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ABSTRACT: A mathematical simulation model of a beam
pumping system with frequency conversion control is established,
considering the influence of the real-time frequency variation on the
motion law of a pumping unit, the longitudinal vibration of a sucker
rod string, the crankshaft torque, and the motor power. On this
basis, the key links such as state space, action space, and reward
function are defined by using deep reinforcement learning theory,
and an intelligent model to optimize the frequency modulation for a
beam pumping system based on deep reinforcement learning is
constructed. The simulation and field application results show that
the frequency optimization model can significantly reduce the
fluctuation amplitude of the polished rod load, crankshaft torque,
motor power, and input power of the system, making the operation
of the pumping system more stable and energy-saving. More
importantly, the model can realize the independent learning and control of the corresponding parameters without manual
intervention to ensure the normal operation of the system and improve the level of information and intelligent management of oil
wells.

1. INTRODUCTION
The pumping unit is the most important artificial lifting method
in most oilfields, accounting for more than 80% of the
production wells.1−3 Because of the advantages of simple
structure, stable performance, and easy maintenance, beam
pumping units have become the most popular pumping
equipment in oilfields.4,5 However, due to their operation
characteristics, the crank shaft torque of the gearbox and the load
torque of the motor fluctuate greatly, which seriously affects the
operation efficiency and equipment life of the pumping system.6

In addition, due to the large torque required for the starting of
the pumping unit, it is necessary to configure a motor with larger
rated power for safe starting, leading to the phenomenon of
″large horse pulls small carriage″, which greatly reduces the
power factor and operating efficiency of the motor, and greatly
wastes electric energy.7 Therefore, in the context of global
″carbon neutrality″, how to improve the operation efficiency of
pumping wells while maintaining production and thus reduce
production energy consumption has become an urgent problem
for oilfield enterprises.
In order to improve the operation efficiency of the pumping

system, a lot of work has been done, mainly including the
following aspects. (1) In order to improve the energy-saving
effect of the motor, many new motors have been developed,
which can change the mechanical characteristics of the motor
and improve the motor power factor.8,9 (2) By optimizing the

four-bar linkage and balancing method, a variety of new
pumping units have been developed, thus optimizing the
kinematic characteristics of the polished rod and reducing the
fluctuation in the net torque.10 (3) High-efficiency components
such as narrow v-belts are used to improve the transmission
efficiency of the system and reduce the consumption of reactive
energy.11 Although these methods have achieved certain energy-
saving effects, they cannot fundamentally solve the problem of
low efficiency of the pumping system, which also makes this
research a bottleneck.
In recent years, with the development of frequency

modulation technology, the frequency modulation control
technology of the pumping unit has been widely used in the
oilfield.12 This technology can improve the motion character-
istics of the pumping system by optimizing the frequency
modulation, thus reducing the fluctuation of the crank shaft
torque of the gearbox and the load torque of themotor, and has a
good energy-saving effect. In terms of optimizing the frequency
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modulation, relevant scholars have also done a lot of research. In
1995, Gibbs et al.13 proposed a method of eddy current drive to
perform variable speed−no stop control by combining the liquid
fillagemethod with variable-frequency drives. In 2009, Palka and
Czyz14 determined the optimal motor-speed profile by
representing the motor speed with Fourier series and searching
for Fourier coefficients that maximize the production. This
paper demonstrates that by changingmotor speed rapidly within
a single stroke, pump production can be increased while stresses
in the sucker rod andmotor energy consumption are reduced. In
2011, Xu et al.15 proposed an intelligent frequency conversion
control system of a beam pumping unit with an autoadapted
function. The application of a frequency changer can solve the
impact of the pumping unit startup load, which markedly
improved the power factor. Wu et al.16 put forward a new
energy-saving method on the basis of studying the operation of
beam pumping units. By adjusting the frequency of the motor,
the energy consumed by the motor can be saved. In 2013, Peng
and Liu17 introduced a new technology using frequency
conversion speed regulation technology to adjust stroke
frequency by analyzing the past and present ways of adjusting
stroke frequency. In 2014, Li et al.18 proposed the design and
implementation for the pumping unit system of Fuzzy PI
controller optimized by genetic algorithms. The simulation
research shows that the dynamics of speed control and fast
startup performance are improved, and overshoot is suppressed
effectively. In 2016, Dong et al.19 established a mathematical
model for real-time optimization of power frequency using the
penalty function optimization algorithm with the root mean
square of motor output power as the optimization goal. The
results show that the optimized frequency model can effectively
reduce the fluctuation range of polished rod load, crank shaft
torque, and motor output power, and greatly save energy and
consumption.
From the review of the above literature, it can be seen that the

