
Citation: Cardillo, N.; Devor, E.J.;

Pedra Nobre, S.; Newtson, A.; Leslie,

K.; Bender, D.P.; Smith, B.J.;

Goodheart, M.J.; Gonzalez-Bosquet, J.

Integrated Clinical and Genomic

Models to Predict Optimal

Cytoreduction in High-Grade Serous

Ovarian Cancer. Cancers 2022, 14,

3554. https://doi.org/10.3390/

cancers14143554

Academic Editors: Mohamed

Mokhtar Desouki and

Oluwole Fadare

Received: 31 May 2022

Accepted: 18 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Integrated Clinical and Genomic Models to Predict Optimal
Cytoreduction in High-Grade Serous Ovarian Cancer
Nicholas Cardillo 1,* , Eric J. Devor 1 , Silvana Pedra Nobre 1, Andreea Newtson 2, Kimberly Leslie 3,
David P. Bender 1, Brian J. Smith 4 , Michael J. Goodheart 1 and Jesus Gonzalez-Bosquet 1

1 Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA;
eric-devor@uiowa.edu (E.J.D.); silvana-pedranobre@uiowa.edu (S.P.N.); david-bender@uiowa.edu (D.P.B.);
michael-goodheart@uiowa.edu (M.J.G.); jesus-gonzalezbosquet@uiowa.edu (J.G.-B.)

2 Nebraska Medical Center, Division of Gynecologic Oncology, University of Nebraska,
Omaha, NE 68198, USA; anewtson@unmc.edu

3 Departments of Internal Medicine and Obstetrics and Gynecology, Division of Molecular Medicine,
The University of New Mexico Comprehensive Cancer Center, 915 Camino de Salud, CRF 117,
Albuquerque, NM 87131, USA; kkleslie@salud.unm.edu

4 Department of Biostatistics, University of Iowa, 145 N Riverside Dr., Iowa City, IA 52242, USA;
brian-j-smith@uiowa.edu

* Correspondence: nick.d.cardillo@gmail.com; Tel.: 319-356-2015

Simple Summary: Approximately 30% of patients with advanced, high-grade serous ovarian cancer
who undergo surgery will have a suboptimal result, resulting in decreased overall survival. Improving
the ability to predict a successful surgery would improve survival. We aimed to use tumor genomics
to create prediction models, which would predict an optimal or complete cytoreduction prior to
entering the operating room. We created two sets of models, one for optimal and one for complete
cytoreduction. We then validated those models using the TCGA database as well as statistical learning.
We developed 21 models for optimal cytoreduction and 37 models for complete cytoreduction, which
have the potential to improve our ability to predict these surgical results in patients with ovarian
cancer before taking them to the operating room. Improving our pre-operative decision-making will
result in more patients having the desired surgical results and, therefore, improved survival.

Abstract: Advanced high-grade serous (HGSC) ovarian cancer is treated with either primary surgery
followed by chemotherapy or neoadjuvant chemotherapy followed by interval surgery. The decision
to proceed with surgery primarily or after chemotherapy is based on a surgeon’s clinical assessment
and prediction of an optimal outcome. Optimal and complete cytoreductive surgery are correlated
with improved overall survival. This clinical assessment results in an optimal surgery approximately
70% of the time. We hypothesize that this prediction can be improved by using biological tumor
data to predict optimal cytoreduction. With access to a large biobank of ovarian cancer tumors,
we obtained genomic data on 83 patients encompassing gene expression, exon expression, long
non-coding RNA, micro RNA, single nucleotide variants, copy number variation, DNA methylation,
and fusion transcripts. We then used statistical learning methods (lasso regression) to integrate these
data with pre-operative clinical information to create predictive models to discriminate which patient
would have an optimal or complete cytoreductive outcome. These models were then validated
within The Cancer Genome Atlas (TCGA) HGSC database and using machine learning methods
(TensorFlow). Of the 124 models created and validated for optimal cytoreduction, 21 performed
at least equal to, if not better than, our historical clinical rate of optimal debulking in advanced-
stage HGSC as a control. Of the 89 models created to predict complete cytoreduction, 37 have the
potential to outperform clinical decision-making. Prospective validation of these models could result
in improving our ability to objectively predict which patients will undergo optimal cytoreduction
and, therefore, improve our ovarian cancer outcomes.
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1. Introduction

Ovarian cancer is the leading cause of gynecologic cancer death and the fifth most
common cancer in women in the United States. The disease carries a poor prognosis with
5-year overall survival approaching 50%. This is mainly because most cases are diagnosed
at an advanced stage, either FIGO Stages III or IV [1].

Ovarian cancer is a heterogeneous disease encompassing several histological subtypes.
Epithelial ovarian cancer accounts for approximately 90% of cases and the most common
epithelial subtype is high-grade serous carcinoma (HGSC), which is also the deadliest.
Treatment of HGSC consists of a combination of surgery and chemotherapy, either with
cytoreductive surgery primarily or after 3 to 6 rounds of platinum-based chemotherapy [2].

