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Abstract: Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human trop-
ical illness mainly present in Latin America. The therapies available against this disease are far
from ideal. Proteases from pathogenic protozoan have been considered as good drug target can-
didates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite’s leucyl-
aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of
TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also
inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed
selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight
into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal
structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more
stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active
site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009
are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting
point compound for the rational design of drugs through further optimization.

Keywords: bestatin-like peptidomimetics; chemotherapy; leucyl-aminopeptidase; protease inhibitors;
Trypanosoma cruzi

1. Introduction

Chagas disease is a tropical illness present mainly in Latin America. However, in
the last two decades, mostly due to human migrations, a significant increase in Chagas
disease has been detected in North America, Europe, and the Western Pacific [1,2]. Its
etiological agent is the kinetoplastid protozoan Trypanosoma cruzi (T. cruzi), responsible for
~50,000 new cases and ~10,000 deaths every year. About 6–7 million people are currently
infected with the parasite [1,3]. Importantly, between 65–100 million people are living in
regions at risk for infection around the world [2].

Life 2021, 11, 1037. https://doi.org/10.3390/life11101037 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-7155-9165
https://orcid.org/0000-0002-9622-4767
https://orcid.org/0000-0002-3550-3308
https://doi.org/10.3390/life11101037
https://doi.org/10.3390/life11101037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11101037
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11101037?type=check_update&version=2


Life 2021, 11, 1037 2 of 19

The sickness comprises two stages, which can progress differently in time [4,5]. The
acute phase lasts four to eight weeks and is characterized by the presence of the parasite in
the blood. In this phase, patients are usually asymptomatic or present non-specific signs and
symptoms of infection such as fever, malaise, anorexia, lymphadenopathy, among others.
Later, Chagas disease can become silent (the so-called indeterminate phase) which involves
a long latency (habitually more than ten years) [4,5]. Finally, 20–30% of the infected people
progress to the chronic phase, in which Chagas cardiomyopathy is the main complication
but the brain or gastrointestinal organs are also commonly compromised [6,7].

The two drugs available for treatment, namely nifurtimox and benznidazole, are par-
tially effective and significantly toxic [8]. They only work in the acute phase of the disease,
which usually, unfortunately, goes unnoticed due to the absence of specific symptoms.
Additionally, their efficacy is compromised by poor adherence to medication by patients
as a consequence of the onset of adverse drug reactions. Effective treatment protocols to
alleviate these adverse effects are missing [1]. Therefore, new and effective chemotherapies
against Chagas disease are urgently required.

A rational drug design is based on the identification and characterization of new
molecular targets. This approach can make a significant contribution to the fight against
persistent sicknesses, which are often difficult to treat, as Chagas disease [8]. In this regard,
proteases are considered good drug targets [9], as these enzymes are involved in many
aspects of the parasite’s physiology [10,11].

Interestingly, T. cruzi possesses an acidic (according to isoelectric point) metallo-
aminopeptidase belonging to the M17 family of proteases (TcLAP, also known as LAPTc in
the literature). This enzyme mediates the main leucyl-aminopeptidase (LAP) activity in the
parasite and is expressed in all parasite stages [12]. TcLAP may participate in nutritional
supply since the parasite lacks the biosynthetic pathway for leucine. Interestingly, bestatin
(Figure 1A), a classic inhibitor of metallo-aminopeptidases [13], causes in situ inhibition of
TcLAP in T. cruzi epimastigotes [14]. Thus, inhibition of TcLAP by bestatin-like molecules
may be a feasible strategy to develop anti-chagasic drugs.

Figure 1. Molecular structure of the metallo-aminopeptidase inhibitors: (A) Bestatin; (B) KBE009.
The s-shaped bond shows the stereocenter responsible for the generation of diastereomers.
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Previously, it was reported that the bestatin-like peptidomimetic KBE009 (Figure 1B) is
an inhibitor of Plasmodium falciparum M1 aminopeptidase (PfA-M1) and exerts antimalarial
activity in vitro against 3D7 and FcB1 strains [15]. This compound is selective for the
plasmodial enzyme over its porcine counterpart, and it is not cytotoxic against human
umbilical vein endothelial cells (HUVECs).

Here, we initiated the study of KBE009 as a viable starting point for the rational
development of molecules against T. cruzi. Our findings demonstrated that KBE009 can
inhibit the native M17-type LAP activity in parasite protein extracts as well as the rTcLAP.
KBE009 had a deleterious effect on the proliferation of T. cruzi epimastigotes, which
was more prominent than that observed in human fibroblasts. In the searching for anti-
Trypanosomal agents, these characteristics point to KBE009 as a promising compound. The
structure of this molecule can be specifically optimized to comply with the hit-and-lead
criteria for Chagas disease [16], and therefore pave the way for making progress towards a
new effective drug against this disease.

2. Materials and Methods

In the literature, the acidic enzyme leucyl-aminopeptidase from T. cruzi has been
abbreviated as LAPTc or TcLAP (both of them correct) [12,14,17,18]. However, here we
denoted the enzyme as TcLAP, following the recommendations of the genetic nomencla-
ture for Trypanosoma and Leishmania proposed at the Woods Hole Molecular Parasitology
Meeting (Falmouth, MA, USA, 1996) as well as at the WHO-sponsored workshop for the
T. brucei and Leishmania genome project (Arcachon, France, 1998) [19].

2.1. Comparison of the Amino Acid Sequence of TcLAP with Other Orthologous LAPs and
Analysis of Their Phylogenetic Relationship

First, the TcLAP protein sequence (GN = Tc00.1047053508799.240) was used as a
query for BLAST search on the NCBI website to find homologs sequences. Matched
sequences with a query coverage higher than 80% and an e-value < e−60 were chosen for
the phylogenetic tree to ensure the evolutionary relationship with TcLAP.

