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Histopathological images contain morphological markers of disease progression that have diagnostic and predictive values, with
many computer-aided diagnosis systems using common deep learning methods that have been proposed to save time and labour.
Even though deep learning methods are an end-to-end method, they perform exceptionally well given a large dataset and often
show relatively inferior results for a small dataset. In contrast, traditional feature extraction methods have greater robustness
and perform well with a small/medium dataset. Moreover, a texture representation-based global approach is commonly used to
classify histological tissue images expect in explicit segmentation to extract the structure properties. Considering the scarcity of
medical datasets and the usefulness of texture representation, we would like to integrate both the advantages of deep learning
and traditional machine learning, i.e., texture representation. To accomplish this task, we proposed a classification model to
detect renal cancer using a histopathology dataset by fusing the features from a deep learning model with the extracted texture
feature descriptors. Here, five texture feature descriptors from three texture feature families were applied to complement
Alex-Net for the extensive validation of the fusion between the deep features and texture features. The texture features are from
(1) statistic feature family: histogram of gradient, gray-level cooccurrence matrix, and local binary pattern; (2) transform-based
texture feature family: Gabor filters; and (3) model-based texture feature family: Markov random field. The final experimental
results for classification outperformed both Alex-Net and a singular texture descriptor, showing the effectiveness of combining
the deep features and texture features in renal cancer detection.

1. Introduction

Histopathology images contain markers of disease progres-
sion and morphological information, supplying a clear view
of the tiny structures in tissue such that it is considered as
the final diagnosis for cancer subtype [1, 2]. That being said,
most hospitals lack pathologists; take Germany as an exam-
ple, where a large shortage of pathologists in Germany could
lead to a bottleneck in the health system [3]. The classifica-
tion of histopathology images by pathologists is a very
challenging task. First, there is interobserver discordance
between pathologists due to their different capabilities and
experiences. Second, the complicity of histopathology
images makes diagnosis time-consuming. Many computer-

aided diagnosis (CAD) systems have been proposed to
overcome these difficulties by extracting the features from
histopathology images to identify subtle differences between
clinical categories [4, 5], such as breast histopathology
images [2], lung histopathology images [6], and kidney his-
topathology images [7].

Renal cancer (RC) is one of the worst cancers in the
world. The American Cancer Society indicated that 76,080
new cases and 13,780 deaths will occur in 2021 [8]. Though
renal cancer develops slowly, early treatment can improve
the cure rate and survival time. There has been a substantial
amount of research applying deep learning methods to
classify renal cancer from histopathology images, of which
deep learning methods have worked well given a large
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dataset. Tabibu et al. [7] used convolutional neural networks
(CNNs) with a whole-slide image dataset with over 1500
samples to classify Renal Cell Carcinoma (RCC) subtypes
and predicted the survival outcome from digital histo-
pathological images, achieving an accuracy of 94.07%.
Fenstermaker et al. [9] randomly selected over 15000 patches
with a size of 1024 × 1024 pixels and achieved an accuracy of
99.1% for the classification of normal parenchyma and RCC
using a CNN model. Fenstermaker et al. [9] developed deep
convolutional neural networks (DCNNs) to diagnose renal
cancers using a dataset of about 30000 whole slide histopa-
thology images from The Cancer Genome Atlas (TCGA)
and successfully detected malignancy with an AUC of
0.964-0.985.

However, from those literatures mentioned above, we
know that deep learning methods require a large dataset to
reach a relatively high accuracy, which can be difficult to
obtain due to the scarcity of public medical datasets. Besides
this, due to the intrinsic complexity of histopathology
images, there are very subtle differences between images in
different categories. If relying on deep learning only, misjud-
gements are unavoidable. At the same time, in histopathol-
ogy images, there are repetitive patterns which can be
particularly suited for texture analysis. Texture is generally
characterized by homogenous areas with properties related
to scale and regular patterns, texture analysis plays an
importance role in many medical image analysis [10], such
as medical image classification [11], medical image segmen-
tation [12], and medical images retrieval [13]. Given a
smaller histopathology image dataset, traditional texture fea-
ture extractors can reach a reasonable result. Alhindi et al.
[14] compared local binary pattern (LBP), histogram of gra-
dients (HOG), and deep features (VGG16) for classification

of a smaller histopathology images dataset containing less
than 1000 samples. The result showed that LBP achieved
the highest accuracy of 90.52% with the support vector
machine (SVM), which is lower than the accuracies that
used a large dataset as we mentioned above, but better than
the deep learning method. In [15], the HOG feature from
gastric cancer histopathology images was extracted from
normal, benign, and malignant gastric images. The accuracy
rate of this work was 100%, which is quite impressive.