The Gynecologic Oncology Group (GOG) defines optimal surgical resection (R1) as
‘no residual lesions greater than 1 cm in maximal diameter’, and has used this metric in
ovarian cancer clinical trials since 1996, and as recently as 2019 [3–8]. If there is no visible
residual disease then surgical resection is termed complete (R0) [8]. Overall survival is
strongly associated with the amount of residual disease after surgery, with the best survival
occurring after complete resection [9–13].

Upfront surgical resection is preferred if an optimal surgical result can be achieved [14].
However, if an optimal or complete resection of the disease is not feasible, neoadjuvant
chemotherapy is used to improve the chances of optimal resection without compromising
overall survival [15–17]. Surgeons traditionally use clinical data, such as physical examina-
tion, imaging studies, and functional status to determine the ability to successfully resect
disease. In high-volume centers, this leads to an optimal surgical result in 70% of cases [18].
Numerous attempts have been made to try and improve the surgeon’s ability to predict an
optimal surgical outcome. Clinical data, such as CA-125, and imaging studies combined
into predictive models, have not yielded a formula that improves an experienced surgeon’s
decision-making [19–21]. A laparoscopic scoring system yielded to a complete resection
88% of the time, but still requires a surgical procedure and increased use of resources [22].

Some believe that tumor biology plays a role in the likelihood of optimal surgical
resection and that molecular characterization can improve rates of optimal resection [23].
A previously published gene expression signature accurately categorized suboptimal
and optimal outcomes 92.8% of the time [24]. However, a subsequent study concluded
that prediction using gene expression was limited by the fact that the surgical outcome
was sometimes dictated by intraoperative decision-making based on patient health fac-
tors [25]. We hypothesize that integrating genomic data from surgical specimens with
clinical data will improve the prediction of optimal cytoreductive surgery in ovarian cancer
over clinical decision-making.

We leveraged the University of Iowa (UI) Biobank, which harbors hundreds of high-
grade serous cancers (HGSC) of tubo-ovarian or peritoneal origin. We extracted DNA
and RNA from these tumors and determined their genomic features: DNA methylation,
gene expression, exon expression, micro RNA (miRNA), long non-coding RNA (lncRNA),
single nucleotide variation (SNV), copy number variation (CNV), and fusion transcripts.
Our objective was to create accurate prediction models that would discriminate which
patients with HGSC would undergo optimal or complete cytoreductive surgery using
both pre-operative clinical and genomic data. Then, we validated these models using The
Cancer Genome Atlas (TCGA), an independent comprehensive clinical genomic database,
and using machine learning.

2. Materials and Methods

We performed a retrospective, single-institution cohort study in which we included
all Stage III and IV patients with high-grade serous ovarian cancer (HGSC) from 1990 to
2014 available in our biobank with pre-operative and intra-operative clinical data. DNA
and RNA were then extracted from tumor specimens and processed as detailed below to
obtain the necessary genomic data. Clinical and genomic data were then combined to create
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predictive models using statistical learning to identify criteria that accurately predicted
optimal and complete cytoreduction in advanced-stage HGSC patients.

Tissue samples and clinical outcome data were obtained from the Department of
Obstetrics and Gynecology Gynecologic Oncology Biobank (IRB, ID no. 200209010), which
is part of the Women’s Health Tissue Repository (WHTR, IRB, ID no. 201804817). All of
the tissues archived in the Gynecologic Oncology Biobank (herein termed Biobank) were
originally obtained from adult patients under informed consent in accordance with Univer-
sity of Iowa IRB guidelines. Tumor samples were collected, reviewed by a board-certified
pathologist, flash-frozen, and then the diagnosis was confirmed in paraffin at the time
of initial surgery. All experimental protocols were approved by the University of Iowa
Biomedical IRB-01.

The University of Iowa is a high-volume clinical center with gynecologic oncologists
trained in extensive cytoreductive surgery, including upper abdominal debulking. All pro-
cedures were performed by board-certified or board-eligible gynecologic oncologists with
the assistance of appropriate consulting services if necessary.

We analyzed patients based on the amount of residual disease at the conclusion of
surgery. Traditionally, the objective of surgery has been to achieve optimal cytoreduction,
meaning that there are no residual lesions greater than 1 cm in size. If this is not achieved,
it is termed suboptimal debulking. If all visible disease is removed at the time of surgery,
then that is termed a complete cytoreduction. More recently, as some surgeons have
adopted complete cytoreduction as their surgical objective, we chose to create two sets of
predictive models: one that predicted optimal cytoreductions, including all patients with
residual disease less than 1 cm, which by definition included complete cytoreductions,
and the second set of models, which predicted complete cytoreduction only. When referring
to the comparison groups for these two sets of models, we will refer to the groups as optimal
and suboptimal, and complete and incomplete, respectively.