Subsequently, a phylogenetic tree of LAP sequences was constructed using the MEGA
X Software (Molecular Evolutionary Genetics Analysis) (https://www.Megasoftware.net/,
accessed on 17 March 2021) [20]. A sequence alignment was performed using MUSCLE
(http://www.drive5.com/muscle, accessed on 17 March 2021) [21]. The results were em-
ployed to construct the LAP phylogenetic relationship using the ‘neighbor-joining tree’
algorithm of the MEGA X Software. Clusters were constructed containing four related
sequences each. In the clusters with only three members, an additional sequence was se-
lected. In this case, those with a coverage of at least 65% of the query and an e-value < e−30

were selected. A bootstrap analysis was carried out with 10,000 replicas to ensure good
support in the estimation of clades.

To obtain the percent of amino acid identity among LAPs, 12 sequences used to
construct the phylogenetic tree were chosen and compared through multiple sequence
alignment using MUSCLE. The identity percent matrix was created with the Clustal2.1
algorithm from the EMBL-EBI server (https://www.ebi.ac.uk/Tools/msa/, accessed on
20 March 2021). To construct the multiple sequence alignment picture, the software Jalview
2.11.1.3 was used (http://www.jalview.org/development/release-history/Jalview-21113,
accessed on 20 March 2021) [22].

2.2. Building of hLAP3 3D-Model

The crystal structure of the human leucine aminopeptidase 3 (hLAP3; GenBank:
CAG33409.1) has not been published so far. Therefore, its structure was modeled using
the swiss-model website (https://swissmodel.expasy.org/, accessed on 5 April 2021).
First, several templates were obtained by a search in the swiss-model database using the
hLAP3 sequence. Then, templates that possessed high sequence similarity to hLAP3 were
chosen for 3D modeling. Considering several parameters such as the Global Model Quality
Estimate (GMQE), the Quaternary Structure Quality Estimation (QSQE), crystal structure

https://www.Megasoftware.net/
http://www.drive5.com/muscle
https://www.ebi.ac.uk/Tools/msa/
http://www.jalview.org/development/release-history/Jalview-21113
https://swissmodel.expasy.org/
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resolution, etc., the best 3D model of hLAP3 generated was selected. The best model was
obtained using the bovine leucine aminopeptidase as a template (1LCP; Protein Data Bank
[PDB]), which shares an amino acid sequence identity of 92.56% with hLAP3. Manipulation
of the protein structure (e.g., representation, calculations, comparison) was performed
using Chimera Software (www.rbvi.ucsf.edu/chimera/ accessed on 2 April 2021) [23].

2.3. Molecular Docking

Molecular docking experiments were carried out using Chimera and AutoDock
Vina [24]. The crystal structures of TcLAP, without (apoenzyme) and with citrate (holoen-
zyme) (5NTF and 5NTG) were obtained from the PDB databank (http://www.wwpdb.org/,
accessed on 2 April 2021). The hLAP3 structure was obtained by modeling as mentioned
above. Protein receptors were prepared for docking as usual. KBE009 diastereomers (R and
S) were first drawn as a 2D structure using the ChemDraw® software (PerkinElmer). Then,
using the Avogadro Software (https://avogadro.cc/, accessed on 26 March 2021) [25],
the 3D structure, optimized geometry, and energy minimization of KBE009 (R, S) were
obtained. Both KBE009 diastereomers (R and S) were employed for docking experiments,
however, for simplicity, only KBE009 R was depicted in the figures. The docking area was
defined empirically using a grid encompassing the enzyme’s active site. The grid dimen-
sion and its orientation were the same for both the protozoan and the human enzymes.
The result was chosen considering the Auto Vina score, the lowest energy (kcal/mol) of the
complex enzyme-KBE009 represents the most stable complex. The interactions between
molecules (e.g., number of H-bonds) were also considered. Based on these criteria, the best
two or three binding poses were chosen. Finally, the 3D graphic representation, as well as
calculation of H-bond formation, van der Waals contacts, among others, was performed
with Chimera (https://www.cgl.ucsf.edu/chimera/, accessed on 12 April 2021) [23].

2.4. TcLAP Aminopeptidase Activity Inhibition Assays

The generation of recombinant TcLAP (rTcLAP) was previously reported [17]. Its aminopep-
tidase activity was determined by a continuous kinetic method using the chromogenic Leu-p-
nitroanilide (Leu-pNA) molecule as substrate (Bachem, Bubendorf, Switzerland). Leu-pNA
was used at 75 µM (added from a 7.5 mM stock dissolved in DMSO, analytical grade, Sigma-
Aldrich, St. Louis, MO, USA) and the increase of the absorbance at 405 nm (OD405nm), due
to p-nitroaniline (pNA) chromogen formation, was recorded every 15 s over 5 min using a
spectrophotometer (FLUOstar OPTIMA, BMG Labtech GmbH, Offenburg, Germany). This
substrate concentration represents ~1 Km (apparent) for rTcLAP [17]. The determinations
were carried out in enzymatic activity buffer (50 mM Tris-HCl pH 9.0, 4 mM CoCl2) at
50 ◦C, which is the optimal temperature of the recombinant enzyme [17]. The enzyme
concentration was 9.09 × 10−7 M (measured by the bicinchoninic acid method), it was
chosen from the linear range plotting initial velocity (V0) vs. enzyme concentration. The
final volume of the reaction was 200 µL, and the measurement was performed in flat
bottom 96-well plates. To measure the reaction velocity, exclusively the linear range of
the typical curves was used. It corresponds to substrate consumptions lower than 5% (V0
conditions). Slopes with coefficients of determination (R2) < 0.98 were not considered for
linear fits. The assays were carried out in triplicate.