Currently, deep learning methods are the most fre-
quently studied and successful type of machine learning
methods, and the adoption of deep learning in histopathol-
ogy images [2, 6, 7, 16] has demonstrated its usefulness.
While deep learning methods generate an abstract represen-
tation that is learned in the hidden layers of the neural net-
work, traditional texture feature extractors generate more
mathematically solid features that are particularly suitable
for histopathology images and can reach a reasonable result
without a large dataset. However, there exist few literatures
on renal cancer detection using texture features. To combine
the advantages of both the deep learning method and tradi-
tional methods, we proposed a classification model shown in
Figure 1, which can be used to improve the classification
accuracy for renal cancer detection. For the deep learning
method, we utilized Alex-Net to extract robust deep features
without experiencing overfitting. For traditional methods,
we employed five texture descriptors from three families as
shown in Table 1 to complement Alex-Net. The contribu-
tions of this work are as follows: (1) we proposed a model
consisting of color normalization, deep features, texture
features, and feature selection to do renal cancer detection;
(2) we applied our model on a small histopathology image
dataset collected by a hospital, where the results of the
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Figure 1: The procedure of the proposed model. Images of 1024 × 768 pixels in size are color normalized, where a 4096-dimensional feature
vector is extracted from the deep model for each image. Next, we select a 100-dimensional vector by feature selection for each image. Finally,
the deep features with texture features are combined for classification.
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proposed model outperformed either the deep learning
method or a single traditional texture feature method.

The rest of this paper is organized as follows. Section 2
presents Alex-Net along with five texture feature extraction
methods with our applied fusion method. Section 3 explicitly
shows the experiment results of our model for renal cancer
detection and discusses the results and outlines our findings.
Section 4 summarizes the research.

2. Materials and Methods

2.1. Dataset. In this paper, the dataset we used was provided
by The Second Affiliated Hospital of the Guangzhou Medical
University. It contains 93 RC and 150 patients with healthy
kidneys who were enrolled and treated between the year
2010 and the year 2019. For each patient, there are an aver-
age of two histopathology images with a size of 1024 × 768
and some images are not in good quality to be included.
These histopathology images have been manually diagnosed
by multiple doctors. For the purpose of generalizability, we
performed rotation and flipping on each image. After pre-
processing, we set the proportions of training and testing
as 7 : 3; the statistics are as Table 2 shows.

2.2. Preprocessing. In a histopathology image, nuclei are
dyed purple, while the other structures are pink. Different
structures are distinguishable for the use of manual or auto-
mated analysis. However, the color variants due to the
preparation of tissue sections like difference of the staining
procedure make those analyses difficult. To improve the
generalizability of the model confronting data with differ-
ence in color styles, we used Structure-preserving Color
Normalization (SPCN) [17], which was proposed by
Vahadane et al. to control the color variation and contrast
enhancement by preserving the structure of the histopa-
thology images. Stain separation is the key step of color
normalization, where it first casts the stain separation prob-
lem as a nonnegative matrix factorization (NMF) to which
they add a sparseness constrain and refer to it as sparse
nonnegative matrix factorization (SNMF) with a cost func-
tion shown in Equation (1). With the SNMF, for a given
source image s and a target image t, their color appearances
and stain density maps can be estimate by factorizing Vs
into WsHs and Vt into WtHt . Then, a scaled version of
the density map of source Hs is combined with the color
appearance of the target Wt instead of the source Wt to
generate the normalized source image, which can be
described as Equations (2)–(4).

where HRM
i = RMðHiÞ ∈ Rr x 1, i = ðs, tÞ and RMð⊙Þ compute

robust pseudomaximum of each row vector at 99%.
Figure 2 shows an example of color variation and color
normalization.