2.1. Clinical Data

Clinical data were extracted from the electronic medical record. Table 1 summarizes
the baseline clinical and pathologic characteristics. Only data that were available prior
to surgical intervention were used in the development of predictive models, including
age, BMI, Charlson Comorbidity index, CA-125, stage, use of neoadjuvant chemotherapy,
and location of disease on imaging. Other clinical data were collected to compare outcomes
and demonstrate the extent of surgical resection.

Table 1. Patient Characteristics and Association with PCS Outcome.

All UI HGSC Population Samples with RNA-seq and DNA
Methylation

Optimal
(n = 273)

Suboptimal
(n = 132) p-Value Optimal

(n = 52)
Suboptimal

(n = 31) p-Value

Preoperative
characteristics

Age (mean) 61 61 0.742 62 58 0.204

BMI (mean) 28.3 28.1 0.772 25.5 27.8 0.149

Charlson Morbidity Index ** 0.604

Low (1–3) 44 19 Ref 8 6 Ref

Medium (4–6) 182 87 0.738 31 16 0.548

High (>6) 37 19 0.660 5 3 0.806

Preop CA-125 (mean) 1613 2067 0.224 2695 3030 0.808

Disease in Upper abdomen (Other
than Omentum) by Imaging 203 101 0.638 34 20 0.936

Large bowel 14 8 0.698 1 1 0.711

Spleen 5 0 0.982 0 0 -
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Table 1. Cont.

All UI HGSC Population Samples with RNA-seq and DNA
Methylation

Optimal
(n = 273)

Suboptimal
(n = 132) p-Value Optimal

(n = 52)
Suboptimal

(n = 31) p-Value

Preoperative
characteristics

Mesenteric LN 15 7 0.936 2 1 0.884

Porta/Hepatis 21 17 0.097 2 1 0.884

Ascites (upper abdomen) 115 56 0.954 20 8 0.241

Other 90 52 0.204 12 11 0.225

Disease in the Chest by Imaging 25 29 <0.001 * 1 4 0.077

Tumor 7 19 0.026 * 1 2 0.313

Pleural effusion 25 27 0.002* 1 2 0.313

Neoadjuvant chemotherapy 22 9 0.700 10 4 0.450

Operative
characteristics

FIGO Stage 0.001 * 0.225

III 224 89 40 20

IV 49 43 12 11

Hysterectomy 210
(77%) 79 (60%) <0.001 * 38 (73%) 18 (58%) 0.161

Surgery to remove cervix 188
(69%) 63 (48%) <0.001 * 32 (62%) 13 (42%) 0.085

Adnexectomy 263
(96%) 125 (95%) 0.443 51 (98%) 29 (94%) 0.313

Omentectomy 260
(95%) 118 (89%) 0.031 * 49 (94%) 29 (94%) 0.894

Surgery large bowel 96 (35%) 35 (27%) 0.082 16 (31%) 9 (29%) 0.868

Surgery small bowel 5 (2%) 3 (2%) 0.765 0 (0%) 1 (3%) 0.991

Splenectomy 4 (1%) 0 (0%) 0.984 1 (2%) 0 (0%) 0.992

Diaphragmatic stripping 8 (3%) 0 (0%) 0.977 5 (10%) 0 (0%) 0.992

Para-aortic lymphadenectomy 56 (10%) 13 (21%) 0.009 * 3 (6%) 3 (10%) 0.510

Residual disease 0.981 0.988

Microscopic 71 0 11 0

Macroscopic 202 132 41 31

Surgical complexity index #

Low 126 91 Ref 30 20 Ref

Intermediate 140 41 <0.001 * 20 11 0.685

High 7 0 0.978 2 0 0.992

Outcomes
30-day mortality 4 (1.5%) 3 (2.3%) 0.558 0 (0%) 0 (0%) N/A

90-day mortality 8 (2.9%) 9 (6.8%) 0.071 0 (0%) 1 (1%) 0.991

* Statistically significant. ** Charlson Comorbidity Index is a measure of the prognostic burden of all associated
morbidities to predict mortality and is the most validated measure of the prognostic impact of multiple chronic
illnesses [26]. # Surgical complexity score: score to predict surgical morbidity and 90-day mortality after primary
debulking surgery for HGSC [27].

Clinical data from the University of Iowa Biobank were also used to determine the
rate of optimal cytoreduction through time at our institution to act as our threshold for a
successful predictive model.
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2.2. Genomic Analysis

A total of 470 patients with ovarian cancer were identified in the database. Only pa-
tients with primary diagnoses of advanced stages III and IV, high-grade serous ovarian
cancer, were included. The flow diagram in Figure 1 summarizes the patients included in
this study.
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Figure 1. The flow of included patients in the analysis. Of the initial 470 HGSC patients, 405 were
confirmed to be high-grade, advanced stage, of serous histology: (a) 273 underwent optimal PCS,
and 132 underwent suboptimal PCS. A total of 187 had frozen tumors in the biobank, and RNA-seq
and DNA methylation was successful in 83: (b) 31 underwent suboptimal PCS and 51 underwent
optimal PCS, 11 of them (or 22%) with R0 or no macroscopic disease.

