Due to its broad range of preys and incredible consumption rate, H. axyridis indeed has been used to 
control aphids4–6 and other sap-sucking arthropod pests7,8. However, the worldwide propagation of H. axyridis 
threatens the indigenous lady beetles and other non-target species9–11. Considered as “the most invasive ladybird 
on Earth”, the role of H. axyridis has shifted from a global biological control agent to an invasive alien species12. 
Multiple factors contribute to this transition. Predation of eggs and larvae of other lady beetle species is one of 
the reasons which leads to the decline of native species13,14. A higher level of resistance to infection is the other 
major reason to benefit its competition in the field15–17. The molecular basis of this resistance, however, is poorly 
understood.

Double-stranded RNA (dsRNA) can induce sequence-specific posttranscriptional gene silencing in many 
organisms, i.e., RNA interference (RNAi)18,19. RNAi can not only investigate gene functions in vivo or in vitro, 
but also offers a novel approach with a brand new mode-of-action to control arthropod pests20–24. With a recent 
influx of genomic information for H. axyridis, there is an increasing need for the development of genetic tools to 
functionally interpret the sequencing data20,24–26.

Real-time quantitative PCR (RT-qPCR) has been used primarily for gene expression quantification27–29. 
RT-qPCR analysis is highly sensitive, and its accuracy can be affected by RNA quantity, transcription efficiency, 
amplification efficiency and experimental procedures between samples. To avoid biases, normalization of gene 
expression is an essential step30. The most common practice is to compare a target gene expression with an inter-
nal reference gene31. Housekeeping genes, such as beta-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), and translation elongation factor 1-alpha (EF1A)32,33 have been used extensively for RT-qPCR analysis. 

1Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA. 2Department of Entomology, 
Cornell University, Geneva, NY, 14456, USA. 3Department of Entomology, South China Agricultural University, Key 
Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, China. 4Department 
of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA. Xiaowei Yang and Huipeng Pan 
contributed equally to this work. Correspondence and requests for materials should be addressed to X.Z. (email: 
xuguozhou@uky.edu)

Received: 25 October 2017

Accepted: 11 January 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-2385-8224
mailto:xuguozhou@uky.edu


www.nature.com/scientificreports/

2SciEntific REPOrTS |  (2018) 8:2689  | DOI:10.1038/s41598-018-20612-w

However, under any given experimental condition, the expression of these commonly used reference genes may 
vary substantially34–37. A systematic and customized study for each tested species is recommended for identifying 
appropriate reference genes38,39.

The overall goal of this study is to identify candidate reference genes in the highly invasive H. axyridis. Our 
objective is to determine the suitable reference genes for RT-qPCR analysis in H. axyridis from selected house-
keeping genes, an array of constitutively expressed genes maintaining the basic cellular functions in an organism. 
We evaluated the stability of nine housekeeping genes under selected biotic and abiotic conditions, respectively. 
The candidate genes include 18S ribosomal RNA(18S), 28S ribosomal RNA (28S), Na+/K+-ATPase subunit 
alpha 1 (ATP1A1), heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), ribosomal protein 49 (RP49), 
V-ATPase subunit A (ATP6V1A), ACTB and GAPDH from H. axyridis. All these housekeeping genes have been 
used empirically as the reference genes for RT-qPCR analyses in other organisms, especially in insects. The spe-
cific environmental conditions range from biotic (developmental stage, tissue type, and sex) to abiotic treatments 
(temperature, photoperiod, and in vivo RNAi). As a result, a specific set of reference genes is recommended for 
each given condition.

Results
RT-qPCR analysis.  For each candidate reference gene, a single amplicon was produced, as detected by aga-
rose gel electrophoresis analysis and the melting curve analysis. Nonspecific bands were not found, and a single 
peak was observed in the melting curve analysis. A standard curve was generated for each gene, using a five-fold 
serial dilution of the pooled cDNA. Efficiency of RT-qPCR ranged between 90 and 110% (Table 1), which is con-
sidered standard40. Ct values of the nine candidate reference genes ranged from 8 to 27, covering all the experi-
mental conditions (Fig. 1). While the vast majority of Ct values were found between 17 and 26, 18S was the most 
abundant transcript. ATP1A1, VATP6V1A, and RP49 were the least abundant candidate reference genes.