2.3. Alex-Net. The deep learning features were extracted by
Alex-Net [18], a classical convolution neural network, and
have been widely applied in various medical image analysis
tasks such as cancer detection [19] and lesion segmentation
[20]. Nawaz et al. [19] fine-tuned Alex-Net by changing and
inserting the input layer convolutional layers and fully con-

nected layer, achieving a patch and image-wise accuracy of
75.73% and 81.25%, respectively, given a dataset consisting
of 400 images (which is not high). Titoriya and Sachdeva
[21] used the AlexNet model with the BreakHis dataset
[22], and the training model achieved spectacular classifica-
tion accuracy ranging between 93.8% and 95.7% with a data-
set of about 8000 images.

The network consists of eight layers. The first five layers
are convolutional layers, the last layers are fully connected
layers, and the output of the last fully connected layer is
passed to a softmax classifier; the simplified architecture is

Table 1: List of the texture feature extractors.

Family Method

Statistical
Gray-level cooccurrence matrix (GLCM)
Histogram of oriented gradients (HOG)

Local binary pattern (LBP)

Transform-based Gaussian filter

Model-based Markov random field (MRF)

Table 2: Statistics of the dataset.

Class Images Augmented Total
With augmentation

Training Validation

RC 210 630 441 189

Healthy 140 560 392 168

minW;;H
1
2

V −WHk k2F + λ〠
r

j=1
H j, :ð Þk k1  such thatW,H ≥ 0, W , jð Þk k22 = 1, ð1Þ

Hnorm
s j, :ð Þ = Hs j, :ð Þ

HRM
s j, :ð ÞH

RM
t j, :ð Þ, j = 1,⋯, r, ð2Þ

Vnorm
s =WtH

norm
s , ð3Þ

Inorms = I0 exp −Vnorm
sð Þ, ð4Þ
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shown in Figure 3. There are several main characteristics of
the network. First, it successfully used rectified linear units
(ReLU) shown in Equation (5) as the activation function
and verified that its effectiveness surpassed sigmoid in a deep
network. Second, it used dropout to randomly ignore some
neurons during training to avoid overfitting of the model.
Moreover, it also used data augmentation consisting of hor-
izontal reflection to overcome the problem of overfitting.
Third, it used overlapped max pooling to avoid the blurring
effect of average pooling. Besides this, it proposed local
response normalization (LRN), which creates a competition
mechanism for the activity of the local neurons so that the
value with a larger response becomes relatively large, and
other neurons with smaller feedback are inhibited, enhanc-
ing the generalization ability of the model. The response-
normalized activity bix,y is given by Equation (6).

R zð Þ =max 0, zð Þ, ð5Þ

bix,y =
aix,y

k + α∑min N−1,i+ n/2ð Þð Þ
j=max 0,i− n/2ð Þð Þ ajx,y

� �2� �β
: ð6Þ

2.4. Texture Feature Extraction. The eight texture extractors
are described in this subsection. First, the three methods
(IGH, GLCM, and LBP) from the statistical texture feature
family are given. Afterwards, Gaussian filter from the
transform-based family is described. Finally, MRF coming

from the model-based family is introduced. Table 1 lists
the five methods from the three families.

2.5. Statistical Texture Feature Family. The statistical texture
feature descriptors are based on the statistical properties of
the spatial distribution of the grey levels [23–25]. The
statistical characteristics include the first-order (one pixel),
second-order (two pixels), and higher-order (three or more
pixels) statistics. The first-order statistics estimate properties
of one pixel value, whereas second- and higher-order statis-
tics evaluate properties of the spatial interaction between
two and more image pixels [24]. To explore the various order
statistics of kidney histopathology images, HOG (first order),
GCLM (second order), and LBP (higher order) are used.

