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SUMMARY

Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. Amidst efforts to
control TB, long treatment duration, drug toxicity, and resistance underscore the need for novel therapeu-
tic strategies. Despite advances in understanding the interplay between microbiome and disease in hu-
mans, the specific role of the microbiome in predicting disease susceptibility and discriminating infection
status in tuberculosis still needs to be fully investigated.We investigated the impact ofM.tb infection and
M.tb-specific IFNg immune responses on airway microbiome diversity by performing TB GeneXpert and
QuantiFERON-GOLD assays during the follow-up phase of a longitudinal HIV-Lung Microbiome cohort of
individuals recruited from two large independent cohorts in rural Uganda.M.tb rather than IFNg immune
response mainly drove a significant reduction in airway microbiome diversity. A microbiome signature
comprising Streptococcus, Neisseria, Fusobacterium, Prevotella, Schaalia, Actinomyces, Cutibacterium,
Brevibacillus, Microbacterium, and Beijerinckiacea accurately discriminated active TB from Latent TB
and M.tb-uninfected individuals.

INTRODUCTION

Despite the availability of effective anti-tubercular drugs and BCG vaccine, Mycobacterium tuberculosis (M.tb) remains one of the most

deadly infectious agents globally.1 Amidst efforts to control tuberculosis disease, challenges such as long treatment duration, drug toxicity,

and resistance underscore the need for novel therapeutic strategies.2,3 In addition, the poorly characterized immunemechanisms of anti-M.tb

host defense challenges the development of robust host-directed therapeutic strategies. Tuberculin skin test and interferon-gamma release

assay (IGRA) have been commonly used to test for prior M.tb exposure. Following exposure to aerosols contaminated with M.tb, 90% of in-

fected individuals remain asymptomatic, TST and IGRA-positive, commonly referred to as latent TB infection (LTBI), whereas about 5–10%

develop progressive tuberculosis disease (active TB disease).4

Despite advances in understanding the interplay between microbiome and disease in humans, the specific role of the microbiome in pre-

dicting disease susceptibility as well as discriminating infection status in tuberculosis still needs to be fully investigated. Some studies provide

preliminary findings that warrant further investigation. Mice colonized with Helicobacter hepaticus, show poor M.tb control after an aerosol

challenge with a virulentM.tb strain,5 characterized by heightened airway inflammation and severe lung pathology.6 Helicobacter pylori has

also been implicated in tuberculosis. Macaques challenged withM.tb are less likely to progress to active tuberculosis disease if infected with

Helicobacter pylori. Besides Helicobacter species, additional studies suggest that altering the microbiome could improve tuberculosis out-

comes. Administration of Mycobacterium manresensis to mice undergoing M.tb treatment results in a more significant reduction in the

airway bacillary load, pro-inflammatory cytokines, and a reduction in granuloma formation. Furthermore, the Clostridium-derived metabolite

indole-propionic acid restrictsM.tb growth at physiological concentrations and could be critical inM.tb control.7,8 Indeed, a reduction in the
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Figure 1. Study design schema

Two hundred (200) participants from two large independent cohorts in rural Uganda (LiNK/HiLiNK) were recruited into COPD-HIV-, COPD-HIV+, COPD+HIV-,

COPD+HIV+ groups underwent sputum induction and TB screening using GeneXpert (N = 192) and QFT(N = 99) at follow-up. 16S sequence analysis and

signature clustering based on matched GeneXpert and QFT samples (N = 99) were successfully completed to underpin top microbiome signatures enriched

in active TB, LTBI, and M.tb-uninfected individuals.
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microbiome diversity following antibiotic therapy is associated with highM.tb burden and severe mucosal pathology, whose rescue happens

following a fecal transplant from untreated control mice.9 Significantly, the immune profile is also restored with a reduction in regulatory

T-cells and a proportionate increase in IFNg and TNF-a.9 Despite this evidence, further investigation is, however, warranted to determine

mechanistically how microbiome signatures predict tuberculosis disease susceptibility and/or discriminate M.tb infection status.