frequency conversion pumping system has a good energy-saving
effect, and its optimal control is mainly based on the actual
situation of the oil well, which is manually modeled and analyzed
by experts to develop a one-to-one parameter optimization
scheme. This method relies on refined manual work, and the
workload is large, which does not meet the requirements of
information and intelligent construction in oilfields. In recent
years, with the continuous development of artificial intelligence
technology,20−22 deep reinforcement learning algorithms can
provide a new idea for parameter optimization of frequency
conversion pumping systems because of their strong self-
learning ability and real-time decision-making ability.23,24

Therefore, based on the mathematical simulation of beam
pumping systems and artificial intelligence technology, this
paper proposes an intelligent method to optimize the frequency
modulation that does not rely on manual fine work and can self-
optimize according to the actual situation of different oil wells.
Through online self-learning, the method can realize the
intelligent adaptive control of the frequency conversion
pumping system, which is conducive to improving the dynamic
performance and power saving effect of the beam pumping
system.

2. MATERIALS AND METHODS
2.1. Mathematical Simulation Model of the Beam

Pumping System. 2.1.1. Simulation Model of Frequency
and Crank Motion. For the frequency conversion beam
pumping system, it is assumed that the power input frequency

of the motor is a function f(t), and the period of f(t) is the same
as the movement period T of the polished rod. Then, the
calculation model of frequency and crank motion can be
obtained as shown in eq 1.
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where θ is the crank angle (rad), θ̇ is the crank angular velocity
(rad/s), θ̈ is the crank angular acceleration (rad/s2), s is the rotor
slip of the motor, p is the pole-pair numbers of the motor, and i is
the transmission ratio from the motor rotor to the crank.
2.1.2. Simulation Model of Polished Rod Movement of the

Pumping Unit. Ignoring the elastic deformation of each
component and the clearance of each kinematic pair, the
ground device of the beam pumping system can be simplified as
a four-bar linkage. Taking the bottom dead center of the
polished rod as the displacement zero point and the upward
direction as the positive direction of displacement, the complex
vector method is applied to analyze its motion law, and then the
simulation models of polished rod displacement sA, polished rod
velocity vA, and polished rod acceleration aA can be established,
as shown in eqs 2−4.
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where A is the forearm length of the walking beam (m), ψ is the
angle between C and K (rad), ψb is the ψ angle of the polished
rod at the lowest location (rad), R is the crank radius (m), C is
the rear arm length of the walking beam (m), ω is the crank
rotation angular velocity, and its value is the average of θ̇ in eq 1
(rad/s), α is the angle between the crank and the connecting rod
(rad), β is the transmission angle (rad), K is the base pole length
(m), P is the connecting rod length (m), and θk is the angle
between the crank and the base pole (m).
2.1.3. Simulation Model of Longitudinal Vibration of the

Sucker Rod String. The forces on the sucker rod string of a
vertical well are all longitudinal forces, including static load,
inertial load, friction load, and vibration load. The force model is
shown in Figure 1.
The sucker rod string is divided into several infinitesimal

elements, each of which is mainly affected by gravity, viscous
resistance of liquid, and elastic force. According to the force
balance conditions of the elastic element and the boundary
conditions of the upper and lower parts of the sucker rod string, a
differential equation describing the longitudinal vibration of the
sucker rod string is obtained:
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where u(x, t) is the displacement of the section x of the sucker

rod string at time t (m), c is the propagation velocity of sound in

the sucker rod string, =c E /r r (m/s), L is the depth of the

pump (m), g is the acceleration of gravity (m2/s), Er is the elastic

modulus of the sucker rod string (N/m2), Ar is the cross-

sectional area of the sucker rod string (m2), u*(t) is the
displacement of the polished rod (m), ρr is the density of the
sucker rod string (kg/m3), v is the damping coefficient of

downhole fluid to sucker rod string, and its calculation formula is

shown in eq 8 (s−1), and Pp(t) is the liquid load of the plunger

(N), which is calculated according to the static pressure

difference between the suction pressure and the discharge

pressure of the pump. The calculation formula is as shown in eq

6.