For the inhibition assays, rTcLAP in an enzymatic activity buffer was mixed with
different concentrations of KBE009 (6.25–200 µM range) [26]. The mixture was preincubated
for 30 min at 50 ◦C before adding the substrate. KBE009 was dissolved in DMSO, analytical
grade, and the DMSO final concentration used was not higher than 2% (v/v). All other
experimental conditions were maintained as described above. Control reactions were
performed by pre-incubation of the enzyme withw/v the solvent. Residual activity was
defined as the quotient between the reaction velocity in the presence of KBE009 and the
control. The IC50 values were calculated by the nonlinear fit of the logistic function to
the experimental data using the GraphPad Prism software (version 8.0.2). The logistic
function is:

www.rbvi.ucsf.edu/chimera/
http://www.wwpdb.org/
https://avogadro.cc/
https://www.cgl.ucsf.edu/chimera/


Life 2021, 11, 1037 5 of 19

y = 1/(1 + [I]/IC50), (1)

where y is the residual aminopeptidase activity, and [I] is the inhibitor concentration in the
assay [27].

2.5. Obtainment of Protein Extracts from Epimastigotes of Trypanosoma cruzi CL Brener

Four 25 mL-parasite cultures in 10% bovine fetal serum (BFS)-supplemented Liver
infusion tryptose (LIT) medium, at 2 × 106 cells/mL, were prepared. These cultures were
incubated at 25 ◦C for 5 days, the time at which the cultures are in the growth exponential
phase and have 3 × 107 cells/mL. Afterward, cells were collected by centrifugation at
2000× g for 15 min at 4 ◦C. Pellets were washed three times with 10 mL of cold PBS 1X, by
centrifugation for 10 min at 2000× g and 4 ◦C, and resuspended in 1.5 mL of cold PBS 0.1X
containing 20 µM of the protease inhibitors TLCK and E-64. Cell lysis was performed by
ultrasonic treatment in a 2 mL-centrifuge tube with two pulses of 15% ampleness for 15 s
each one, with intervals of 30 s on ice. The efficiency of the rupture step was confirmed by
checking the cellular integrity with the optical microscope. The suspension was centrifuged
for 20 min at 10,000× g and 4 ◦C, and the supernatant was transferred to clean tubes on ice.

2.6. M17-Type Aminopeptidase Activity Inhibition Assays in Protein Extracts from Epimastigotes
of Trypanosoma cruzi CL Brener

The aminopeptidase activity was determined by a continuous kinetic method, similar
to that described above. The determinations were carried out with 250 µM Leu-pNA
substrate, in 50 mM Tris-HCl, 400 µM MnCl2, at pH 7.0 and 37 ◦C. The amount of protein
extract was chosen in the linear range of the plot V0 vs. protein. For the inhibition assays,
KBE009 (100 µM) was pre-incubated with the protein extract for 45 min at 25 ◦C before
adding the substrate. Here again the final concentration of the solvent DMSO in the reaction
mixture did not exceed 2%. Assays were performed in triplicate.

2.7. In Vitro Measurement of the Anti-Trypanosomal Activity of KBE009 against
Trypanosoma cruzi Epimastigotes

Epimastigotes of T. cruzi CL Brener strain were cultivated in LIT medium (4 g/L
NaCl, 0.4 g/L KCl, 8 g/L Na2HPO4, 2 g/L glucose, 5 g/L triptose, 5 g/L liver infusion,
25 mg/L hemin, 10% BFS filtrated with 0.22 µm filter). Cultures were incubated at 25 ◦C
in a refrigerated incubator (Innova 4230, New Brunswick Scientific, Edison, NJ, USA) for
six days maximum. Parasite density was determined by direct counting in the NeuBauer
chamber using an optic microscope (MicroscopioOptika SRL, Ponteranica, Italy).

For the in vitro anti-Trypanosomal activity assay, serial dilutions in DMSO (cell-culture
grade) of the molecule KBE009 in the 0.625–20 mM range were prepared. Epimastigotes in
exponential growth phase were diluted to 2 × 106 cells/mL in LIT medium and 200 µL
per well of this suspension were transferred into a sterile 96-well microplate. From each
KBE009 dilution, 2 µL were added into the wells to assay concentrations in the 6.25–200 µM
range. Plates were incubated at 25 ◦C for five days, a time by which cultures are in the
exponential growth phase and thus proliferation relies only on duplication.

After that time, cells were collected by centrifugation at 3000× g for 10 min at 25 ◦C, the
supernatant was discarded by inversion, and pellets were resuspended in 100 µL Thiazolyl
Blue Tetrazolium Bromide reagent (MTT, 0.5 mg/mL in PBS) (Sigma-Aldrich, St. Louis, MO,
USA). Plates were incubated for 4 h at 37 ◦C and 5% CO2 (Thermo Electron Corporation,
Hepa Class 100, Marietta, OH, USA). Then, cells were collected by centrifugation at 3000× g
for 10 min at 25 ◦C, and the tetrazolium crystals formed were dissolved with 100 µL DMSO
(technical grade, Sigma-Aldrich, St. Louis, MO, USA). Finally, absorbance was measured at
570 nm in a microplate spectrophotometer (Synergy HT, Biotek Instruments, Winooski, VT,
USA) using the Gen 5 software (v. 1.11) supplied by the manufacturer. As control condition
(100% growth), cultures exposed to 2 µL DMSO were used. To confirm that the solvent
does not affect the proliferation rate, cultures without solvent were also included. A blank
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for each KBE009 concentration consisting of culture medium plus the molecule without
parasites was included. Each condition was assayed by triplicate. The experimental data
were processed according to Bodley et al., 1995 [28], and the EC50 value was calculated by
the nonlinear fit of the logistic function using the GrapPadPrism software (version 8.0.2).
Experiments were performed at least three times independently.