Stability of candidate reference genes under biotic conditions.  For different developmental stages, 
geNorm ranked the stability from high to low as 18S = HSP70, 28S, ATP6V1A, ATP1A1, ACTB, HSP90, GAPDH, 
and RP49. Normfinder provided a ranking as 18S, HSP70, ATP6V1A, 28S, ATP1A1, ACTB, HSP90, GAPDH, 
and RP49. Bestkeeper offered a list as follows: 18S, HSP70, 28S, ATP1A1, GAPDH, HSP90, ACTB, ATP6V1A, 
and RP49 (Table 2). The best set of reference genes was recommended in Table 2. Integrating the results from all 
four programs, RefFinder identified the consensus top three candidates, 18S, HSP70 and 28S, across different 
developmental stages. 18S was the most stable gene, while RP49 was the least stable candidate (Table 2, Fig. 2A).

For different tissues, the consensus top three candidates were 28S, 18S and RP49 according to RefFinder 
(Table 2, Fig. 2B). Specifically, 28S and ATP6V1A were the most and the least stable genes, respectively. For 
different sexes, the top three most stable candidates in both sexes were HSP90, RP40, and HSP70 according to 
RefFinder (Table 2, Fig. 2C). HSP90 and ATP1A1 were the most and the least stable genes, respectively. Based on 

Genes
Accession 
Number Primer Sequence

Amplicon 
Length(bp)

PCR 
Efficiency

Regression 
Coefficient

Candidate reference gene

  18S GU073689.1
AAGACGGACAGAAGCGAAAG

100 1.029 0.9999
GGTTAGAACTAGGGCGGTATCT

  28S FJ621330.1
ACCCGAAAGATGGTGAACTATG

101 1.025 0.9995
CCAGTTCCGACGATCGATTT

  ACTB MF785104
ACCCATCTACGAAGGTTATGC

122 1.005 0.9962
CGGTGGTGGTGAAAGAGTAA

  ATP1A1 AY303371.1
CCGTAACTGGTGATGGTGTT

111 1.066 0.981
GGATCATATCTGCCGCTTGT

  GAPDH MF785103
TGACTACAGTTCACGCAACC

140 1.060 0.9754
GATGACTTTGGTTACAGCCTTTG

  HSP70 EF668009.1
CCAAAGACAGGCTACCAAAGA

101 0.982 0.9989
TGTCCAAACCGTAGGCAATAG

  HSP90 FJ501962.1
CGCCTTCCAAGCAGAAATTG

135 1.078 0.9847
GTGAGAGACTGGTAACGGATTT

  RP49 AB552923.1
GCCGTTTCAAGGGACAGTAT

84 0.972 0.998
TGAATCCAGTAGGAAGCATGTG

  ATP6V1A MF785105
GAGTTGGGTCCTGGTATTATGG

126 1.093 0.9989
AGTTCTGGACAAACAAGGTACA

Target gene

  TPS FJ501960.1
CATACTATAATGGTGCGTGTAATG

144 0.943 0.9985
ATTTAAGGGCTTTGATTGTGC

Table 1.  Primer sequence, amplicon length and RT-qPCR analysis of candidate reference genes and a target 
gene.
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the comprehensive ranking of RefFinder, the most to the least stable candidate reference genes under the biotic 
conditions was: 18S, 28S, ATP1A1, ACTB, HSP70, ATP6V1A, GAPDH, RP49, and HSP90 (Table 2; Fig. 2D).