= +P t A p p A p F( ) ( )p p d rd d f (6)

whereAp is the cross-sectional area of the plunger (m2),Ard is the

cross-sectional area of the lowest sucker rod string (m2), Ff is the

friction between the plunger and the pump barrel (N), pd is the

discharge pressure of the pump (Pa), and p is the pressure of

liquid in the pump barrel (Pa), which changes with time and its

change law is related to the opening state of the standing valve

and traveling valve and the position of the plunger. The

calculation formula is as shown in eq 7.
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where Sg is the converted length of natural gas in the pump barrel
when the plunger is at the top dead center (m), Sp is the gas−oil
ratio, Sog is the converted length of natural gas in the pump barrel
when the plunger is at the bottom dead center (m), lp is the
displacement of the plunger at any time (m), lto is the
displacement of the plunger when the traveling valve is opened
(m), lso is the displacement of the plunger when the standing
valve is opened (m), vp is the movement speed of the plunger
(m/s), and ps is the suction pressure of the pump (Pa).
The calculation formula of the damping coefficient is as

follows:
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where μ is the dynamic viscosity of liquid (Pa s), Lr is the length
of sucker rod (m),Dr is the diameter of the sucker rod (mm),Dti
is the external diameter of rod column coupling (mm), andDti is
the internal diameter of the oil pipe (mm).
The displacement and load of any section x on the sucker rod

string at time t can be obtained by solving eq 5 with the finite
difference method.25−27 The polished rod load can be calculated
by eq 9.

= | =P A E
u
x xRL r r 0 (9)

where PRL is the polished rod load (N).
2.1.4. Simulation Model of Crankshaft Torque and Motor

Power.When the pumping unit is in variable speed drive, inertia
torque will be formed due to the angular acceleration of each
rotating component. Therefore, the net torque of the output
shaft should be equal to the sum of the load torque, balance
torque, and inertia torque, as shown in eq 10.
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whereMt is the net torque of the reducer output shaft (Nm), TF
is the torque factor, Bun is the unbalanced weight of the pumping
unit structure (N), Jy is the beammoment of inertia (kgm2),Wcb
is the weight of the crank balancing blocks (N), R is the center of
gravity radius of the balancing blocks (m),Wc is the weight of the
crank (N), Rc is the center of gravity radius of the crank (m), Jq is
the moment of inertia of the crank (kg m2), and ε is the angular
acceleration of the crank (rad/s2).

Figure 1. Mathematical model of longitudinal vibration of the sucker
rod string.
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The torque and power of themotor output shaft are calculated
by the following eqs 11 and 12, respectively:
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whereMd is the torque of the motor output shaft (N m),Nd is
the power of the motor output shaft (kW), and Jd is the moment
of inertia of each rotating component equivalent to the crank
shaft (kg m2).
2.2. Theory of Deep Reinforcement Learning. 2.2.1. Re-

inforcement Learning and Q-Learning Algorithm. Reinforce-
ment learning means that agents interact with the environment
through trial and error to learn the action strategy set, so as to
maximize the cumulative rewards of agents’ actions from the
environment.28−30 The learning process is shown in Figure 2. In

essence, the interaction between the agent and the environment
is a Markov decision-making process. MDP is generally
represented by a quad (S, A, R, Π), where S is the state space,
A is the action space, and R is the reward function, Π is a policy
set.

Under strategy Π, the agent executes action at in state st,
transfers to the next state st + 1 with a certain probability, and
obtains an immediate reward rt. The cumulative reward is:

=
=

R r s a( , )t
i t

T
i t

i i
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where Rt is the cumulative reward from the state of current
time t to the termination state and γ is the attenuation
coefficient. The farther away from time t, the smaller the weight
of the immediate reward.
Q-learning is a reinforcement learning algorithm that is not

based on models but based on value functions.31 The main idea
ofQ-learning is to define the state-action value functionQπ(s, a)
and learn it iteratively to obtain the optimal strategy π*(s, a).
The Q value function is as shown in eq 14.
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2.2.2. Deep Q-Network Algorithm. In the traditional Q-
learning algorithm, due to the dimension disaster, reinforcement
learning is difficult to solve large-scale MDP problems or
continuous space MDP problems. Therefore, the value function
approximation method is proposed to solve this problem. As an
algorithm with strong learning ability, deep learning can
simulate the desired function by continuously learning the
training set, which just makes up for the problems faced by the
above reinforcement learning algorithm.32

The deep Q-learning algorithm can fit the state-action value
function through deep neural network and select actions
through ε − greedy strategy, as shown in eq 15.
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where ε ∈ (0,1), ω is the weight of the neural network.