2.5.1. Histogram of Oriented Gradients (HOG). This feature
is a feature descriptor used for object detection in computer
vision and image processing. It composes the features by
calculating and counting the histogram of the gradient direc-
tion of the local area of the image. HOG feature combined
with a SVM classifier has been widely used in image recogni-
tion, especially in pedestrian detection [26]. It operates on
the local grid cell of the image, which enables it to maintain
a good invariance to the geometric and optical deformation
of the image [27]. Since there is large randomness of viewing
angles from the process of creating histopathology images,
the HOG feature is particularly suitable for the feature
extraction of histopathology images. Figure 4 is an example
of plotting the HOG features over the original image.

(a) (b) (c)

Figure 2: An example of color normalization: (a) is the source image; (b) is the target image; there is color variation between (a) and (b);
(c) is the resultant image after color normalization.
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Figure 3: The simplified architecture of Alex-Net.
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HOG feature extraction steps are as shown [27].

(1) Normalize the image: convert the input image to a
grayscale image and use the Gamma filter method
to perform global normalization on the grayscale
image. The purpose is to avoid the influence of noise
in the image

(2) Calculate the gradient value and direction of the
image to describe the structure and shape of the
image and eliminate the interference of noise. The
formulas are as follows:

Gx x, yð Þ =H x + 1, yð Þ −H x − 1, yð Þ, ð7Þ

Gy x, yð Þ =H x, y + 1ð Þ −H x, y − 1ð Þ, ð8Þ

G x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx x, yð Þ2 + Gx x, yð Þ2,

q
ð9Þ

α x, yð Þ = arctan
Gy x, yð Þ
Gx x, yð Þ
� �

, ð10Þ

Figure 4: An example of plotting HOG features over the original image.
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Figure 5: An example of GLCM generation. In the GLCM, element (1, 1) is equal to 1 because there is only one instance in the input image
where two horizontally adjacent pixels have the values 1 and 1, the same for the element (5, 6).

Table 3: An example of kidney histopathology images’ four
properties for both a healthy and RC sample using GLCM.

Class Contrast Correlation Energy Homogeneity

Healthy 0.1246 0.7433 0.4055 0.9377

RC 0.1146 0.7556 0.4295 0.9427
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where Gðx, yÞ, Gxðx, yÞ, Gyðx, yÞ, and Hðx, yÞ are the
gradient value of the current pixel, horizontal gradient, ver-
tical gradient, and pixel value and αðx, yÞ is the gradient
direction.

(1) Divide the image into cell units and construct a gra-
dient histogram. The cell size will affect the encoding
of the feature vector. If the cell size is too large, it will
lead to incomplete coding of the feature information;
if the cell size is too small, it will lead to an increase
in the time complexity

(2) Combine the preset number of cells into a block;
obtain the normalized gradient histogram within
the block. For example, for the size of a 16 pixel ×
16 pixel image, divided into 16 cells with a size of
4 pixels × 4 pixels, each adjacent 4 cells form a nor-
malized block, each cell has 9 features, and the step
size of the sliding window is 4 pixels; that is, each
block corresponds to a 36-dimensional feature vector

(3) Concatenate the features of all blocks to get the HOG
features of the image

2.5.2. Gray-Level Cooccurrence Matrix (GLCM). GLCM is a
well-known texture analysis method by extracting the
second-order statistical texture features [28–30]. Each ele-
ment Pði, j ∣ d, θÞ in GLCM corresponds to the number of
occurrences of the pairs of gray levels i and j which are at
a distance d apart in the direction of θ. Figure 5 shows an
example of the computation for GLCM [31] . Here, there
is an image with 8 gray levels, where the size of GLCM
is 8 × 8. When d = 1 and θ = 0, gray level (1, 2Þ appears
once, meaning that the element Pð1, 2Þ in GLCM equals
1, while the gray level ð5, 6Þ appears twice and the element
Pð5, 6Þ in GLCM is set as 2. Once the matrices are com-
puted, various properties can be extracted to represent
the texture of the image. In this paper, four properties
are extracted (in what follows, the image has N discrete
intensity levels):

Contrast = 〠
N−1

i,j=0
iPi,j i − jð Þ2, ð11Þ

Correlation = 〠
N−1

i,j=0
ijPi,jμ1μ2, ð12Þ

Energy = 〠
N−1

i,j
Pi,j

2, ð13Þ

Homogeneity = 〠
N−1

i,j=0

Pi,j

1 + i − jð Þ2 , ð14Þ

where contrast evaluates the local variations in the matrix,
correlation measures the joint probability occurrences of
the pairs, and energy is the sum of squared elements in
the matrix, which provides information on image homoge-
neity; a low value means the probabilities of the gray-level
pairs are rather similar and high values otherwise. Besides
that, homogeneity estimates the proximity of the distribu-
tion of elements in the matrix. Table 3 is an example of
the four properties of kidney histopathology images from
a normal and RC sample.