Stability of candidate reference genes under abiotic conditions.  According to RefFinder, the 
consensus top three candidate reference genes under different temperature regime were 18S, 28S and GAPDH 
(Table 3, Fig. 2E). Specifically, 18S and ATP6V1A was the most and least stable candidate, respectively. For differ-
ent photoperiods, the top three candidates were 18S, 28S and HSP90 (Table 3, Fig. 2F), in which 18S and RP49 was 
the most and the least stable candidates, respectively. For in vivo RNAi experiments, the top three candidates were 
RP49, ATP1A1, and 28S (Table 3, Fig. 2G), in which RP49 and HSP90 was the most and the least stable candidates, 
respectively. Based on the comprehensive ranking of RefFinder, the most to the least stable candidate reference 
genes under the abiotic conditions was: 18S, 28S, GAPDH, HSP90, ATP6V1A, ACTB, ATP1A1, HSP70, and RP49 
(Table 3; Fig. 2H).

Recommended reference genes.  For repeatable and consistent results, multiple normalizers (≥2 refer-
ence genes) are required for RT-qPCR analysis. GeNorm analysis evaluated all pairwise variations under each 
experimental conditions (Fig. 3). According to Vandesompele et al.31, a Vn/Vn + 1 cutoff value of 0.15 means 
the addition of n + 1 reference gene is not necessary, i.e., the first n references genes are sufficient to normalize 
qRT-PCR results. The optimal number of reference genes was recommended in Tables 2 and 3, respectively, for 
biotic and abiotic conditions. Specifically, for different developmental stages, the recommended reference genes 
were 18S, HSP70, and 28S. For different tissues, the recommendation was 28S, 18S, and RP49. For different sexes, 
the recommendation was HSP90 and RP49. For different temperature treatments, the recommendation was 18S, 
28S, and GAPDH. For different photoperiods, the recommendation was 18S, 28S, and HSP90. Finally, for in vivo 
RNAi, the best combination was RP49 and ATP1A1.

Validation of selected reference genes.  The expression of TPS, a target gene, was evaluated to validate 
the recommended reference genes under different temperature treatments. Using the most stable reference gene 
18S (NF 1), the top two stable reference genes 18S and 28S (NF 1–2), and the top three stable reference genes, 
18S, 28S, and GAPDH (NF 1–3) for normalization, TPS expression profiles were similar throughout all three 
temperature regimes (Fig. 4). In comparison, when ATP6V1A, the least stable candidate (NF 9), was used as the 
reference gene, TPS expression patterns were inconsistent across different temperature treatments. Specifically, 
TPS expression was numerically higher at 10 °C, and lower at 22 and 30 °C (Fig. 4).

Discussion
RT-qPCR has been used extensively for quantification of mRNA expression and is a primary tool for genetic 
research. Although multiple factors, such as RNA extraction, storage, cDNA synthesis, and handling of materials 
and reagents, can affect the RT-qPCR analysis, a reliable reference gene (set) to overcome confounding variations 
in an empirical dataset is of particular importance. Normalization by internal controls is an integral part of the 
quantification process. A single or multiple stably expressed reference genes are required for the normalization 
process to achieve accurate and reliable results. Each candidate reference gene should be evaluated under specific 
experimental conditions to ensure a constant level of expression35. Following the “Minimum Information for 
Publication of Quantitative Real-Time PCR Experiments” (MIQE) guideline41, reference gene selection study 
has been carried out for many insect species34,42,43, and has become a routine practice to standardize RT-qPCR 
analysis.

Due to different algorithms, stability ranking derived from the four analytical tools can vary. For exam-
ple, when H. axyridis was injected with dsRNAs (in vivo RNAi), 28S was rated as the best reference gene by 
BestKeeper, RP49 was considered as the most stable by Normfinder as well as ΔCT method, whereas ATP1A1 and 
GAPDH were the top choice by geNorm. Despite some discrepancies in individual rankings, RP49 and ATP1A1 

Figure 1.  Ct value of candidate reference genes in H. axyridis. The Ct values of candidate reference genes in 
all tested samples were documented. The dot indicates the maximum or minimum value of replicated samples, 
while whiskers indicate the standard error of the mean.
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were consistently exhibited a higher level of stability than the rest of the candidates projected by all four algo-
rithms (Table 3), suggesting the importance of (1) using a comprehensive analysis to interpret the dataset and (2) 
adopting the multiple instead of a single normalizer for RT-qPCR analysis.