RNA was then isolated from these tumor specimens. RNA extraction, processing,
and sequencing have been described previously [28,29]. In brief, total cellular RNA was
extracted from primary tumor tissue using the mirVana (Thermo Fisher, Waltham, MA,
USA) RNA purification kit. The RNA yield and quality were assessed with Trinean
Dropsense 16 spectrophotometer and Agilent Model 2100 bioanalyzer. RNA quality was
determined to be adequate if the sample had an RNA integrity number (RIN) of 7.0 or
greater. Samples that were of adequate quality were then sequenced. A total of 500 ng of
RNA was quantified by Qubit measurement (Thermo Fisher). RNA was then converted to
cDNA and ligated to sequencing adaptors with Illumina TriSeq stranded total RNA library
preparation (Illumina, San Diego, CA, USA). cDNA samples were then sequenced with the
Illumina HiSeq 4000 genome sequencing platform using 150 bp paired-end SBS chemistry.
All sequencing was performed at the Genome Facility at the University of Iowa Institute of
Human Genetics (IIHG).

STAR was used to align the RNA-seq reads to the human reference genome (version
hg38) [30]. We then created BAM files after alignment. FeatureCount was used to measure
gene expression [31]. The DESeq2 package was used to import, normalize, and prepare the
gene counts for analysis [32]. Gene expression and miRNA expression were independently
used for the association analysis. ENSEMBL was used to annotate single exons within the
gene expression alignment analysis. Exon expression was then evaluated using the DEXSeq
package [33]. BAM files for each sample were used for SNV discovery and base-calling
against the human genome reference utilizing SAMtools and BCFtools for sorting and
indexing. Results were filtered for duplicates, known non-synonymous single-nucleotide
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variants, and synonymous variants, and then annotated with ANNOVAR. Gene CNV
was estimated using SAMtools and superFreq [34]. BAM files were then used to identify
lncRNA, as described previously [35,36]. Lastly, fusion transcripts were determined using
the STAR-Fusion suite from fastq files [37]. Supplementary Figure S1 depicts each program
used for RNA processing and the identification of various genomic components.

Genomic DNAs (gDNAs) were purified from frozen tumor tissues using the DNeasy
Blood and Tissue Kit according to the manufacturer’s (QIAGEN) recommendations. Yield
and purity were assessed on a NanoDrop Model 2000 spectrophotometer and by horizontal
agarose gel electrophoresis. DNA methylation was determined by using bisulfite-converted
gDNA processed on MethylationEPIC arrays. Details of this process have been previously
published by our group [38]. The Illumina Infinium MethylationEPIC BeadChip Kit
(Illumina) quantifies more than 850,000 methylation sites. Bisulfite-converted samples
were denatured and neutralized, then isothermally amplified overnight. The product was
fragmented enzymatically. Fragmented DNA was precipitated, resuspended, and placed
onto the Illumina methylationEPIC BeadChip and hybridized. The BeadChip was washed,
extended, and stained. The arrays were scanned with the Illumina iScan and methylation
intensity was measured. Analysis was performed using the Minfi R statistical package [39].

2.3. Statistical Analysis

Only baseline clinical characteristics before surgery were included in the statistical
analysis. Most genomic data were used as continuous variables, except SNV and fusion
genes, which were used as dichotomous variables. To select those variables most informa-
tive for the prediction of cytoreduction, we used univariate analysis with ANOVA (p < 0.05),
as implemented by the caret R package and detailed previously [28]. Significant predictive
variables were then used in a multivariate lasso regression prediction model (statistical
learning). Thus, poorly annotated variables were removed from model construction.

Creation of prediction models of cytoreduction with statistical learning: Significant variables
from the univariate analysis were then incorporated into multivariate lasso regression pre-
diction models of optimal and complete cytoreductive surgery. Initial models included only
significant variables from one category of clinical or genomic data (i.e., lncRNA expression,
miRNA expression, CNV, etc.). Variables were then progressively combined to create more
complex prediction models. Multivariate prediction models were fit with the least absolute
shrinkage and selection operator (lasso) as implemented in the glmnet R package [40],
and detailed previously [28]. Performances of prediction models were measured with the
area under the receiver operating characteristics curve (AUC) and 95% CI, and estimated
with 1000 replicates of ten-fold cross-validation to avoid over-fitting. Bias-corrected and
accelerated bootstrap CIs were computed for each model. The AUC of 0.5 indicates no
predictive ability of a model and 1.0 represents perfect predictive performance.

Validation of predictive models: HGSC data from TCGA were used to validate the created
predictive models [41]. We included only patients within the TCGA database that had at
least 6 months of clinical follow-up, adequate data on disease status, and treatment received,
including surgical outcome [42]. As with UI patients, only baseline clinical characteristics
were included in the validation. Some clinical data were not available in TCGA patients,
as this database was not designed for this particular study. Moreover, DNA methylation
analysis in TCGA was performed with an earlier chip with fewer features, the Illumina
Infinium HumanMethylation27K BeadChip arrays [42]. Some of the significant features
from prediction models containing DNA methylation were not able to be validated. BAM
files from these HGSC TCGA patients underwent the same analysis pipeline as described
previously in the genomic analysis.