2.5.3. Local Binary Pattern (LBP). LBP was introduced in [32]
to characterize texture features presented in grayscale images,
and it has been widely used in many fields of computer vision
due to the simple calculation and its good performance, espe-
cially in face recognition [33] and object detection [34]. First,
the input image is divided into nonoverlapping cells, and his-
tograms are extracted from each of those cells, respectively.
Taking a window with size of a 3 × 3 as shown in Figure 6,
the threshold is the gray scale of the center pixel; compare its
8 neighbors with the threshold. If the neighbor is large, its
value is set as “1,” otherwise it is “0.” From left to right and
top to bottom, an 8-bit binary number is generated and con-
verted to decimal as the LBP value of the center pixel. Over
the cell, a histogram is computed based on the frequency of
each decimal number. Then, the histograms are concatenated
into the LBP features of the image to represent the image,
where the size of the LBP features depends on the number of
cells and the number of bins of the histograms. Figure 7 is
an example of extracting the LBP features from an image.

2.6. Transform-Based Texture Feature Family. Transform-
based texture descriptors commonly use linear transformers,
filters, or filter banks to transform images into another space
to distinguish texture more easily in the new space [10]. The
Gabor filter is a very useful linear filter used for texture
analysis [35].

2.6.1. Gabor Filter. A Gabor filter has frequency and direc-
tion that are similar to the human visual system, which
makes it very helpful in image processing, especially in face

21 118 33

32 55 204

62 45 250

0 1 0

0 1

1 1 1

Binary: 01011110
Decimal: 94

Figure 6: An example of LBP feature value of a pixel.
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Figure 8: (a) An example of Gabor filter outputs of a healthy kidney histopathology image. (b) An example of Gabor filter outputs of a RC
kidney histopathology image.
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recognition [36]; a 2-D Gabor filter is defined as Equation
(15) [37]. In the original spatial domain, a Gabor kernel is
the result of a Gaussian kernel and sine wave modulation,
and images are filtered by the real parts of the Gabor filter
kernels. Then, the mean and variance of the filtered images
are used as texture features for image classification. For this
paper, we set various filter sizes to extract the texture feature
of the histopathology images. Figure 8 is an example of
Gabor output from a healthy and RC kidney histopathology
images with the filter size being 24.

G x, yð Þ = e x2+ɣ2y2ð Þ/−2σ2 cos 2π
x′
λ

 !
, ð15Þ

where x′ = x · conθ + y · sin θ, y′ = x · sin θ + y · cos θ θ, σ is
the variances, θ is the wavelength, ɣ is the aspect ratio of
the sinusoidal function, and θ is the orientation.

2.7. Model-Based Texture Feature Family. Model based
methods construct an image model and use the parameters
of the model as its texture features, where its main goal is
to optimize the parameters. There are several commonly
used methods such as mosaic models and random field
models [10]. MRF as a typical method of a random field
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Table 4: HOG cell size and block size combination list.

HOG cell size and block size

(1) 6 × 6 cell size and
2 × 2 block size

(2) 6 × 6 cell size and
3 × 3 block size

(3) 6 × 6 cell size and
4 × 4 block size

(4) 6 × 6 cell size and
5 × 5 block size

(5) 8 × 8 cell size and
2 × 2 block size

(6) 8 × 8 cell size and
3 × 3 block size

(7) 8 × 8 cell size and
4 × 4 block size

(8) 8 × 8 cell size and
5 × 5 block size

Input: labeled images
Step 1. Preprocessing the histopathology images (refer to subsections 2.1 and 2.2)
1.1. Color normalization by solving Equations (1)-(4)
1.2. Data augmentation
Step 2. Feature extraction (refer to Subsections 2.3–2.6)
2.1. Extract the deep learning feature vector from the Alex-Net model and perform feature selection.
2.2. Compute the texture features from the texture feature descriptors with different parameters.
Step 3. Fuse both feature vectors (from steps 2 and 3) by concatenating them.
Step 4. Train the classifiers with the merged features as its input data.
Step 5. Apply the model on the test set to validate it.
Output: the predicted labels

Algorithm 1: Detailed steps (refer to Figure 1) are as follows.