In recent years, researchers have been more receptive to use multiple reference genes to replace a single nor-
malizer in RT-qPCR analysis44. The optimal number of reference genes is typically determined by geNorm. In 
this study, three reference genes for recommended for different developmental stages (18S, HSP70, and 28S), 
tissues (28S, 18S, and RP49), temperatures (18S, 28S and GAPDH), and photoperiods (18S, 28S and HSP90), 
while two reference genes were required for the reliable normalization in different sexes (HSP90 and RP49), and 
in vivo RNAi (RP49 and ATP1A1). Our combined results are, in part, consistent with previous studies of other 
Coccinellidae predatory species (Table 4), especially for ribosome RNAs (rRNAs).

Not surprisingly, rRNAs (e.g., 18S and 28S) were consistently stably expressed throughout the vast majority 
of biotic and abiotic conditions among the four Coccinellidae species, including H. axyridis, Hippodamia conver-
gens45, Coleomegilla maculate46, and Coccinella septempunctata47. The over-representation of rRNAs in the total 
RNA pool (>80%), however, can potentially mask the subtle changes of the target gene expression48. Therefore, 
customized reference gene study is still a prerequisite for standardized RT-qPCR analysis in predatory lady bee-
tles. A large body of works has demonstrated that there are no “universal” reference genes applicable for all 
cell and tissue types and various experimental conditions49. As a major structural protein, Actin has been used 
extensively as the internal control without any validation. In this study, however, Actin was one of the least stable 
candidates under both biotic and abiotic conditions, except the temperature treatment, which is consistent with 
the other three Coccinellidae species45–47.

This study not only provides a standardized procedure for the quantification of gene expression, but also lays 
a foundation for the genomics and functional genomics dissection of H. axyridis, an emerging model in invasion 
biology50.

Materials and Methods
Insects.  Harmonia axyridis was originally collected from the University of Kentucky North Farm (38°07′N, 
84°30′W). Harmonia axyridis colony was maintained at 23 ± 1 °C, 12 L:12D photoperiod, 50% relative humidity, 
and provisioned with pea aphids and sugar water for more than two months. Pea aphid clones were a gift from Dr. 
John Obrycki (University of Kentucky) and maintained on seedlings of fava beans in a glasshouse.

Biotic Conditions
Candidate
Genes

geNorm Normfinder BestKeeper ΔCt

RecommendationStability Ranking Stability Ranking Stability Ranking Stability Ranking