2.8. In Vitro Measurement of the KBE009 Cytotoxicity against Primary Cultures of Human
Dermal Fibroblasts

Human dermal fibroblasts were cultured in RPMI medium (RPMI plus 10, Sigma-
Aldrich, St. Louis, MO, USA) supplemented with 10% BFS, 200 mM glutamine, and
penicillin-streptomycin, and allowed to grow in an incubator at 37 ◦C and 5% CO2 (Thermo
Electron Corporation, Hepa Class 100, Marietta, OH, USA). When cultures reached conflu-
ence, cells were dissociated with trypsin in PBS. Then, cells were immediately resuspended
in a culture medium and collected by centrifugation at 3000× g for 10 min and 25 ◦C. Cells
were resuspended in fresh culture medium, counted in NeuBauer chamber, and cell density
adjusted to 1 × 105 cells/mL. Fibroblasts were transferred into a sterile 96-well microplate
at 5000 cells/well and allowed to adhere for 24 h at 37 ◦C and 5% CO2.

Working solutions of KBE009 ranging from 0.3125 mM to 20 mM were previously
prepared in DMSO (cell-culture grade). Thus, KBE009 was added to assay concentrations
in the 3.125–200 µM range. Plates were incubated for three days at 37 ◦C and 5% CO2 to
guaranty evident exponential growth phase. After that time, the medium was discarded by
inversion, 100 µL of the MTT reagent (0.2 mg/mL in PBS) added, and plates were further
incubated for 4 h at 37 ◦C and 5% CO2. The following steps were the same as described
for T. cruzi CL Brener. Here, the corresponding controls and blanks were also included.
Experiments were performed at least three times independently.

3. Results
3.1. TcLAP Is Quite Divergent and Does Not Share a High Identity with the hLAP

A phylogenetic tree was constructed with 33 amino acid sequences of the LAPs using
TcLAP for initial BLAST. With strong bootstrap support, the phylogenetic tree shows
divergent groups of proteins distributed into eight clusters (Figure 2A). Kinetoplastids
generated two highly close clades. As expected, Bodo saltans possesses the most distant
sequence in these clades of Kinetoplastids as this non-pathogenic protozoon belongs to the
suborder Bodonina, while the rest of the sequences come from the pathogenic protozoa
belonging to the suborder Trypanosomatina [29]. Interestingly, LAPs of the Apicomplexa
parasites are evolutionarily closer to LAPs from plants than those of trypanosomes. Notably,
the TcLAP sequence is evolutionarily fairly divergent from the human one. Multiple amino
acid sequence alignments of the LAPs showed that TcLAP shares a high identity with
other trypanosome sequences. TcLAP is 80% and 68% identical to T. rangeli and T. vivax,
respectively (Figure 2B). However, it shares moderate identity to the putative human LAP
(46%) and less than 30% identity with other LAPs belonging to Apicomplexa parasites.
As expected, a comparison of the LAPs confirmed that the C-terminal region is highly
conserved while the N-terminal one is strongly dissimilar (Figure 3) [12].

The conserved amino acids that are part of domains for metal binding (K287, D292,
D310, D369, and E371 in TcLAP sequence) and catalytic activity (residues K299 and R373 in
TcLAP) are present in the C-terminus and are conserved across different taxa (Figure 3A).
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Figure 2. Phylogenetic analysis and amino acid sequence identity of LAPs: (A) phylogenetic tree of 33 full-length protein
sequences chosen from the NCBI database. It was constructed with the neighbor-joining algorithm using MEGA X software.
The identification of the sequences is in brackets. Numbers below and above of the line of the branches indicate the
evolutionary distance between sequences and the bootstrap proportions in percentage (10000 replicates), respectively;
(B) twelve LAP sequences used for the construction of the phylogenetic tree were compared. Multiple sequence alignment
was performed using MUSCLE, and the percent amino acid identity was determined using Clustal2.1 on the EMBL-EBI
server (https://www.ebi.ac.uk/Tools/msa/, accessed on 20 March 2021). The names of the species are the same as in the
phylogenetic tree.

https://www.ebi.ac.uk/Tools/msa/


Life 2021, 11, 1037 8 of 19

Figure 3. Amino acid sequence comparison of LAPs: (A) sequence alignment of the LAPs was
produced using the MUSCLE approach by the Jalview software. Amino acids are highlighted
according to the ClustaLx code. The non-conserved N-termini of sequences were not included in the
image. Amino acid residues of the catalytic site and the putative metal-binding site are indicated
above the alignment by white- and black-arrows, respectively; (B) schematic overview of the complete
alignment. The red arrow indicates the starting region of the alignment represented in part A of the
figure. The red rectangle shows the most conserved region.
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3.2. The Bestatin Derivative Molecule KBE009 Inhibits the Activity of the Recombinant TcLAP
and Native M17-Type LAP Activity in Parasite Protein Extracts

The effect of KBE009 on the rTcLAP’s activity was evaluated immediately after its
purification. Here, we used the protocols previously described by Izquierdo et al., 2019 [17].
To ensure proper inhibition, KBE009 was preincubated with the enzyme before the activity
measurement started. Under the experimental conditions, we found that KBE009 inhibits
the rTcLAP with an IC50 value of 66.0 ± 13.5 µM (Figure 4). Additionally, to confirm the
inhibitory effect on the native enzyme, protein extracts from epimastigotes of T. cruzi (CL
Brener strain) were prepared, and the M17-like aminopeptidase activity was detected using
the chromogenic substrate Leu-pNA. Extracts were challenged with KBE009, obtaining an
activity inhibition of 38.4 ± 5.8% when the peptidomimetic concentration was 100 µM.