8 BioMed Research International



model is used to extract texture features from kidney histo-
pathology images.

2.7.1. Markov Random Field (MRF). Xn is a Markov random
process if its different conditions confirm Markov chain and
satisfy Equation (16), which implies that each element is
only related to its neighbors and not influenced by the non-
neighboring elements. Markov chains that are extended to
multiple dimensions are called MRF [38]. MRF has been
applied in many fields of image processing such as segmen-
tation [39] and classification [40], with its main advantage

being that it provides the interrelationship of the related ran-
dom variables in the expression space and makes full use of
the statistical dependence of the neighbor pixels.

P Xn = xn ∣ Xnk = xk, k ≠ nð Þ
= P Xn = xn ∣ Xn−1 = xn−1, Xn+1 = xn+1ð Þ: ð16Þ

2.8. Proposed Method. To exclude any redundant informa-
tion from the deep learning features, we applied feature
selection before classification based on the differences
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Figure 10: HOG with different cell size and block size combinations.
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between the positive and negative labels (RC and healthy).
The difference of the kth feature diff k is calculated as

diff k =
1

Npos
〠
i∈pos

vi,k −
1

Nneg
〠
i∈neg

vi,k

					
					, ð17Þ

where k ranges from 1 to 4096, Npos and Nneg are the
number of positive and negative images in the training set,
and vi,k is the kth dimensional feature of the ith image. Fea-
ture components are then ranked from the largest diff k to
smallest, and the top 100 feature components are selected
[41]. We terminated the training after 5 epochs when the
validation accuracy did not improve.

In this subsection, we proposed a model to tackle the
issue of RC detection. The detailed steps of our framework
are shown in Figure 1. After image preprocessing, feature
extraction, feature selection, and feature fusion, we can even-
tually classify RC from healthy kidneys using histopathology
images.

3. Results and Discussion

In this section, we validated the proposed model on the data-
set mentioned in Section 2.1. The experiments were imple-
mented in MATLAB 2020a with an Intel Core I7 computer
processor, 16GB of RAM, and a Windows 10 system. Three
traditional classifiers of LR, SVM, and RF were chosen to
detect RC based on the merged features, and we repeated
the experiment for ten times and got the average as the final
result. For LR, the penalty is set as “l2” and C equals to 1.0,
while the linear kernel function is used and C is equal to
0.025 in SVM. In terms of RF, the criterion is entropy, and
the maximum depth of the tree is equal to 3. We adopted
accuracy, precision, recall, and F1 score as evaluation met-
rics for the proposed model, defined as follows:

Accuracy = True Pos:+TrueNeg:
All data number

, ð18Þ

Precision =
True Pos:

True Pos:+FalseNeg:
, ð19Þ

Recall =
TrueNeg:

TrueNeg:+False Pos:
, ð20Þ

F1 score = 2 ∗
Recall ∗ Precision
Recall + Precision

, ð21Þ

where True Pos: is the class of correctly classified normal
kidney images and TrueNeg: represents the class of cor-
rectly classified RC histopathology images. False Pos: is the
incorrectly classified normal kidney images, and False Neg:
is the incorrectly classified RC images.

3.1. Deep Feature Results. For Alex-Net, we fine-tuned the
training parameters and trained Alex-Net by ImageNet. Then,
we extracted the features from the histopathology images via
the “fc7” layer and obtained a 4096-dimensional vector for
each image [42]. We terminated the training after 20 epochs

when the validation accuracy did not improve. An accuracy
of 87.72% with a precision of 81.86%, a recall of 98.25%, and
a F1 score of 88.89% was obtained as shown in Figure 9.