Prediction models of cytoreduction constructed with UI data were validated in the
TCGA HGSC dataset. When there were missing data in TCGA (either clinical or genomic),
we constructed alternative models from our dataset with those variables available in TCGA.
The R package, pROC was used to determine thresholds for our model when applied to the
TCGA dataset [43]. Models yielding a sensitivity > 90% were ranked from highest to lowest
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sensitivity, negative predictive value, and AUC. A sensitivity threshold of over 90% will
identify most of the patients that will achieve cytoreduction, with improvement over clinical
algorithms. The best performing parameters were used to fit a final score of that model to
the entire TCGA cohort [28]. Performances measured by AUC between 0.8 and 0.9 were
considered ‘very good’; performances between 0.9 and 1 were considered ‘excellent’.

Validation of predictive models with machine learning methods: For validation of the
best prediction models of cytoreduction in a machine learning platform, we used Tensor-
Flow [44] in a Jupyter notebook with a Keras application programming interface (API) [45].
The TensorFlow code was modified from a tutorial [46]. Training, validating, and testing
were performed to account for weights of the outcomes as well as for unbalanced data
(mainly for complete vs. optimal patients).

3. Results

Of 470 patients within our database, 405 patients were determined to have advanced-
stage HGSC. Of these, 273 underwent optimal cytoreduction and 132 received suboptimal
cytoreduction. Patients with inadequate clinical data were excluded and we extracted
DNA and RNA from the remainder. A total of 83 patients had adequate clinical data,
successfully analyzed DNA methylation data, and adequate RNA extraction. A total of
52 of the 83 underwent optimal cytoreductions, 11 of which were complete, and 31 received
suboptimal surgeries (Figure 1).

Pre-operative, intra-operative, and postoperative clinical data were compared between
the optimal, complete, and suboptimal groups. Significant differences between clinical
characteristics for all groups are detailed in Table 1. We computed differences between
clinical features for the whole UI cohort of advanced-stage HGSC patients (left side of the
table) and those with genomic, RNA-seq, and DNA methylation analyses (middle and
right side of the table). There was no difference in the proportion of patients with optimal
surgery between the whole cohort and the subgroup that underwent genomic analysis
(chi-square p-value = 0.402).

As a reference, we determined the rates of optimal cytoreduction at the UI since the
establishment of the Biobank. Starting in 1985, the rate of optimal cytoreduction steadily
increased. The 2011–2013 time period demonstrated a rate of optimal cytoreduction of 78%,
with a 95% CI of 70% to 87% (Figure 2). Any prediction model that we should build will
have to be above this 95% CI (87%) threshold to be considered an improvement. Moreover,
based on 95% CIs, there have not been significant changes in optimal surgical resection
rates since 1996.

3.1. Model Construction

The univariate analysis with ANOVA selected those variables, which were more
predictive of optimal or complete surgery. Supplementary Table S1 represents the variable
reduction achieved with this initial univariate step. Only clinical data and fusion transcripts
did not require this initial step. Significant genomic variables after the initial univariate
step are depicted by heatmaps in Supplementary Figure S2. Heatmaps are separated by the
surgical outcome.

We created 124 prediction models of optimal cytoreduction using the significant
variables from the univariate analysis. The first set of models used only one type of
genomic or clinical information. Supplementary Table S2 shows the resulting variables
after the multivariate lasso regression analysis in models of prediction, including only one
type of datum. Then, we combined different types of data to create models with two and
then three categories of data (Figure 3). Models in the figure are ordered by types of data
included (y axis) and by the performance of the model, measured in AUC and its 95% CI
(x axis). Models with more types of data (four or more) only increased model complexity
without any performance improvement.
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Optimal cytoreduction RNA-seq patients: 62% (95% CI: 52-72%)

Suboptimal Optimal

1987-1995 23 11 0.32 0.16, 0.49
1996-2000 26 60 0.70 0.60, 0.80
2001-2005 18 35 0.66 0.53, 0.79
2006-2010 37 77 0.68 0.59, 0.76
2011-2013 22 80 0.78 0.70, 0.87