Significant changes in the microbiome occur in the setting of tuberculosis. Individuals with tuberculosis are enriched with short-chain fatty

acid-producing bacteria, Roseburia and Faecalibacterium spp, and are depleted for Prevotella.10,11 As described by several authors, short-

chain fatty acids (SCFAs) induce anti-inflammatory, tolerogenic immune responses that dampen anti-M.tb immunity.12,13 Enrichment with

Streptococcus and Neisseria and a reduction in Prevotella spp have been reported in tuberculosis.14,15 In a meta-analysis, Rothia, Actino-

myces, Campylobacter, and Solobacterium clustered withM.tb.16 In another study that used bronchoalveolar lavage samples,M.tb and Por-

phyromonas spp were enriched in the diseased.17 In the HIV setting, studies report enrichment with Prevotella and high levels of serum

SCFAs, correlating with high regulatory T-cells.18 Furthermore, increasing levels of SCFAs predicted incident tuberculosis. Strikingly, butyrate

induced robust IFNg and IL-17A production in peripheral blood mononuclear cells stimulated ex vivo withM.tb.18 Significant changes in the

airway microbiome have also been induced by anti-M.tb drugs,19–21 although recent studies report restoration of the airway microbiome

following successful treatment with anti-M.tb drugs.22–24

Despite this evidence, several questions remain unanswered. Does the airway microbiome influence M.tb-specific immune response? Is

there any immune-modulatory role played by the airway microbiome inM.tb-induced immune response? Do specific microbiome signatures

predict infection status? How the immune response is modulated to predict progression also remains to be investigated. To the best of our

literature search, evidence supporting the role of the airway microbiome in moderatingM.tb-specific immune response is very limited. In this

study, we aimed to determine the airwaymicrobiome signatures associatedwithM.tbburden andM.tb-specific IFNg responses and underpin

a microbiome signature that accurately discriminatesM.tb infection status in an Ugandan cohort. Identification of novel signatures as micro-

biome biomarkers for discriminatingM.tb infection status has not yet been realized, an effort which could improve TB diagnostics especially in

the difficult-to-diagnose TB cases.

RESULTS

M.tb-specific IFNg profile of a rural Ugandan cohort shows a comparable prevalence between positive and negative IFNg

responders

To determine M.tb-specific IFNg immune responses and M.tb-burden in a rural Ugandan cohort, we screened for TB using QuantiFERON

(QFT) and GeneXpert (Xpert) assays during the follow-up phase of a longitudinal HIV-Lung Microbiome cohort assembled from two large

independent cohorts (i.e., Lung Function in Nakaseke and Kampala study (LiNK, n = 656 participants)25 and HIV-infected Lung Function in

Nakaseke study (HiLiNK, n = 722)26 in the same geographic location. Figure 1 summarizes participant screening and enrollment. Overall,
2 iScience 27, 110142, June 21, 2024



Table 1. Sociodemographic and clinical characteristics of study participants

Characteristics

QFT+/Xpert+

(Active TB, N = 32)

(%) n

QFT+/Xpert-

(LTBI, N = 21)

(%) n

QFT-/Xpert-

(M.tb-uninfected,

N = 46) n(%) ap value (x2)

Sex

Female 38% (12) 33% (7) 33% (15) <0.001

Male 62% (20) 67% (14) 67% (31) <0.001

Age group (years)

35–39 100% (32) 0% (0) 0% (0) <0.001

40–44 0% (0) 0% (0) 9% (4)

45–54 0% (0) 29% (6) 28% (13)

55+ 0% (0) 71% (15) 63% (29)

HIV status

Positive 59% (19) 33% (7) 57% (27) <0.001

Negative 41% (13) 67% (14) 43% (19) <0.001

CD4 count if HIV+ve

<200 0% (0) 0% (0) 0% (0)

200-<500 5% (14) 0% (0) 0% (0) 0.08

>500 95% (18) 100% (21) 100% (27) <0.001

ART

Yes 100% (32) 86% (18) 52% (14) <0.001

No 0% (0) 14% (3) 48% (13)

HIV viral load

<20 copies/mL 100% (32) 86% (18) 100% (27) <0.001

>20 copies/mL 0% (0) 14% (3) 0% (0)

Septrin use

Yes 0% (0) 14% (0) 14% (0)

No 100% (32) 100% (21) 100% (27)

COPD diagnosis

Yes 100% (32) 29% (6) 52% (24) <0.001

No 0% (0) 71% (15) 48% (22)

COPD treatment

Prednisolone 0% (0) 0% (0) 4% (2)

Salbutamol 0% (0) 5% (21) 0% (0)

TB treatment

Yes 0% (0) 0% (0) 0% (0)

No 100% (32) 100% (21) 100% (46)

BMI categories (kg/m2)

<18.5 81% (26) 14% (3) 28% (13) <0.001

18.5–24.9 19% (6) 67% (14) 63% (29) <0.001

25.0–29.9 0% (0) 19% (4) 14% (0)

30.0+ 0% (0) 0% (0) 9% (4)

Smoking history

Non-smoker 100% (32) 76% (16) 54% (25) <0.001

Daily smoker 0% (0) 10% (2) 30% (14)

(Continued on next page)
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Table 1. Continued