Development stage

18S 0.674 1 0.596 1 0.54 1 1.2 1

18S, HSP70, 28S

28S 0.855 3 0.929 4 0.82 3 1.33 4

ACTB 1.21 6 1.09 6 1.03 7 1.46 6

ATP1A1 1.174 5 0.997 5 0.93 4 1.4 5

ATP6V1A 1.078 4 0.861 3 1.09 8 1.33 3

GAPDH 1.34 8 1.201 8 0.93 5 1.55 8

HSP70 0.674 1 0.75 2 0.76 2 1.25 2

HSP90 1.268 7 1.157 7 0.99 6 1.5 7

RP49 1.407 9 1.333 9 1.12 9 1.64 9

Tissue

18S 0.138 1 0.455 5 0.14 1 0.73 3

28S, 18S, RP49

28S 0.138 1 0.436 4 0.17 2 0.72 1

ACTB 0.73 8 0.939 8 0.98 8 1.09 8

ATP1A1 0.579 6 0.381 3 0.45 5 0.77 5

ATP6V1A 0.871 9 1.272 9 1.2 9 1.36 9

GAPDH 0.526 5 0.568 6 0.66 7 0.82 6

HSP70 0.451 4 0.373 2 0.42 4 0.74 4

HSP90 0.637 7 0.592 7 0.55 6 0.87 7

RP49 0.351 3 0.356 1 0.36 3 0.73 2

Sex

18S 0.604 5 0.634 6 0.32 2 0.85 6

HSP90, RP49

28S 0.673 6 0.821 8 0.46 4 0.95 8

ACTB 0.746 8 0.601 5 0.69 8 0.82 5

ATP1A1 0.821 9 0.999 9 1.02 9 1.08 9

ATP6V1A 0.368 3 0.424 4 0.58 6 0.72 4

GAPDH 0.706 7 0.768 7 0.35 3 0.93 7

HSP70 0.197 1 0.372 3 0.6 7 0.7 3

HSP90 0.453 4 0.231 1 0.18 1 0.67 2

RP49 0.197 1 0.283 2 0.49 5 0.67 1

Table 2.  Stability of candidate reference genes in response to biotic conditions.
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Experimental conditions.  Biotic conditions.  The developmental stages include eggs (N = 15), four larval 
instars (N = 5 for each instar, respectively), pupae (N = 1), and adults (one male and one female). Sex of adult 
beetles was determined by the presence or absence of the male genitalia. Tissues, including head, midgut, and 
carcass, were dissected from the fourth instar larvae (N = 5).

Abiotic conditions.  To examine the effects of temperature, third instars were exposed to 10, 22, and 30 °C for 
3 hours. For photoperiod, third-instar larvae were treated with a series of light and dark regime of 16 L:8D, 
12 L:12D, and 8 L:16D for two days. For in vivo RNAi, H. axyridis ATP6V1A was the intended molecular target. 

Figure 2.  Stability of candidate reference gene expression under biotic and abiotic experimental conditions. (A) 
Development stage, (B) Tissue, (C) Sex, (D) Biotic factors, (E) Temperature, (F) Photoperiod, (G) In vivo RNAi, 
and (H) Abiotic factors. A lower Geomean value suggests stable expression.
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Specifically, 280 ng of dsRNAs (56 nl, 5 μg/μl), derived from H. axyridis ATP6V1A (HA-dsRNA) and a plant gene, 
β-glucuronidase (GUS-dsRNA), were injected into the abdomen of third instars (N = 5). GUS-dsRNA is an exoge-
nous control for the unintended silencing effects, and H2O is the vehicle control for the delivery agent of dsRNAs. 
Samples were collected on day-3 for RT-qPCR analysis.

Biotic 
Conditions

Candidate
Genes

geNorm Normfinder BestKeeper ΔCt

RecommendationStability Ranking Stability Ranking Stability Ranking Stability Ranking

Temperature

18S 0.287 1 0.276 1 0.19 2 0.55 1

18S, 28S, GAPDH

28S 0.287 1 0.322 3 0.14 1 0.55 2

ACTB 0.35 3 0.438 5 0.27 3 0.63 4

ATP1A1 0.396 4 0.535 7 0.34 4 0.67 6

ATP6V1A 0.648 9 0.683 9 0.57 7 0.81 9

GAPDH 0.429 5 0.285 2 0.38 5 0.56 3

HSP70 0.603 8 0.635 8 0.65 9 0.77 8

HSP90 0.494 6 0.424 4 0.52 6 0.63 5

RP49 0.552 7 0.502 6 0.58 8 0.68 7

Photoperiod

18S 0.28 1 0.17 1 0.15 1 0.65 1

18S, 28S, HSP90

28S 0.28 1 0.35 4 0.27 2 0.69 3

ACTB 0.558 6 0.671 6 0.68 8 0.86 6

ATP1A1 0.695 8 0.714 8 0.55 6 0.94 8

ATP6V1A 0.521 5 0.592 5 0.62 7 0.8 5

GAPDH 0.486 4 0.344 3 0.41 4 0.7 4

HSP70 0.626 7 0.688 7 0.42 5 0.9 7

HSP90 0.436 3 0.288 2 0.38 3 0.68 2

RP49 0.841 9 1.257 9 0.93 9 1.35 9

In vivo RNAi

18S 0.303 5 0.284 6 0.18 2 0.44 6

RP49, ATP1A1

28S 0.283 4 0.246 4 0.11 1 0.41 3

ACTB 0.365 7 0.537 8 0.2 3 0.59 8

ATP1A1 0.227 1 0.201 3 0.23 4 0.4 2

ATP6V1A 0.406 8 0.395 7 0.51 8 0.52 7

GAPDH 0.227 1 0.271 5 0.35 5 0.44 5

HSP70 0.325 6 0.175 2 0.38 7 0.42 4

HSP90 0.489 9 0.744 9 0.79 9 0.78 9

RP49 0.263 3 0.107 1 0.37 6 0.39 1

Table 3.  Stability of candidate reference genes in response to abiotic conditions.