Primary Debulking Proportion of 
optimal

95% CI

A

B

Figure 2. Patients with optimal surgical outcomes at the University of Iowa from 1987 to 2013: (A). There
has been a steady increase in optimal surgical outcomes during the study period, probably associated
with improvements in operative and perioperative care. This improvement was statistically significant
(p-value < 0.001). (B). Proportions and 95% confidence intervals (CI) of optimal cytoreductive surgery
by calendar year intervals. In the last available interval, 78% of patients underwent optimal debulking
(95% CI: 70%, 77%).
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Figure 3. Performance of prediction models of optimal cytoreduction. (A). The solid vertical bar
represents the number of types of data: 1 (yellow): only one variable was included in the model;
2 (orange): a combination of 2 types of variables. (B). Panel with combination of 3 types of variables:
solid vertical line with 3 tags (maroon). Different performances on both panels are displayed in
ascending order. The x axis is the AUC as a percentage (0–100%). The red error mark displays the
95% confidence interval (CI). Overall, 120 models with different combinations of data were tested.
FT: fusion transcripts; Met: DNA methylation; SNV: single nucleotide variation; CNV: gene copy
number; DEXSeq: exon expression; lncRNA: long non-coding RNA; MIR: micro RNA, mRNA: gene
expression. Graphics were generated with R package ggplot.
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We performed the same univariate analysis with ANOVA to select those variables
predictive of complete cytoreduction. Then, we introduced significant variables in the
univariate analysis (p < 0.05) in multivariate lasso regression models to predict complete
debulking. It resulted in 89 prediction models of complete cytoreduction using the same
methods as for our optimal surgery models (Figure 4).
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Figure 4. Performance of prediction models of complete cytoreduction. (A) The solid vertical bar
represents the number of types of data: 1 (yellow): only one variable was included in the model;
2 (orange): a combination of 2 types of variables. (B). Panel with combination of 3 types of variables:
solid vertical line with 3 tags (maroon). Different performances on both panels are displayed in
ascending order. The x axis is the AUC as a percentage (0–100%). The red error mark displays the
95% confidence interval (CI). Overall, 89 additional models with different combinations of data were
tested. FT: fusion transcripts; Met: DNA methylation; SNV: single nucleotide variation; CNV: gene
copy number; DEXSeq: exon expression; lncRNA: long non-coding RNA; MIR: micro RNA, mRNA:
gene expression. Graphics were generated with R package ggplot.

3.2. Model Validation

All models, both for optimal and complete cytoreduction, were then validated using
data from the TCGA database. Not all variables for all types of data were available in TCGA.
Therefore, we constructed new models from UI data with all variables that were available
in TCGA and then we validated all models. The AUC 95% CI of UI initial prediction
models for optimal cytoreduction overlapped with validated TCGA models 57% of the
time (Supplementary Figure S3). Within the complete cytoreduction models, confidence
intervals of the original models and models made for TCGA overlapped 72% of the time
after adjusting for the missing data in TCGA (Supplementary Figure S4). Moreover, 66 of
the complete debulking models were successfully validated in TCGA. Validated models
with similar performances measured by the AUC 95% CI allowed us to further select those
models that will be more robust across different datasets.

Overall, in 21 different prediction models of optimal cytoreduction, the 95% CI of the
AUC included or was over 87%, which is the upper limit of the 95% CI of our historical
rate of cytoreduction. These models are represented in Figure 5, with AUC values and
95% CI on the x axis, and types of data on the y axis. Fusion transcript expression (FT)
was the most common category within these models, utilized in 13 of the 21 (62%) models.
MicroRNA was the second-most common, present in 12 of 21 (57%) models, followed by
lncRNA, 8 out of 21 (38%). The best models included MIR expression, lncRNA expression,
and/or clinical data.
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Figure 5. Performance of prediction models with selected variables from the best initial models in
optimal cytoreduction. The solid vertical bar represents the number of types of data: 1 (yellow):
only one variable was included in the model; 2 (orange): a combination of 2 types of variables;
3 types of variables: solid vertical line with 3 labels (maroon). Different performances are displayed
in ascending order. The x axis is AUC as a percentage (0–100%). The red error mark displays the 95%
confidence interval (CI). We included all prediction models with a 95% CI of AUC that was included
or was superior to 87%. Overall, 21 were selected (that had the potential to be superior to the clinical
assessment). FT: fusion transcripts; Met: DNA methylation; SNV: single nucleotide variation; CNV:
gene copy number; DEXSeq: exon expression; lncRNA: long non-coding RNA; MIR: micro-RNA,
mRNA: gene expression. Graphics were generated with R package ggplot.

In the complete cytoreduction models, 37 had 95% CI’s that crossed the 87% threshold
(Figure 6). A total of 19 of the 37 (51%) best-performing models contained DNA methylation
(Met) data and 16 of 37 (43%) contained clinical data.
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Figure 6. Performance of prediction models for complete cytoreduction with selected variables from
best initial models. The solid vertical bar represents the number of types of data: 1 (yellow): only
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one variable was included in the model; 2 (orange): a combination of 2 types of variables; 3 types
of variables: solid vertical line with 3 labels (maroon). Different performances are displayed in
ascending order. The x axis is AUC as a percentage (0–100%). The red error mark displays the 95%
confidence interval (CI). We included all prediction models with a 95% CI of AUC that was included
or was superior to 87%. Overall, 37 were selected (that had the potential to be superior to the clinical
assessment). FT: fusion transcripts; Met: DNA methylation; SNV: single nucleotide variation; CNV:
gene copy number; DEXSeq: exon expression; lncRNA: long non-coding RNA; MIR: micro-RNA,
mRNA: gene expression. Graphics were generated with R package ggplot.