3.2. Statistical Texture Feature Family Results

3.2.1. HOG Results. In HOG, we analysed a range of combi-
nations of cell sizes and block sizes (refer to Table 4) for
renal cancer detection [43]. As Figure 10(a) shows the results
of HOG using LR, the best accuracy of 83.34% with a preci-
sion of 84.60%, a recall of 91.92%, and F1 score of 89.95%
was achieved where the combination is No. 3 (6 × 6 cell
and 4 × 4 block size) with LR, SVM, and No. 4 (6 × 6 cell size
and 5 × 5 block size). Figure 10(b) represents the results of
HOG using SVM; an accuracy of 88.80% was reached with
combination No. 3, while its precision, recall, and F1 score
were 87.87%, 92.92%, and 89.85%, correspondingly. As
shown in Figure 10(c), using RF, the highest accuracy of
79.13% with a precision of 80.28%, a recall of 81.03%, and
F1 score of 79.09% was obtained.

3.2.2. GLCM Results. For GLCM, four crucial properties were
selected, including contrast, correlation, energy, and homoge-
neity as we mentioned in Subsection 2.5.2. All 15 combina-
tions for these four properties were used to represent the
texture feature of the histopathology images. The matrix prop-
erty combinations are shown in Table 5, and its results are
illustrated in Figure 11. As seen in Figure 11(a), using LR,
the best accuracy of 73.04 with a precision of 74.38%, a recall
of 74.90%, and a F1 score of 73.01% was obtained, where co
ntrast + correlation + energy was used. Figure 11(b) shows
that with SVM, an accuracy of 71.79% with a precision of
67.88%, a recall of 97.04, and a F1 score of 67.88 was reached
using contrast + energy. For RF, the highest accuracy of
82.60% was higher than that of LR and SVM, with a precision
of 82.53%, a recall of 83.65%, and a F1 score of 82.44%, using
correlation + energy + homogeneity.

3.2.3. LBP Results. LBP as a higher-order statistical texture
feature extraction method was used as the third extractor in
the kidney histopathology images. The uniform LBP with 8
neighbors and radius 1 was used here since it has been proven
to be compact and powerful [44]. We set the range of the cell
size from 4 to 32. The results based on LBP with varying cell

Table 5: GLCM matrix property combination list.

Matrix property

(1) Contrast (2) Correlation

(3) Energy (4) Homogeneity

(5) Contrast + correlation (6) Contrast + energy

(7) Contrast + homogeneity (8) Correlation + energy

(9) Correlation + homogeneity (10) Energy + homogeneity

(11) Contrast + correlation +
energy

(12) Contrast + correlation +
homogeneity

(13) Contrast + energy +
homogeneity

(14) Correlation + energy +
homogeneity

(15) All
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sizes using three traditional classifiers are represented in
Figure 12. The highest accuracy using LR based on the
LBP with cell size = 16 was 84.46% with a precision of
83.74%, a recall of 84.46%, and a F1 score of 83.99% (refer
to Figure 12(a)). As shown in Figure 12(b), using SVM, an
accuracy of 81.73% with a precision of 81.15%, a recall of
81.93%, and a F1 score of 81.37 was obtained, where the
cell size = 8. Figure 12(c) presents the results of using RF;
the best accuracy with the cell size = 32 was 85.21% with
a precision of 85.21%, a recall of 84.46%, and a F1 score
of 83.99%.

3.3. Transform-Based Texture Feature Family Results

3.3.1. Gabor Filter Results. The Gabor filter, as the most
commonly used filter in pattern recognition was applied.
Here, we varied the filter size for the Gabor filter; the range
of the filter size is 4 : 4 : 32. The classification results by differ-
ent classifiers based on the filter with an increasing filter size
are illustrated in Figure 13. The highest accuracy obtained
through LR was 88.69% with a precision of 88.23%, a recall
of 88.46%, and a F1 score of 88.34% where the filter size =
16. As shown in Figure 13(b), using SVM, an accuracy of
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Figure 11: GLCM results with different property combinations.
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86.08% with a precision of 85.59%, a recall of 86.59%, and a
F1 score of 85.84% where the filter size = 24. Figure 13(c)
shows the results of using RF; an accuracy of 86.08% with
a precision of 85.60%, a recall of 86.50%, and a F1score of
85.60% was obtained where the filter size = 20.