Characteristics

QFT+/Xpert+

(Active TB, N = 32)

(%) n

QFT+/Xpert-

(LTBI, N = 21)

(%) n

QFT-/Xpert-

(M.tb-uninfected,

N = 46) n(%) ap value (x2)

Occasional smoker 0% (0) 14% (3) 16% (7)

Respiratory symptoms

Cough 100% (32) 0% (0) 4% (2) <0.001

Phlegm 100% (32) 0% (0) 7% (3) <0.001

Shortness of breath 100% (32) 29% (21) 52% (24) <0.001

aChi-squared test was used and alpha was set at 0.05.
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54% (53/99) of participants had a positive QFT with a mean IFNg response of 6.27 (95% CI: 5.14–7.38) and 6.04 (95% CI: 4.90–7.17) IU/mL to

M.tb-specific antigens TB1 and TB2 respectively. Comparably, about 46% (46/99) of participants had a negative QFT with a mean IFNg

response of 0.08 (95% CI: 0.04–0.12) and 0.1 (95% CI: 0.06–0.14) IU/mL to TB1 and TB2 respectively. QFT-positivity showed a bimodal distri-

bution with age, peaking in the age brackets <40 years and >55 years (p < 0.001). HIV status (p=0.663) and sex (p = 0.445) did not significantly

affect QFT status. Table 1 summarises the sociodemographic and clinical characteristics of the study population, stratified as active TB dis-

ease (QFT+/Xpert+) with 32 individuals, Latent TB infection, LTBI (QFT+/Xpert-) with 21 individuals, and M.tb-uninfected (QFT-/Xpert-) with

46 individuals. Active TB participants were predominantly male (p < 0.001), between 35 and 39 years (p < 0.001), predominantly HIV-seropos-

itive (p < 0.001), well-controlled on ART with CD4+T cell count above 500 (p < 0.001) and undetectable HIV viral load (p < 0.001). All active TB

participants had COPD (p < 0.001), no history of prednisone or salbutamol use, and had not yet started anti-TB treatment by the time of

screening. These individuals had a low body mass index (p < 0.001) and reported respiratory symptoms of chronic cough, phlegm, and dif-

ficulty in breathing (p < 0.001). LTBI participants were predominantly male (p < 0.001), above 55 years of age (p < 0.001), predominantly HIV

sero-negative (p < 0.001), with a low COPD prevalence (p < 0.001), non-smoker with a normal body mass index (p < 0.001). LTBI participants

with COPD reported shortness of breath(p < 0.001). TheM.tb-uninfected group were predominantly male (p < 0.001), above 45 years of age

(p< 0.001), predominantly HIV sero-positive (p< 0.001), well controlled onARTwith CD4+T cell count above 500 (p< 0.001) and undetectable

HIV viral load (p < 0.001). COPD-positive and negative individuals were comparable in this group, with COPD cases predominantly reporting

shortness of breath. The group was predominantly non-smoker with a normal body mass index (p < 0.001). In conclusion, the M.tb-specific

IFNg profile of a rural Ugandan cohort shows a comparable prevalence between positive and negative IFNg responders.

Changes in the airwaymicrobiome aremainly driven byM.tb rather than IFNg immune responses in a rural Ugandan Cohort

To investigate the relationship between airway microbiome composition, M.tb burden and M.tb-specific IFNg immune responses in a rural

Ugandan cohort, we performed 16SrRNA amplicon sequencing on induced sputum samples to determine the airway microbiome profile as

our primary endpoint. We explored the airway microbiome compositional differences across the three strata, i.e.,M.tb-uninfected, LTBI, and

active TB at phylum (Figure 2A) and genus level (Figure 2B). Overall, at the phylum level, airways were enriched for Firmicutes, Actinobacter-

iota, Proteobacteria, Bacteroidota, Fusobacteriota, Patescibacteria, Campylobacteriota, Spirochaetota, and Verrucomicrobiota. The phyla

Firmicutes (�50%), Proteobacteria (�20%), Bacteroidota (�20%), and Fusobacteriota (<10%) significantly enriched the airways of M.tb-unin-

fected. As expected, Active TB samples were significantly enriched for Actinobacteriota (>90%) and depleted for Firmicutes (<10%), Proteo-

bacteria (<5%), and Bacteroidota (<1%), while M.tb-uninfected and LTBI samples were significantly enriched for Firmicutes (�50%), Proteo-

bacteria (�20%) andBacteroidota (�20%) and depleted forActinobacteriota (<10%). Therewas no significant difference in the composition of

the airway microbiome betweenM.tb-uninfected and LTBI samples. At the genus level, active TB airway samples were enriched forMycobac-

terium (�80%), Streptococcus (�10%), Brevibacillus (�10%), Streptomyces (�5%) and depleted for Stenotrophomonas (<1%), Fusobacterium

(<1%), Neisseria (<1%), Prevotella (<1%) and Veillonella (<1%). M.tb-uninfected and LTBI samples were comparably enriched for Strepto-

coccus (>40%), Prevotella (>10%), Neisseria (>5%), Fusobacterium (>5%), Stenotrophomonas (>5%) and Veillonella (>5%).