Figure 4. Dose-response inhibition of recombinant TcLAP by KBE009. KBE009 concentrations between 6.25 µM and 200 µM
were used to evaluate the activity of the rTcLAP. The chromogenic substrate Leu-pNA was used at 75 µM. A sigmoidal fit
was applied to the experimental values on the residual activity obtained by each concentration, and the IC50 was calculated
using the GraphPad Prism software. Vi, velocity of the enzymatic reaction in the presence of the inhibitor; V0, velocity of
the enzymatic reaction in the absence of the inhibitor. The squares on the plot represent the means with standard deviations
for each KBE009 concentration determined at least three times.

3.3. KBE009 Inhibits the Proliferation of Epimastigotes of T. cruzi

Due to the inhibiting effect of KBE009 on the TcLAP observed, we also investigated if
the peptidomimetic could exert an action on the parasite growth in vitro. Epimastigotes
were treated with different concentrations of the bestatin derivative for five days to deter-
mine its cytotoxic effect. As expected, a dose-dependent growth inhibition was obtained
when concentrations between 6.25 µM and 200 µM were used. The concentration that
inhibits half of the parasite’s proliferation (here referred as EC50 to differentiate it from the
IC50 related to the inhibition of the enzyme activity) was determined to be 28.1 ± 1.9 µM
(Figure 5). This concentration is about three times lower than the one required to inhibit
the native M17-type LAP activity in parasite protein extracts.
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Figure 5. In vitro inhibition of the T. cruzi epimastigotes growth by KBE009. Epimastigotes were allowed to grow in the
presence of different concentrations of the peptidomimetic KBE009. The effect on the culture growth was determined after
five days of incubation. The graphic represents the results (mean ± standard deviation) of four independent experiments.
The sigmoidal adjustment of the experimental values for determining the EC50 was fit using the GraphPad Prism software.

Moreover, to test the cytotoxicity of KBE009 in mammalian cells, human dermal
fibroblasts were also assessed. Here, again a dose-response inhibition of the fibroblast
proliferation was observed. However, the EC50 value was 138 ± 10µM; it represents a
concentration 4.9 times higher than the one needed to reach the same effect on the parasite
growth. Due to experimental growth conditions and to guaranty reaching the exponential
growth phase in each case, EC50 values were determined for epimastigotes and fibroblast
after five and three days, respectively. Still, when parasites were incubated with 100 µM,
they were unable to even duplicate after three days of incubation.

3.4. 3D Protein Structure of TcLAP and hLAP3 Reveals Differences at the N-Terminus

3D structure comparison and docking studies were performed to understand further
the inhibitory effect of KBE009 on TcLAP and the possible differential action on the human
aminopeptidase (hLAP3). The 3D structure of the hLAP3 was obtained using a bovine
leucine aminopeptidase from Bos taurus as a template, which shares an amino acid sequence
identity of 92.56% with the hLAP3 (for details, see materials and methods). A comparison
of the overall 3D structure of the enzymes showed high similarities.

The secondary structures, α-helices, and β-sheets are conserved through all proteins.
The secondary structures of TcLAP and hLAP3 overlap at the C-terminal ends. However,
it does not occur completely at the N-terminal regions of the enzymes (Figure 6A), and
the differences increase as it is closer to the N-termini. This difference is due to the low
conserved sequences at this region in these proteins, a general characteristic of the LAP
enzymes [30].
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Figure 6. 3D ribbon structures of TcLAP and hLAP3 and their predicted docking with KBE009: (A) tertiary structures of the monomer of TcLAP (left) and hLAP3 (right) alone, and both
superposed (middle) to make evident distinctiveness. The rainbow colors in hLAP3 denote N- and C-termini as follows: blue/green (N-terminal), yellow/red (C-terminal); (B) docking
estimation of TcLAP and KBE009 (left) and hLAP3 and KBE009 (right). Only the part of the monomer of the enzyme that possesses the catalytic pocket is shown. The surface of the
enzymes represents the volume and the hydrophilicity/hydrophobicity of amino acid residues (blue hydrophilic and red hydrophobic). KBE009 appears in a stick, with a semi-transparent
surface representing the volume of the compound. For simplicity, only one of the poses of R-KBE009 was represented. To ensure an equal protein orientation in this representation, TcLAP
and hLAP3 were first overlaid, and then they were split into two panels for clarity. To facilitate the comparison, the side chains of some of the conserved amino acids in the metal-binding
domains were represented (D292, D369, and E371 in TcLAP, and their counterpart in hLAP3; D364, D287, and E366).
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3.5. KBE009 Docking Prediction Shows That the Peptidomimetic Molecule Bears More Affinity for
TcLAP Than for hLAP3