Figure 2. Interaction process between the agent and the environment.

Figure 3. DQN model for frequency optimization.
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In order to reduce the correlation between samples, the deep
Q-network (DQN) algorithm introduces the experience play-
back mechanism. {st, at, rt, st + 1} is stored in the experience pool
at each training step. During training, a certain number of
samples are randomly selected to update the weights of the
neural network, which improves the stability of training.
In addition, in order to prevent unstable training due to the

constant change of the Q value when training with the same
network, the DQN algorithm introduces two neural networks:
target network and estimation network. At the beginning, the
structure and parameters of the target network and the
estimation network are the same. The estimation network is
updated in real time with the training, and the target network
copies the parameters of the estimation network every certain
step.
Compared with traditional algorithms, the DQN algorithm

does not need to model complex random problems. It uses deep
neural networks to continuously train the environment transfer
process {st, at, rt, st +1} to learn and adapt to this random rule, and
when the model training is completed, the DQN algorithm can
make decisions directly according to the current state, without
updating all decisions every time, and can achieve real-time
online optimization.
2.3. Intelligent Optimization Model of Deep Re-

inforcement Learning. 2.3.1. Structure and Framework of
the Model. The DQN algorithm of deep reinforcement learning
is used to solve the problem of frequency optimization in the
frequency conversion beam pumping system. The structure and
framework of the frequency optimization method (DQN
model) are shown in Figure 3. The structure fully shows the
process of data flow and information interaction, which can be
divided into data generation, caching and sampling, neural
network design and calculation, gradient calculation and
parameter update, and action generation and selection.
2.3.2. Frequency Optimization Model. 2.3.2.1. State Space.

The state space is the environmental information perceived by
the agent. In this method, the frequency conversion beam
pumping system is defined as an agent, and the components of
the frequency conversion beam pumping system together form
the environment to respond to the interaction of the agent. The
observable feature information provided by the environment to
the agent mainly includes power supply frequency, motor net
torque, motor power, gearbox net torque, and polished rod load.
Therefore, the state space is represented as:

= [ ]S f t M t P t M t P t( ), ( ), ( ), ( ), ( )MT MT GB (16)

where f(t) is the power supply frequency at time t (Hz),MMT(t)
is the output shaft torque of the motor at time t (Nm), PMT(t) is
the output power of the motor at time t (kW), MGB(t) is the
output shaft torque of the gearbox at time t (N m), and P(t) is
the polished rod load at time t (kN).
2.3.2.2. Action Space. Action space is the relevant decision

variable that needs to be optimized according to its own strategy
set Π after the agent observes the state information of the
environment. For the frequency conversion beam pumping
system, the decision variable is power supply frequency, so the
action space is:

= [ ]A f t( ) (17)

Because the Q-learning algorithm cannot handle continuous
actions, it is necessary to discretize the action space. According
to the regulation mode of intelligent system, the characteristics
of discrete actions are specified as follows:

=f t

f

f

( )

Increase frequency

Holding frequency

Decrease frequency

l
m
oooooo
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The amount of frequency adjustment Δf each time is a preset
value, which can be determined according to the actual situation
to control the smoothness of the curve.
2.3.2.3. Reward Function. The reward function is the

quantification of task objectives, and its effective setting can
provide correct guidance for the learning of agent strategies. For
the variable-frequency operation of beam pumping units, the
main objectives are: (1) the production capacity of the reservoir
can be fully utilized, (2) the utilization rate of equipment is high
and safe production is guaranteed, (3) it has high system
efficiency and economic benefits. Therefore, the reward function
of the model is designed as the sum of the following three reward
functions.