Based on these findings, we further investigated the relationship betweenM.tb-specific IFNg responses and airway microbiome compo-

sition. We computed the metrics of microbiome diversity within samples (alpha diversity scores) and between samples (beta diversity). First,

we compared alpha diversity indices across the three strata (Figure 2C). We observed a significant reduction in microbial richness based on

Shannon, Chao1, and the Observed number of genera among active TB compared to M.tb-uninfected and LTBI individuals (Wilcoxon test,

p < 0.0001). Furthermore, airway microbial evenness based on Pielou, Simpson, and Inverse Simpson scores was significantly decreased

among active TB compared to M.tb-uninfected and LTBI individuals (Wilcoxon test, p < 0.0001). While we observe a significant difference

in both richness and evenness indices between active TB versus M.tb-uninfected and LTBI individuals, it is comparable between uninfected

and LTBI individuals. We projected the genus-level airway microbiome composition of all samples according to the three strata and per-

formed Principal coordinates (PCoA) analysis of the Bray–Curtis dissimilarity of induced sputum samples (Figure 2D). Samples separated

into two distinct clusters i.e., M.tb-uninfected and LTBI versus active TB disease. To confirm whether the observed changes in airway micro-

biomeweremainly driven byM.tb rather than IFNg immune responses, we analyzed alpha diversity based on of TBGeneXpert status alone. A

significant reduction in bacterial richness based on Shannon, Observed, and Chao 1 indices, as well as evenness based on Pielou, Simpson,
4 iScience 27, 110142, June 21, 2024



Figure 2. Changes in the airway microbiome are mainly driven by M.tb rather than IFNg immune responses in a rural Ugandan Cohort

Bar plots showing the percentage relative abundance of the sputum operational taxonomical units (OTUs) at phylum (A) and genus (B) level across three strata:

Active TB, LTBI, and M.tb-uninfected group.

(C) Boxplots showing the alpha diversity indices for richness (Shannon, Chao and observed number of genera) and evenness (Pielou, Simpson and Inverse

Simpson) per Active TB, LTBI and M.tb-uninfected strata. A pairwise Wilcoxon test corrected for multiple testing using a False Discovery Rate was performed.

(D) Principal coordinates analysis (PCoA) plots of Bray Curtis dissimilarity of sputum samples stratified by active TB, LTBI, and M.tb-uninfected status. Marginal

density plots depict sample group distribution alongside PCo1 and PCo2. Ellipses represent the 95% confidence interval for each cluster.

(E) Boxplots showing the alpha diversity indices for richness (Shannon, Chao and observed number of genera) and evenness (Pielou, Simpson and Inverse

Simpson) per GeneXpert positive versus negative. A pairwise Wilcoxon test using a False Discovery Rate was performed.

(F) Principal coordinates analysis (PCoA) plots of Bray Curtis dissimilarity of sputum samples stratified by GeneXpert positive versus negative status. Marginal

density plots depict sample group distribution alongside PCo1 and PCo2. Ellipses represent the 95% confidence interval for each cluster.

(G) Scatterplots for diversity indices of richness (Shannon, Chao, and observed number of genera) and evenness (Pielou, Simpson, and Inverse Simpson) with

M.tb-specific IFNg responses. Shown are Spearman’s rho, p-values, and the 95% confidential interval. Spearman’s rank correlation coefficient was performed.

(H) Bar plots showing plasmaM.tb-specific IFNg per active TB (n = 32), LTBI (n= 21) andM.tb-uninfected (n= 46) group. Mann-Whitney U test was performed and

alpha set at 0.05, ****, p-value<0.0001.
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and Inverse Simpson indices, was detected among active TB (Xpert-positive) individuals compared to the M.tb-uninfected and LTBI (Xpert-

negative) individuals (Figure 2E). Projection of genus-level airway microbiome composition of samples according to Gene Xpert status and

Principal coordinates analysis (PCoA) of Bray Curtis dissimilarity of induced sputum samples revealed a similar pattern of sample clustering