TcLAP and hLAP3 were docked with both diastereomers of KBE009 (R, S) using the
same protocol. The crystal structure from TcLAP and a modeled structure of the hLAP3
were used for docking. The best binding poses for each docking were chosen mainly accord-
ing to scoring in autodock vina; the number of H-bonds and the similarities of geometrical
fitting of the structures in the catalytic pocket were also considered. For the TcLAP/KBE009
(R), three poses with the highest binding energy (−7.5 kcal/mol) were selected. The super-
position of all three KBE009 (R) conformations shows a similar pattern (Figure S1). The
main difference lies in only one conformation, which overlaps with a 180-degree rotation,
the other two conformations are almost equal. For TcLAP/KBE009 (S), two binding poses
with the highest binding energy (binding energy −7.3 and −7.1 kcal/mol) were selected.
The overlapping conformations are practically the same (Figure S1). When binding poses
of R and S diastereomers are compared, the same pattern appears; all five conformations
superimpose at the same place at the catalytic pocket and maintain a hydrophobic ring
clashing with the amino acids A495 and F496. There are minor differences in the orienta-
tion of the others rings, between R and S conformations, due to the chiral carbon located
after the furyl group (Figure S1). For hLAP3/KBE009 (R, S) two binding poses, for each
diastereomer, with the highest binding energy were picked (−6.7 and −6.6 kcal/mol for
S-KBE009 and −6.2 and −5.9 kcal/mol for R-KBE009). As in the case of TcLAP, the binding
poses of R- and S-KBE009 with hLAP3 were similar among them, the few differences were
related to the chiral carbon (Figure S1). Interestingly, compared to TcLAP, the poses of R
and S diastereomers occupied a different space in the active site of hLAP3, they always
maintained a hydrophobic ring clashing with I453 and R457, and not with A483 (equivalent
to the above-mentioned A495 in the TcLAP sequence).

In general, although the KBE009′s structure is voluminous for the catalytic pocket, it
could fit relatively well at the entrance of the catalytic domain due to its several rotatable
bonds, which allow the compound to adopt different spatial conformations (Figure 6B). The
TcLAP-KBE009 complex reported the highest affinity. It showed an autodock vina score
for all binding poses between −7.5 and −7.1 kcal/mol and the presence of 1–3 H-bonds
(Figure 7A; Table 1), while the hLAP3-KBE009 complex displayed a lower affinity score for
all conformations (between −6.7 and −5.9 kcal/mol) and produced 1–2 H-bond (Figure 7B;
Table 2). The differences of hydrophilic/hydrophobic ratios at the entrance of the catalytic
pockets and their close-environment influence the affinity of the inhibitor-enzyme coupling.
KBE009, which is relatively highly hydrophobic, clashed clearly with more hydrophobic
amino acids in the active pocket in TcLAP than in hLAP3 (Figure 7A; Table 1). The hLAP3
has a relatively hydrophilic area near the catalytic domain, (Figure 7; Table 1).

Table 1. Amino acids in TcLAP and hLAP3 predicted to interact with KBE009.

N◦
TcLAP hLAP3

Residues Polarity Type of Interaction Residues Polarity Type of Interaction

1 Lys 299 polar wdw Lys 294 polar wdw
2 Phe 303 Hydrophobic wdw Asp 364 polar wdw
3 Asp 369 polar wdw Arg 368 polar wdw
4 Thr 401 polar wdw Thr 393 polar wdw
5 Gly 402 Hydrophobic wdw Ala 395 Hydrophobic H-bond

5a Gly 402 Hydrophobic H-bond
6 Ala 495 Hydrophobic wdw Ile 453 Hydrophobic wdw
7 Phe 496 Hydrophobic wdw Arg 457 polar wdw

This table corresponds to the interaction of amino acids depict in Figure 6. However, only amino acids that interact with both KBE009
diastereomers (R and S) are represented. wdw, van der Waals.
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Figure 7. Active site cavity and closed area from TcLAP and hLAP3 showing their interaction with KBE009: (A) model of the interaction pattern between TcLAP and KBE009 showing only
amino acids (blue) in contact with the peptidomimetic (green); (B) cartoon of the hLAP3-KBE009 interaction depicting only amino acid residues (beige) in contact with the compound
(turquoise). Only one of the two Mn+2 (magenta) is represented. For clarity, only one of the poses of R-KBE009 was represented.
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Table 2. Drug-likeness and lead-likeness parameter of KBE009.

Characteristics KBE009 Comments

Physicochemical properties

Formula C28H33N3O5

Molecular weight (MW) 491.58

N◦ Rotatable bonds 14

N◦ H-bond acceptors 6

N◦ H-bond donors 3

Molar Refractivity (MR) 136.10

TPSA 125.87

Lipophilicity Consensus Log P (average of
five different prediction tools) 2.57 meet all filters of

drug-likeness

Water solubility Log S
(ESOL/Ali/SILICOS-IT) −3.25/−3.73/−6.96 soluble/soluble/poorly

soluble

Pharmacokinetics

GI absorption high

BBB permeant no

Pgp substrate yes

inhibitor of
CYP1A2/CYP2C19/CYP2C9 no

inhibitor of CYP2D6/CYP3A4 yes

Drug-likeness

Lipinski 1 yes

Egan 2 yes

Muegge 3 yes

Veber 4 no 1 violation: N◦. of rotatable
bonds > 10

Ghose 5 no 2 violations: MW > 480,
MR > 130

Medicinal Chemistry

PAINS N◦ alerts 0

Brenk N◦ alerts 0

Lead-likeness N◦ violations 2 MW > 350, Rotors > 7

Synthetic accessibility 4.66
1 Lipinski (Pfizer) rule estimates solubility and permeability (four drug-like physicochemical and structural features are evaluated: donors
and acceptor of hydrogen bond, molecular mass, and octanol-water partition). 2 Egan (Pharmacia) rule, a prediction tool of drug absorption
in humans, based on literature data of known compounds. 3 Muegge (Bayer) criteria, based on functional motifs that help to discriminate
drug-like characteristic. 4 Veber (GSK) rules are based on oral bioavailability measurements in rats for thousands of compounds. 5 Ghose
criteria determined by physicochemical properties and occurrence of functional groups present in drugs.