① Design of reward function r1 based on the discharge
coefficient.

The discharge coefficient is the ratio of the actual discharge to
the theoretical discharge of the pump. For the frequency
conversion beam pumping system, the larger the discharge
coefficient, the better, but not too large, which indicates that the
theoretical discharge of the pump selected for the well is
unreasonable. Therefore, the reward function r1 can be designed
as:

=
[ ] [ ]

< [ ] > [ ]

[ ]

r
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where [α]min is the minimum discharge coefficient, which is
obtained when the motor rotates at a constant speed, and [α]max
is the maximum discharge coefficient, taking the maximum
discharge coefficient of the actual situation in the oilfield.

② Design of reward function r2 based on equipment
utilization.

Considering the utilization and fluctuation amplitude of
various indicators of the equipment, four evaluation indexes are
defined in this paper, namely, polished rod load utilization ratio
αP, crank torque utilization ratio αC, sucker rod string stress
utilization ratio αR, and motor power utilization ratio αM. The
calculation formula is shown in eqs 20−23.

=
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= [ ] = ***PL PL PL i nmax( ) max( ) min( ) 1, 2, ,i i iR
(22)

= P
PM

M

R (23)

where [Pmax] is the maximum load allowed for the polished rod
of the pumping unit (kN), Pmax is the maximum load of the
polished rod (kN), Pmin is the minimum load of the polished rod
(kN), [Mmax] is the maximum torque allowed for the gearbox
crank shaft (kN m), Mmax is the actual maximum output torque
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of the gearbox crank shaft (kN m),Mmin is the actual minimum
output torque of the gearbox crank shaft (kNm), PLi ̅ is the stress
range ratio of each stage of sucker rod string, = [ ] [ ]

[ ] [ ]PLi
i i

i i

max min

all min
,

i is the number of stages of the sucker rod, [σmax]i is the actual
maximum stress of the sucker rod string of the i stage (Pa),
[σmin]i is the actual minimum stress of the sucker rod string of
the i stage (Pa), [σall]i is the maximum allowable stress of the
sucker rod string of the i stage (Pa), PM is the average input
power of themotor (kW), and PR is the rated power of themotor
(kW).
For frequency conversion beam pumping systems, the smaller

the utilization ratio and fluctuation amplitude of polished rod
load, crank torque, sucker rod string stress, and motor utilization
ratio, the better the effect of frequency conversion. However, if
the calculated utilization rate exceeds the set range, it indicates
that the adopted frequency conversion effect becomes worse,
and negative feedback should be given. Therefore, the reward
function r2 of this part can be designed as:

= + + +r r r r r2 21 22 23 24 (24)
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where [αP]max, [αC]max, [αR]max, and [αM]max are the highest
index values of polished rod load, crank shaft torque, sucker rod
stress utilization rate, and motor power utilization rate,
respectively, while [αP]min, [αC]min, [αR]min, and [αM]min are
the lowest index values.

③ Design of reward function r3 based on system
efficiency.

The system efficiency is the utilization rate of the input power
in the beam pumping system, and is the ratio of active power to
input power. The higher the system efficiency, the better the
frequency conversion effect. However, the highest system
efficiency is 1 and should not be lower than a certain lower
limit. Therefore, the reward function r3 of this part can be
designed as:

=
×

<
r

e
3

100 ( )

100 ( )

10( )
min

min

min
l
m
ooo
n
ooo (29)

where ηmin is the lowest system efficiency.

④ Design of penalty function r4 for violating constraint
conditions.

This paper mainly considers to optimize the frequency when
the stroke is unchanged, so the stroke before and after the
frequency conversion should be equal. In order to improve the
filling degree of the pump, the working mode of ″ slow on the
upstroke and fast on the downstroke″ shall be adopted. In
addition, when the frequency converter is working, the
frequency is restricted to a certain range, not unlimited
adjustment. Therefore, the penalty function r4 for violation of
constraints can be designed as:

= + +r r r r4 41 42 43 (30)

=
< >

r
f f f

f f f f
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100 ( )

100 ( or )
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min max

l
m
ooo
n
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Figure 4. Working principle of the DQN neural network.
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where r41 is the penalty term for violating the frequency
constraint, r42 is the penalty term for violating the stroke
equality constraint, r43 is the constraint penalty term for
violating the time of upstroke and downstroke, fmax is the
maximum frequency regulated by the frequency converter (Hz),
fmin is the minimum frequency regulated by the frequency
converter (Hz), nf is the stroke after frequency conversion
(min−1), n0 is the stroke before frequency conversion (min−1), tu
is the time of upstroke (s), and td is the time of downstroke (s).
The final reward value r is the sum of the above four rewards,

as shown in eq 34.