Figure 3.  Optimal number of reference genes required for accurate normalization of gene expression. Based 
on geNorm analysis, average pairwise variations are calculated between the normalization factors NFn 
and NFn + 1. Values less than 0.15 indicate that n + 1 genes are not required for the normalization of gene 
expression.
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Figure 4.  Validation of the recommended reference gene(s). Expression profiles of TPS under different 
temperature treatments were investigated using different normalization factors. Bars represent the 
means ± standard error of three biological replicates.

Species

Biotic Conditions Abiotic Conditions

OthersDev. Stage* Tissue Sex Temperature Photoperiod RNAi

Coccinellidae

  Harmonia axyridis (this study) 18S, HSP70, 
28S

28S, 18S, 
Rp49/
RpL32

HSP90, 
Rp49/
RpL32, 
HSP70

18S, 28S, 
GAPDH

18S, 28S, 
HSP90

Rp49/
RpL32, 
ATP1A1, 
28S

  Hippodamia convergens45 28S, EF1A, 
CypA

GAPDH, 
28S, CypA

GAPDH, 
CypA, 28S

EF1A, 28S, 
ATP6V1A

CypA, 
GAPDH, 
ATP6V1A

CpyA, 
Actin, 
GAPDH

  Coleomegilla maculate46
ATP6V1A, 
RPS18, 
EF1A

NA**
16S, 
HSP70, 
RpS18

18S, TUBA, 
12S NA 18S, 16S, 

12S

  Coccinella septempunctata47 16S, 28S, 
NADH

28S, 16S, 
18S NA NA NA

ACTB, 
TUBA, 
EF1A

Chrysomelidae

  Diabrotica virgifera virgifera57 ACTB, 
EF1A, RpS9

EF1A, 
GAPDH, 
TUBB

NA NA NA
RpS9, 
EF1A, 
GAPDH

EF1A, GAPDH, 
TUBB
(Bt)

  Leptinotarsa decemlineata58 RP18, ARF1, 
RP4

RP18, 
ARF1, RP4 NA NA NA NA

RP18, 
RP4, ARF1 
(Insecticide)

  Galeruca daurica59
SDHA, 
Rp49/RpL32, 
GST

SDHA, 
TUBA, 
Rp49/
RpL32

ACTB, 
TUBA, 
SDHA

SDHA, TUBA, 
ACTB NA NA

SDHA, TUBA, 
GAPDH 
(Diapause)

Cerambycidae

  Anoplophora glabripennis60 NA

Rp49/
RpL32, 
GAPDH, 
SDF 
(Adults)

NA NA NA NA
GAPDH, UBQ, 
Rp49/RpL32 
(Larvae)

Tenebrionidae

  Tribolium castaneum61,62 NA NA NA NA NA NA

RPS3, RPS18, 
RPL13a 
(Fungus)
RpL13A, RpS3, 
ACTB (UV)

Meloidae

  Mylabris cichorii63 NA NA
TAF5, 
UBE3A, 
RPL22e 
(Male)

NA NA NA
UBE3A, 
RPL22e, TAF5 
(Female)

Table 4.  Recommended reference genes for RT-qPCR Analysis in Coleoptera. *Developmental stages. **Not 
Applicable. Please note that the abbreviation of gene names may differ among the cited references.
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Total RNA extraction and reverse transcription.  Total RNA was extracted separately from each devel-
opmental stage, including eggs (N = 15), pupa (N = 1), and adult (N = 1) for each sex. For other experiments 
involving larvae, five individuals were pooled as one sample. Each experiment was repeated three times inde-
pendently. Samples were preserved in 1.5 ml centrifuge tubes and snap frozen immediately in liquid nitrogen 
before storage at −80 °C. Total RNA was extracted using TRIzol® (Invitrogen, Carlsbad, CA) following the 
manufacturer’s instructions. Each sample of 2.0 μg RNA was reverse transcribed with random primers using the 
M-MLV reverse transcription kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s recommendations.