3.6. KBE009 Meets the Criteria of Drug-Likeness

Drug-likeness predicts whether a compound could be classified as an oral drug
candidate. It is based on its structural evaluation and physicochemical properties, according
to criteria defined by studying the properties of thousands of compounds mostly present
in data banks [31]. This, together with the ADME parameters (absorption, distribution,
metabolism, and excretion), are the features to consider at the beginning of the drug
discovery process. We used a Swiss ADME server to predict these properties in the KBE009
molecule [31]. Table 2 summarizes the ADME properties and drug-likeness characteristics
of KBE009. ADME parameters, such as lipophilicity/water solubility and pharmacokinetics
(e.g., gastrointestinal absorption, effect on cytochrome P450 isoenzymes), among others,
show favorable results.
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At least five different drug-likeness criteria were used to evaluate KBE009. The
molecule meets all filters defined by the three following rules: Lipinski’s (Pfizer’s) rule that
estimates solubility and permeability [32,33]; the Egan (Pharmacia) rule, which predicts
drug absorption in humans [34]; and the Muegge (Bayer) criteria that discriminate drug-
like characteristics [35]. KBE009 does not meet only one of the Veber (GSK) rules (based
on oral bioavailability measurements in rats for thousands of compounds) and two of the
Ghose criteria (based on physicochemical properties and occurrence of functional groups
present in drugs) [36,37] (Table 2).

3.7. Medicinal Chemistry Analysis of KBE009 Predicts Acceptable Lead-Likeness Parameters

The medicinal chemistry analysis is mostly focused on the compounds per se for
the identification of potentially problematic fragments. So emerges the concept of lead-
likeness, such as the drug-likeness one described above. With this respect, the structure
of KBE009 does not possess predictable toxic or unstable chemical residues, according to
the Brenk parameters [38] (Table 2). Besides, no substructures related to a potentially non-
specific response, which may lead to promiscuous molecules, were found in the compound
(parameter PAINS in Table 2). In general, lead-likeness parameters are acceptable. Only
two violations for this filter appeared. The molecular weight, which is not so critical, and
rotatable bonds, since it can influence the solubility and the specificity of the compound
(Table 2).

4. Discussion

Bestatin, also known as ubenimex, is a dipeptide analog that inhibits broad-spectrum
metallo-aminopeptidases, including the M1 and M17 families. Bestatin possesses low
toxicity in humans and has been used as an adjuvant in the treatment of leukemia and lung
cancer [39–41]. It has been demonstrated that bestatin affects the TcLAP activity [12,17].
However, T. cruzi can survive concentrations of up to 300 µM for 6 h [14]. Here, we
report the effect of a bestatin derivative, namely KBE009, on the TcLAP activity and the
proliferation of the parasites.

KBE009 inhibited the purified recombinant form of TcLAP and the native M17-like
activity in crude extracts, at a similar range, confirming that the TcLAP is the main M17
enzyme responsible for the leucyl-aminopeptidase activity in T. cruzi, as it was previously
reported [12]. This direct inhibitory effect on TcLAP suggests that, at least partially, the
deleterious effects of KBE009 observed on the parasite growth are related to its specific
action on this enzyme.

KBE009 is also more specific against parasites since it inhibited the T. cruzi growth
more than that of human cells, with a selectivity index of 4.9. This fact could be explained
by the differences in the human and parasite LAPs. To shed light on this possibility, a
comparison of TcLAP with a human leucyl aminopeptidase, hLAP3, was performed.

We identified in the human databank, using the TcLAP as a template, more than
10 orthologous sequences, most of them are putative proteins with moderate similarity to
TcLAP. This broad repertoire of putative amino acid sequences provides the opportunity for
functional redundancy. One of the sequences closely related to TcLAP is the known hLAP3.
To gain insights into the specific effect of KBE009 on T. cruzi, we run structural analyses
of both enzymes. The 3D structures of TcLAP and hLAP3 overlap with high similarity in
their secondary structure in the C-termini (where the catalytic center is located).

Interestingly, a docking prediction showed that the TcLAP-KBE009 complex is more
stable than its hLAP3 counterpart. KBE009 represented a better geometrical fitting in the
active site of TcLAP than that of hLAP3 (especially the R diastereomers, which showed
the highest affinity for TcLAP (auto vina score of −7.5 kcal/mol) and the lowest affinity
for hLAP3 (−6.2 and −5.9 kcal/mol)). In addition, the inhibition of TcLAP could be
supported by the interaction of KBE009 with some residues involved in metal binding
(D310, D369, and E371) and in the catalytic activity (K299 and R373). Interestingly, all R-
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and S-conformations of KBE009 interacted with D369 at the binding site and with K299 at
the catalytic pocket.