= + + +r r r r r1 2 3 4 (34)

2.3.3. Model Training Process. After constructing the state
space, action space, and reward function of the optimization
model, a frequency optimization model based on the DQN
neural network is established. The DQN neural network is
mainly composed of two modules: strategy selection and
learning update. Its working principle is shown in Figure 4.
Based on the above principles, strategy selection and learning

update are carried out to achieve model training. The specific
training process is shown in Figure 5.

3. RESULTS AND DISCUSSION
3.1. Model Parameter Settings. In order to verify the

effectiveness of the frequency optimization model established in

this paper, an oil well with a high filling coefficient in an oilfield is
selected for simulation and analysis. The production parameters
of the well are shown in Table 1.

Based on the established reinforcement learning model, the
input frequency is optimized. The optimization model uses two
neural networks with the same structure. The parameters of each
neural network are set as follows: the number of hidden layers is
4, the number of neural units in each hidden layer is 50, and the
activation function uses the Relu function. The attenuation
coefficient γ of the algorithm is 0.96, the initial value of the
learning rate α is 0.5, the size of the experience playback pool D
is 9600, and the number of randomly selected samples m is 128.
3.2. Model Training. Model training is implemented

through Python 3.8 and TensorFlow deep learning framework.
The change process of model training reward value is shown in
Figure 6.

According to the change of cumulative reward value in the
training process, it can be seen that in the initial stage of training,
the depth neural network parameters of agents are randomly
initialized, and the value function cannot be correctly evaluated.
At this time, the algorithm focuses on exploration, that is, try
different strategies as much as possible. Therefore, the global
reward value obtained by the agent at the beginning of learning
has a great degree of shock. With the increase of training times,
the experience pool has accumulated enough samples, the
experience of agents is getting richer and richer, the valueFigure 5. Training process of the model.

Table 1. Production Parameters of Oil Well

parameter number

pumping unit type CYJ10-3-37HB
sucker rod combination 22 mm × 738 m
stroke/m 3.1
fluid production/m3 40.2
pump depth/m 738 m
water cut/% 93.2
oil pressure/MPa 0.4
motor type Y280S-6
pump diameter/mm 57
number of stroke/min−1 6.1
oil density/kg/m3 850
dynamic fluid level/m 540
gas−oil ratio/m3/m3 20
casing pressure/MPa 0.1

Figure 6. Change of reward value during learning.
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function of deep neural network evaluation is getting closer to
the real value, and the decision-making ability of the algorithm is
constantly improving. In the late training period (Episode >
300), the agent has accumulated rich learning experience and
greatly improved its decision-making ability. The algorithm is
mainly used, with only a small amount of exploration reserved,
and the global reward value obtained by the agent tends to be
stable.
3.3. Analysis of Optimization Results. Using the trained

reinforcement learning model to optimize the frequency, the
input frequency curve within one stroke can be obtained, as
shown in Figure 7.

The changes of polished rod load, crank torque, and motor
power before and after frequency conversion are shown in
Figure 891011. It can be seen that after frequency conversion, all

evaluation indexes of the system have changed significantly.
Among them, the maximum load of the polished rod decreases
by 11.7% and the minimum load of the polished rod increases by
12.7%, which reduces the load fluctuation amplitude of the
sucker rod string and is conducive to extending the service life of
the sucker rod string. The maximum net torque of the crank
shaft decreases by 22.3%, basically eliminating the negative
torque, reducing the fluctuation range of the crank torque, and
significantly improving the torque characteristics of the pumping
unit. More importantly, the fluctuation range of the motor input
power curve is significantly reduced, and the average input
power is reduced by 25.3%, which has obvious power saving
effect. The calculation results show that the frequency

conversion optimization technology makes the system more
stable and energy-saving.
Production data of oil wells before and after frequency