3.4. Model-Based Texture Feature Family Results

3.4.1. MRF Results. MRF from the model-based texture fea-
ture family was the last extractor used in this paper. Here,
MRF has an iteration parameter, ranging from 20 : 10 : 50,

respectively (refer to Subsection 2.7.1). Figure 14 shows the
classification results using MRF while varying the number
of iterations. As shown in Figure 14(a), using LR with an
iteration of 40, an accuracy of 53.91% with a precision of
54.65%, a recall of 54.78%, and a F1 score of 53.78% was
obtained, which is relatively low. The highest accuracy of
80.86% with a precision of 81.12%, a recall of 82.18%, and
a F1 score of 80.75% using SVM was obtained, where the
iteration was 50 (refer to Figure 14(b)). Using RF, an accu-
racy of 73.04% RF was obtained with a precision where the
iteration is equal to 40 (refer to Figure 14(c)).
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3.5. Proposed Model Results. In this subsection, we validated
the proposed model on the medical dataset mentioned in
Section 2.1. First, we fused both feature vectors by
concatenating them. Later, three traditional classifiers, LR,
SVM, and RF, were used to classify the data based on the
fused vectors. In order to illustrate the effectiveness of the
proposed model in terms of RC detection using histopathol-
ogy images, we compared it with the deep learning model
Alex-Net and the singular texture feature descriptors
(HOG, GLCM, LBP, Gabor filter, and MRF); experiments
results are shown in Figure 9 and Table 6. The proposed
model reached the highest accuracy of 98.54% with the

SVM classifier combining the Alex-Net and the Gabor filter
features. As the results show, the proposed model reached an
accuracy of 93.76% with Alex-Net fused with HOG, an accu-
racy of 94.52% with Alex-Net fused with GLCM, an accuracy
of 93.45% with Alex-Net fused with LBP, and an accuracy of
97.39% with Alex-Net fused with MRF.

Due to the lack of equipment, most hospitals can only
provide normal histopathology images with low lenses (at
100x magnification), where the quality of those images is
much lower than a whole-slide image (WSI). In the future,
we could explore the application of the proposed method
on the WSI as literature. As a result, the accuracy of the
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classification is not as good as research that uses WSI
[45, 46]. In the literature [29], GLCM with a SVM classifier
was employed achieving an accuracy of 92.8% and GLCM
with k-NN obtaining an accuracy of 91.65%. These results
are remarkable compared with accuracies of 73.04%,
71.79%, and 82.60% we got while using GLCM only with
LR, SVM, and RF. However, considering the large number
of basic hospitals and the number of patients, we could build
a much bigger dataset to verify the proposed method. Com-
pared with the limited published datasets using WSI, normal

histopathology images provided by basic hospitals might be
more promising.

In the future, there are several options to explore regard-
ing improving the accuracy of detecting RC using our
method. One avenue is to vary the size of the dataset to
establish the optimum quantity of images. Also, the impact
of the hardware specifications should be considered, a
dedicated machine versus setting minimum required specifi-
cations. Furthermore, we can consider more features like
shape to describe the characteristics of histopathology
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images more comprehensively, before obtaining a better
performance in RC detection, so that we can detect and
diagnose RC early and effectively improve the survival and
cure rate.

4. Conclusion

In this study, we proposed a classification model to detect
renal cancer using a histopathology dataset by fusing the
features from a deep learning model with the extracted
texture feature descriptors. After the preprocessing of his-
topathology images including transformation and color
normalization, we extracted deep features using the Alex-
Net and texture features using five texture feature descrip-
tors from three families separately to complement Alex-
Net, then fused deep features and texture features for the
classification of RC. To optimize the performance of the
proposed method, various parameter(s) of each extractor
were experimented. Experimental results validated that
the proposed model outperformed the deep learning
model or the singular texture feature descriptor; we exten-
sively studied the effects of texture features to accomplish
deep features. For the future work, we can apply the pro-
posed model for different histopathology images dataset to
optimize the performance.
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