Primer design and cloning of candidate reference genes.  Primers for 18S, 28S, ATP1A1, HSP70, 
HSP90, and RP49 (Table 1) were designed based on their respective sequences from NCBI (http://www.ncbi.nlm.
nih.gov/). Degenerate primers for ACTB, GAPDH, ATP6V1A were designed using CODEHOP (http://blocks.
fhcrc.org/codehop.html). PCR amplifications were performed in 50 μl reactions containing 10 μl 5 × PCR Buffer 
(Mg2+ Plus), 1 μl dNTP mix (10 mM of each nucleotide), 5 μl of each primer (10 μM each), 0.25 μl of Go Taq (5 u/
μl) (Promega, Madison, WI) and 25 ng first-strand cDNA. The PCR parameters were as follows: one cycle of 94 °C 
for 3 min; 35 cycles of 94 °C for 30s, 55 °C for 1 min and 72 °C for 1 min; a final cycle of 72 °C for 10 min. PCR 
products were purified and cloned into the pCR™4-TOPO® vector (Invitrogen, Carlsbad, CA) for sequencing 
confirmation. The primers for the target gene, TPS, were obtained from a previous work51.

Quantitative real-time PCR (RT-qPCR).  Gene-specific primers (Table 1) were used in PCR reactions 
(20 μl) containing 7.0 μl water, 10.0 μl 2 × SYBR Green MasterMix (BioRad, Hercules, CA), 1.0 μl each specific 
primer (10 μM), and 10 ng first-strand cDNA. The RT-qPCR program included an initial denaturation for 3 min 
at 95 °C followed by 40 cycles of denaturation at 95 °C for 10 s, annealing for 30 s at 55 °C, and extension for 30 s at 
72 °C. For melting curve analysis, a dissociation step cycle (55 °C for 10 s, and then 0.5 °C for 10 s until 95 °C) was 
added. Three technical replicates were analyzed for each biological replicate.

Reactions were performed in a MyiQ Single Color Real-Time PCR Detection System (BioRad). The existence 
of one peak in melting curve analysis was used to confirm gene-specific amplification and to rule out non-specific 
amplification and primer-dimer generation. The RT-qPCR was determined for each gene using slope analysis 
with a linear regression model. Relative standard curves for the transcripts were generated with a serial dilution 
of cDNA. The corresponding RT-qPCR efficiencies (E) was calculated according to the equation:

E (10 1) 100%[ 1/slope]= − × .−

Stability of gene expression.  The stability of the nine candidate reference genes were evaluated using 
RefFinder (http://www.leonxie.com/referencegene.php), a web-based analysis tool which integrates all four major 
computational programs, including geNorm31, NormFinder52, BestKeeper53, and the comparative ΔCt method54. 
geNorm calculates an expression stability value (M) for each gene and a pair-wise comparison. NormFinder ranks 
the set of candidate genes based on their expression stability in the given sample set. BestKeeper considers the Ct 
values of all candidate reference genes, to calculate standard deviation and coefficient of variation. ΔCt approach 
directly compares relative expression of ‘pairs of genes’ within each sample. Then, RefFinder assigned an appro-
priate weight of the four methods to an individual gene and calculated the geometric mean of their weights for 
the overall final ranking.

Validation of selected reference genes.  Trehalose-6-phosphate synthase (TPS), the intermediate of tre-
halose, is a key component in insect energy metabolism and resilience25,51,55. The stability of candidate reference 
genes was evaluated using TPS as the target gene. TPS expression levels under different temperature treatments 
were calculated based on selected sets of candidate reference genes. Two separate normalization factors (NFs) 
have been computed based on (1) the geometric mean of the genes with the lowest Geomean values (as deter-
mined by RefFinder), and (2) a single normalizer with the lowest or highest Geomean value. Relative expression 
of TPS in different samples was calculated using the 2−ΔΔCt method56.
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