conversion are shown in Table 2. It can be seen that the fluid
production of oil wells after frequency conversion is basically
stable, the discharge coefficient and system efficiency are
significantly improved, and the daily power consumption is
significantly reduced. The analysis results show that the
frequency conversion intelligent optimization model established
in this paper can promote the stable and efficient production of
oil wells, and is conducive to the intelligent and low-carbon
production of oilfields.
3.4. Field Application Effect. Based on the optimization

model, 50 oil wells in the field were applied and tested. The
statistical results of field production data are shown in Table 3.
From the above data results, we can see that the frequency

conversion optimization has achieved good field application
effect, which is consistent with the theoretical analysis effect.
After optimization, the overall performance of the pumping
system has been greatly improved in which the fluctuation of
crank torque and polished rod load has been reduced, and the
system efficiency and pump efficiency have been greatly
improved. More importantly, for oil wells with insufficient
supply of formation fluid, frequency conversion optimization
can effectively improve the filling degree of the pump, thus
improving the fluid production and reducing production energy
consumption.

Figure 7. Optimized frequency curve.

Figure 8. Dynamometer card before and after frequency conversion.

Figure 9. Crank net torque curve before and after frequency
conversion.

Figure 10. Motor power curve before and after frequency conversion.
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4. CONCLUSIONS

(1) Based on the structural characteristics and working
principle of the beam pumping system with frequency
conversion control, the variation laws of the suspension
point movement, the force state of the sucker rod string,
and the crankshaft torque and the motor power of the
pumping system under frequency conversion condition
are analyzed, and the mathematical simulation model of
the beam pumping system is established, which provides a
model basis for the optimization of the frequency.
(2) On the basis of the mathematical simulation model of
the beam pumping system, the key links such as state

space, action space, and reward function are defined by
using the deep reinforcement learning theory, thus an
intelligent model to optimize the frequency modulation
for the beam pumping system based on the DQN
algorithm is constructed. The simulation results show that
the frequency optimizationmodel can significantly reduce
the fluctuation amplitude of polished rod load, crankshaft
torque, motor power, and input power of the system,
making the operation of the pumping system more stable
and energy-saving. In addition, considering that the
maximum value and fluctuation amplitude of the motor
load torque are significantly reduced after frequency
optimization, it is suggested that the installed power of the
motor can be reasonably reduced to further improve the
power saving effect.

(3) Deep reinforcement learning has strong intelligent
decision-making ability and generalization perception
ability. For the same type of beam pumping system, the
deep reinforcement learning optimization model estab-
lished in this paper can use the DQN algorithm which
inherits the existing strategy set to train the new scene,
and the training has faster convergence speed and better
convergence results. Therefore, the online real-time
optimization of frequency can be realized.
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Figure 11. Comparison of changes in various indexes.

Table 2. Production Data before and after Frequency
Conversion

parameter
fluid
production (t/d)

daily power
consumption (kW h)

before frequency
conversion

40.2 231.2

after frequency
conversion

40.7 181.6

difference 0.5 49.6

Table 3. Statistical Results of Field Production Data

index
before
optimization

after
optimization

absolute
difference

relative
difference

average liquid
production (t/d)

42.1 46.4 4.3 10.2%

Average impulse times
(min−1)

4.52 4.06 −0.46 −10.2%

average submergence
(m)

290.5 300.3 9.8 3.4%

average pump
efficiency (%)

48.4 55.8 7.4 15.3%

average system
efficiency (%)

18.3 22.6 4.3 23.5%

average daily power
consumption (kW
h)

235.4 203.7 −31.7 −13.5%

average power factor of
motor

0.59 0.81 0.22 37.3%

average maximum load
(kN)

53.2 48.9 −4.3 −8.1%

average minimum load
(kN)

20.3 19.5 −0.8 −3.9%
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■ NOMENCLATURE
θ crank angle, rad
θ̇ crank angular velocity, rad/s
θ̈ crank angular acceleration, rad/s2
s rotor slip of the motor
p pole-pair numbers of the motor
i transmission ratio from the motor rotor to the crank
A forearm length of walking beam, m
ψ angle between C and K, rad
ψb ψ angle of polished rod at the lowest location, rad
R crank radius, m
C rear arm length of walking beam, m
ω crank rotation angular velocity, and its value is the

average of θ̇, rad/s
α angle between the crank and the connecting rod, rad
β transmission angle, rad
K base pole length, m
P connecting rod length, m
θk angle between the crank and the base pole, m
u(x, t) displacement of the section x of the sucker rod string at

time t, m
c propagation velocity of sound in the sucker rod string,

=c E /r r , m/s
L depth of the pump, m
g acceleration of gravity, m2/s
Er elastic modulus of the sucker rod string, N/m2