The best-performing models predicting optimal and complete cytoreduction were
validated in a machine learning analytical platform using TensorFlow. All machine learning
models, performed very well, with the AUC ranging from 89% to 100% (Supplementary
Figures S5 and S6).

4. Discussion

Optimal cytoreduction is consistently one of the strongest predictors of overall survival
in the platinum-based chemotherapy era [9–13,47]. There are several clinical factors known
to affect the extent of surgical debulking, including surgical training and patient’s perfor-
mance status [13,15]. In the present study, we also added biological or genomic factors that
predicted cytoreduction accurately. Precise prediction of optimal surgical outcomes with
preoperative data has been an elusive objective, leading to suboptimal cytoreduction in
20–30% of surgeries. Additionally, while neoadjuvant chemotherapy has been shown to
be non-inferior to primary debulking, there is evidence to indicate that: (a) patients who
undergo primary debulking with no residual disease may have improved survival and;
(b) those with residual disease ≤ 1 cm may have equivalent survival compared to patients
who receive neoadjuvant chemotherapy and have no residual disease at the completion of
their surgery [48]. Given this information, it is imperative to identify those patients who
can be successfully cytoreduced and triage them to primary cytoreductive surgery, if they
are fit for the planned procedure.

Previous prediction models have had minimal to modest success in improving preop-
erative ability to predict optimal cytoreduction. These models have used such pre-operative
criteria as the physical exam, CA-125 and HE-4 levels, CT scan evaluation with artificial in-
telligence, and ECOG performance status [19–21]. These methods generally fail to improve
successful optimal cytoreduction beyond 70%. While the laparoscopic scoring system,
proposed by Fagotti et al., and refined by Fleming et al., improves optimal cytoreduc-
tion rates to 88%, it still requires that the surgeon be prepared to perform an extensive
cytoreduction, requiring the allocation of a significant amount of operating room time and
resources [22,49]. Additionally, it commits the patient to a surgical procedure, which, while
low-risk, is not devoid of it. Ideally, this decision can be made without the cost and resource
allocation of a surgical procedure. Moreover, while a recent National Cancer Database
(NCDB) study from 2004 to 2015 determined that 73% of patients with advanced stage
epithelial ovarian cancer in cancer centers around the US underwent primary cytoreduction
surgery [48], only 23% (111 out of 488) of patients undergoing the laparoscopic scoring sys-
tem would be offered a surgical cytoreductive procedure [22]. It seems that the improved
rate of surgical outcomes with this laparoscopic algorithm may be at the expense of a large
proportion of patients not being offered primary cytoreduction.

Artificial intelligence (AI) has the promise of enhancing prediction modeling. AI has
already been applied in assessing CT imaging as prognosticator and predictor of out-
comes for ovarian cancer [50–52]. However, the question remains if CT imaging processed
throughout AI improves the capability of predicting which patients will undergo optimal
surgery. Advanced ovarian cancer is very heterogenous and addressing all metastatic
diseases in the abdomen is challenging for any processing system (human or machine).
So, areas underestimated by any system may have clinical negative consequences. Once
AI modeling can identify automatically (by segmentation algorithms) cancerous tumors,
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modeling methods may achieve high accuracy. Additionally, machine learning analytics
may also improve the integration and prediction of diverse data (analyzed or not with
AI), such as clinical, radiomics, genomics, and environmental data, thus reaching per-
formance levels that are worth using clinically (an AUC over 95%). Until then, clinical
decision-making remains the standard.

Previous attempts to use genomic data to create prediction models for cytoreduction
have had mixed success [24,25]. In our study, we created 21 models to predict optimal
cytoreduction and 37 to predict complete cytoreduction integrating genomic and clinical
data. The 95% CIs of all these models met the threshold established to improve on clinical
criteria for surgical outcomes. This means that, following future prospective validation,
these models have the potential to predict optimal cytoreduction with higher accuracy than
the clinical decision-making of an experienced gynecologic oncology team. Additionally,
prediction models of complete cytoreduction also had excellent performance, measured
by the AUC, and were comparable to those of optimal debulking. These models were
also validated within the TCGA database, meaning that they are capable of performing
well in independent datasets. Moreover, these models were validated with a different
analytical platform (machine learning), suggesting that they are also precise in measuring
the outcome.

One criticism of primary cytoreduction is the increase in morbidity and mortality
inherent in an aggressive surgical procedure. Narasimhulu et al. developed a prediction
tool that significantly reduces perioperative morbidity and mortality by using simple
selection criteria to determine which patients would best tolerate upfront debulking [53].
By reducing this morbidity, it improves the rate of optimal outcomes in primary surgery.
The clinical criteria used for this tool include age, performance status, albumin, surgical
complexity, and stage. We incorporated these significant predictors of morbidity into the
clinical portion of our prediction model with the exception of albumin, which was not
reliably available in our cohort.