The concentration range of KBE009 (66–100 µM) required to produce 50% inhibition
of the rTcLAP, as well as the native M17-like activity, is comparable to that necessary to
reach 50% inhibition of the parasite proliferation (~30 µM). These findings suggest that the
anti-Trypanosomal activity of the compound can be, at least in part, associated with the
inhibition of the TcLAP. Then, it raises the hypothesis that the enzyme may be essential
for the parasite. To date, the essentiality of LAPs in T. cruzi has not been reported, and the
information on closely related parasitic protozoa is not conclusive. For instance, LAP is
essential for Plasmodium falciparum but disposable for T. brucei [12,18,42]. While T. brucei
and T. cruzi are more closely related, the former is an extracellular parasite. In intracellular
parasites as T. cruzi and Plasmodium, aminopeptidase enzymes could play important roles
due to the protein-rich environment where they live. Indeed, M17 and M1 enzymes have
been proposed to play a role in the later stages of hemoglobin digestion, an essential process
for Plasmodium survival [42,43]. For several Leishmania species, a kinetoplastid protozoa
closely related to T. cruzi (which also have an intracellular phase), a single copy of the lap
gene has been described [44]. Although the essentiality of this gene has not been addressed
yet, it seems to be relevant for the viability of the parasite. The encoded enzyme (M17-LAP),
with a high and restricted substrate specificity, represents the most LAP activity in parasite
extracts [44]. Inhibition of this enzyme could be deleterious as branched-chain amino acids
are essential for Leishmania survival [45]. Particularly, the amino acid leucine is a precursor
for fatty acids and sterol biosynthesis [46].

Although the concentration that inhibits the enzyme and the one that inhibits parasite
proliferation are close, they are not the same. This fact may be due to either an accumu-
lation of the molecule inside parasites or additional effects of KBE009 on the function of
other proteins. The increase of KBE009 within the parasites could be favored by its physic-
ochemical properties, such as its lipophilicity/water solubility, and some of the predicted
ADME characteristics. Additionally, a rapid intake of the molecule into the parasite could
also result from specific transporters at the plasma membrane. In this sense, remarkable
examples involving pathogenic protozoa are found in the literature. Aquaglyceroporins
(glycerol and water channels) of T. brucei and Leishmania spp. have been identified as the
principal entry pathway for marketed medicaments. Downregulation of these channels
causes drug resistance to commercial drugs (pentavalent antimonials, pentamidine, and
melarsoprol) [47].

The possibility for the peptidomimetic to interact with other proteins from T. cruzi
also exists. KBE009 inhibits PfA-M1 and its efficacy against Plasmodium falciparum is
comparable to that found in this study against T. cruzi [15]. Therefore, it is reasonable to
speculate that the peptidomimetic could act on a PfA-M1 orthologous in T. cruzi. M1-alanyl-
aminopeptidases from T. cruzi have not been characterized yet. Interestingly, a BLAST
search on data banks of different strains of T. cruzi, using PfA-M1 as a template, retrieved
few sequences with e-values around 1 × 10−14 that would be putative M1 peptidases.
Moreover, PfA-M1 is an enzyme with more substrate promiscuity than the M17 LAP from
P. falciparum (PfA-M17), due to a much larger cavity of its active site [48] which, in turn,
would facilitate the ingress of KBE009 [14]. A similar phenomenon could be expected to
occur with an eventual T. cruzi PfA-M1 ortholog. In fact, we performed a preliminary study
to detect the M1-type activity in protein extracts of T. cruzi CL Brener, using 500 µM of
the substrate Lys-pNA (typical of the M1- but not the M17-family) [49]. We detected this
activity, which was inhibited by bestatin (65%) and KBE009 (71%) at 20 µM of the inhibitors
(ongoing experiments). According to our hypothesis, KBE009 could inhibit the T. cruzi
PfA-M1 ortholog more potently than the TcLAP.

For a compound to go through a hit-to-lead process, it is necessary to meet some
criteria related to physicochemical properties, solubility, pharmacokinetics, drug-likeness,
medicinal chemistry, purity, and suitability for synthesis. In silico analyses showed that
KBE009 satisfactorily matches most of these requirements. However, KBE009 does not
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meet additional criteria for in vitro effectiveness, namely a selectivity index of 10 and an
EC50 below 30 µM or 10 µM (varies according to the literature) [16,50]. Although the
values obtained are not that far from meeting the criteria, the use of the T. cruzi insect forms,
epimastigotes, as a first approach to evaluate the efficacy of the compound, establishes
some restrictions in the interpretation of the results. A more physiological picture would
be represented by the replicative forms of the parasites in mammalian cells, amastigotes.

KBE009 requires some changes to enter a “hit-to-lead” process. The optimization of
the peptidomimetic structure, including the decrease of the molecule size and the number
of rotatable bonds, is necessary to improve the molecule. A reasonable strategy in a long
run would be to study the M1 putative orthologs from T. cruzi to define whether this
enzyme is an important target of the peptidomimetic, as we hypothesized. It could allow
us to orchestrate a better approach for the design of a more effective KBE009 derivative,
which can inhibit both peptidases (M1 and M17) from T. cruzi. This strategy, including two
targets, may decrease the probability that T. cruzi rapidly develops resistance against the
molecule, as it has already been proposed for malaria [48].

Taken together, the bestatin-based peptidomimetic KBE009 has been investigated as a
novel anti-Trypanosomal agent. This compound was moderately active against parasites
in a low micromolar range. It was also demonstrated that KBE009 is an inhibitor of the
T. cruzi M17-LAP consistent with its inhibitory activity on the parasite growth. However,
inhibition of other peptidases, mainly the putative T. cruzi M1-aminopeptidase, must be
studied. KBE009 successfully overcame most of the in silico filters of drug-likeness and
lead-likeness required to continue advancing in the development of a drug candidate.
However, further experimental optimization of the compound is required to improve
its potency against T. cruzi. discuss the results and how they can be interpreted from
the perspective of previous studies and of the working hypotheses. The findings and
their implications should be discussed in the broadest context possible. Future research
directions may also be highlighted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11101037/s1. Figure S1: Illustration of the superposition from the different poses of R and S
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