Ar cross-sectional area of the sucker rod string, m2

u*(t) displacement of the polished rod, m
ρr density of the sucker rod string, kg/m3

v damping coefficient of downhole fluid to sucker rod
string, s−1

Pp(t) liquid load of the plunger, N
Ap cross-sectional area of the plunger, m2

Ard cross-sectional area of the lowest sucker rod string, m2

Ff friction between the plunger and the pump barrel, N
pd discharge pressure of the pump, Pa
p pressure of liquid in the pump barrel, Pa
Sg converted length of natural gas in the pump barrel

when the plunger is at the top dead center, m
Sp gas−oil ratio
Sog converted length of natural gas in the pump barrel

when the plunger is at the bottom dead center, m
lp displacement of plunger at any time, m
lto displacement of plunger when the traveling valve is

opened, m
lso displacement of plunger when the standing valve is

opened, m
vp movement speed of the plunger, m/s
ps suction pressure of the pump, Pa
μ dynamic viscosity of liquid, Pa s
Lr length of sucker rod, m
Dr diameter of sucker rod, mm
Dti external diameter of rod column coupling, mm
Dti internal diameter of oil pipe, mm
PRL polished rod load, N
Mt net torque of the reducer output shaft, N m
TF torque factor
Bun unbalanced weight of pumping unit structure, N

Jy beam moment of inertia, kg m2

Wcb weight of the crank balancing blocks, N
R center of gravity radius of the balancing blocks, m
Wc weight of the crank, N
Rc center of gravity radius of the crank, m
Jq moment of inertia of the crank, kg m2

ε angular acceleration of the crank, rad/s2
Md torque of motor output shaft, N m
Nd power of motor output shaft, kW
Jd moment of inertia of each rotating component

equivalent to the crank shaft, kg m2

Rt cumulative reward from the state of current time t to
the termination state

γ attenuation coefficient
f(t) power supply frequency at time t, Hz
MMT(t) output shaft torque of the motor at time t, N m
PMT(t) output power of the motor at time t, kW
MGB(t) output shaft torque of the gearbox at time t, N m
P(t) polished rod load at time t, kN
[α]min minimum discharge coefficient
[α]max maximum discharge coefficient
[Pmax] maximum load allowed for the polished rod of the

pumping unit, kN
Pmax maximum load of the polished rod, kN
Pmin minimum load of the polished rod, kN
[Mmax] maximum torque allowed for the gearbox crank shaft,

kN m
Mmax actual maximum output torque of the gearbox crank

shaft, kN m
Mmin actual minimum output torque of the gearbox crank

shaft, kN m
PLi ̅ stress range ratio of each stage of sucker rod string,

= [ ] [ ]
[ ] [ ]PLi

i i

i i

max min

all mini number of stages of sucker rod
[σmax]i actual maximum stress of the sucker rod string of the i

stage, Pa
[σmin]i actual minimum stress of the sucker rod string of the i

stage, Pa
[σall]i maximum allowable stress of the sucker rod string of

the i stage, Pa
PM average input power of the motor, kW
PR rated power of the motor, kW
ηmin lowest system efficiency
[αP]max highest index values of polished rod load
[αC]max highest index values of crank shaft torque
[αR]max highest index values of sucker rod stress utilization rate
[αM]max highest index values of motor power utilization rate
[αP]min lowest index values of polished rod load
[αC]min lowest index values of crank shaft torque
[αR]min lowest index values of sucker rod stress utilization rate
[αM]min lowest index values of motor power utilization rate
fmax maximum frequency regulated by the frequency

converter, Hz
fmin minimum frequency regulated by the frequency

converter, Hz
nf stroke after frequency conversion, min−1

n0 stroke before frequency conversion, min−1

tu time of upstroke, s
td time of downstroke, s
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