Each model incorporated different combinations of clinical and genomic data. Within
the optimal cytoreduction models, three included only one category of data. Fusion
transcripts and miRNA expression were the most common categories represented, present
in 62% (13/21) and 57% (12/21) of the models, respectively. The two best-performing
models with the smallest confidence intervals incorporated miRNA and lncRNA with
and without clinical data. Models solely using miRNA and lncRNA were also high-
performing. miRNA and lncRNA are known to be significant regulators in ovarian cancer,
correlated with overall survival, and are relatively new categories of investigation for novel
therapeutics [34,51,52]. We are only beginning to understand the extent of their importance.

Within the complete cytoreduction models, DNA methylation data were the most
frequently represented category of data in the 37 models, which have the potential to
confirm our hypothesis. Our group has previously shown that DNA methylation status
is correlated with optimal and suboptimal cytoreductive outcomes in ovarian cancer [38].
While that is certainly intriguing, our models were created based on just 11 patients with
R0 outcomes and, therefore, it is likely that more specimens will be needed to refine these
models. However, complete and optimal cytoreduction models taken as a whole, confirm
our hypothesis that tumor biology can be used to inform our surgical decision-making.

The strengths of our study include a comprehensive analysis of genetic and epigenetic
data on a single institution cohort of HGSC patients, treated with a similar philosophy and
with clinical and outcomes data available. The involvement of a vast array of genomic data
provides a complete representation of the genome and its regulators to the extent of our
current knowledge. We created models for both complete and optimal surgical outcomes.
Moreover, the resulting models were validated in an independent, comprehensive clinical-
genomic database, TCGA; it informed which models were more robust and consistent in
order to further validate prospectively.

Moreover, we recently published an assessment of overall survival in the patients
found in the UI Biobank demonstrating that patients who undergo optimal cytoreduction



Cancers 2022, 14, 3554 13 of 17

have improved overall survival, regardless of their subsequent response to chemother-
apy [54]. This solidifies the theory that improving optimal or complete cytoreduction rates
in our patients will subsequently lead to improvements in overall survival. While that is
established in the literature at large, proving the point in the database used in this study
further strengthens our conclusions.

There are several limitations to our study. This was a retrospective study and, thus,
was subject to some biases, particularly selection bias. Patients were chosen for surgery
based on traditional clinical decision-making and this subset of patients were the ones
included in our models. This could have affected our models since these were the patients
in whom surgery was already expected to be successful, creating a cohort of patients with
a higher probability of an optimal outcome. In order to correct for this bias, prospective
validation of our models must be performed using all patients assessed for cytoreduction.
Another limitation is that our study was conducted with patients from a single institution.
Ovarian cancer populations can have significant genomic variation and, therefore, our mod-
els may only be valid within the University of Iowa population [55]. Therefore, other
institutions may require further refinement for these models to fit their patient populations.
We chose the definition of optimal cytoreduction (≤1 cm) in agreement with GOG usage in
multiple trials [3–8]. There is a linear association between the size of the maximum residual
disease and overall survival [11], but to create a classifier or predictor, a dichotomous
outcome for the model is preferred [56]. Although all surgeons aspire to achieve complete
cytoreduction, a classifier that predicts optimal cytoreduction to ≤1 cm has been used as
inclusion/exclusion criteria for clinical trials extensively in the past, as previously noted.

Lastly, there was also the concern that the resulting models would not translate into a
simple test that could be performed easily, promptly, and inexpensively in clinical settings
before surgery. The best resulting models contained 2–3 types of genomic or clinical
information. All these genomic parameters could be assessed by PCR-based analytical
tests. PCR-based tests are cheap, fast, and can be performed from small biological samples.
Our study was performed in samples from a historical biobank, with flash frozen tissue that
may have degraded over time. We expect to have better yields from fresh samples extracted
exclusively to be applied to the model. In other gynecological tumor models, there was a
high degree of concordance of molecular parameters and feasibility between pre-operative
specimens and surgical specimens [57]. We expect to see the same concordance with pre-
and post-surgical HGSC specimens.

5. Conclusions

In summary, the results of our study are encouraging, despite some limitations due
to the study design that biological data can be used to predict surgical outcomes in ad-
vanced high-grade serous ovarian cancer. Further work is needed to prospectively validate
these models and to ascertain whether selection biases affected prediction model perfor-
mances. Prospective validation in consecutive HGSC patients, using fresh tumor samples,
will further validate and select the best-performing model, while optimizing it for rapid
and inexpensive processing. Finally, this diagnostic tool could be assessed in a diagnostic
trial, where specimens are collected before surgery to inform clinicians about potential
cytoreduction options based on the performance. We foresee that this diagnostic tool
will help surgeons to improve surgical outcomes, by increasing complete and optimal
cytoreduction rates and decreasing surgical morbidity, while still including the majority of
advanced-stage HGSC patients.
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