(Figure 2F), confirming that M.tb predominantly drives changes in the airway microbiome composition. Additionally, we used Spearman’s

rank correlation analysis to illustrate the relationship between airway microbiome alpha diversity metrics and M.tb-specific IFNg responses

based on IGRA values rather than a differentM.tb-specific IFNg ELISA assay (Figure 2G). We observe a strong negative correlation between

M.tb-specific IFNg responses andmicrobiome richness based on Shannon, Chao1, and theObserved number of genera and evenness scores

based on Pielou, Simpson and Inverse Simpson scores (p < 0.0001) except for Simpson’s index (p = 0.298). The significantly high IFNg

response was driven by active TB (Figure 2H). Further comparison of microbiome diversity indices between LTBI samples with higher

M.tb-specific IFNg responses (2.5–7.5 IU/mL) and active TB samples with similar M.tb-specific IFNg responses consistently indicated that

M.tb predominantly drives the observed changes in the airway microbiome composition (Figures S1A and S1B). In conclusion, Active TB

significantly reduces airway microbiome richness and evenness. The comparable results between LTBI and the M.tb-uninfected population

indicate that airway microbiome changes are mainly driven by M.tb rather than IGRA status.

Sputum microbiome typing revealed a set of airway microbiome signatures that cluster with M.tb

To investigate airway microbiome signatures that cluster with M.tb in our cohort, we fitted a Dirichlet multinomial model on the count

matrix of the genus relative abundance to classify genus abundance based on probability. The best fit of the tested data revealed three
iScience 27, 110142, June 21, 2024 5



Figure 3. Sputum microbiome typing revealed a set of microbiome signatures that cluster with M.tb

(A) Bar plots showing the relative contribution of each operational taxonomical unit (OTU) to each community cluster. Shown in blue is the M.tb-dominated

community type 1, red is the mixed bacterial genera community type 2, and green is the Streptococcus-dominated community type 3. In the lower right

corner is a principal coordinates analysis (PCoA) plot of Bray Curtis dissimilarity of sputum samples stratified by community types 1, 2 and 3. Marginal density

plots depict sample group distribution alongside PCo1 and PCo2. Ellipses represent the 95% confidence interval for each community cluster.

(B) A heatmap showing the distribution of community types based on active TB versus LTBI and M.tb-uninfected strata.

(C) A heatmap showing associations between community types and alpha indices. MetadeconfoundR was used for analysis. Cofounded results are shown with a

circle, while deconfounded results are shown with a star. Cliff’s delta and FRD values are shown. *** FDR<0.001, **FDR<0.01 and *FDR<0.1.

(D) Venn diagram illustrating the distribution of genera in community types 1, 2, and 3.

(E) A volcano plot showing differentially abundant airway microbiome signatures in active TB versus (blue) LTBI and M.tb-uninfected groups (red).

(F and G) Bar plots showing the top ten microbiome signatures enriched in active TB (shown in blue)(F) and the top ten microbiome signatures enriched in LTBI

and M.tb-uninfected individuals (shown in red) (G). Analysis was performed using DeSeq and EdgeR.
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Dirichlet multinomial groups, further named community types 1, 2, and 3 (Figure 3A). In community type 1, Mycobacterium tuberculosis

clustered with Streptococcus, Gemella, Veillonella, Granulicatella, Actinomyces, Leptotrichia, Rothia, Cutibacterium, and Erysipelotrichia.

Community type 2 had a mixed abundance of several bacterial genera, including Neisseria, Streptococcus, Haemophilus, Veillonella, Fu-

sobacteria, Porphyromonas, and Prevotella, while Prevotella, Streptococcus, and Veillonella dominated community type 3. Stratification by

TB status revealed significant differences in the distribution of community types. Specifically, Active TB samples were predominantly

comprised of type 1 bacterial community enriched with M.tb (Figure 3B). A comparison of microbiome metrics of alpha diversity across

the three Dirichlet multinomial groups using metadeconfoundR revealed significantly reduced bacterial richness and evenness in commu-

nity type 1 compared with other community types (FDR-value<0.001) (Figure 3C). Using Venn diagram analysis, we carefully examined the

microbial signatures to identify signatures exclusively clustering with M.tb. Among signatures in type 1, Cutibacterium and Erysipelotrichia

uniquely clustered with M.tb (Figure 3D). To further underpin top microbiome signatures enriched in active TB versus M.tb-uninfected/LTBI

individuals, we performed differential microbiome abundance analysis between active TB versus M.tb-uninfected and LTBI individuals,

using EdgeR (3.14.0) and DESeq2 (1.43.1). We then projected the top enriched signatures in active TB versus M.tb-uninfected and LTBI

individuals using a volcano plot (Figure 3E) and illustrated the top 10 enriched airway microbiome signatures in active TB (Figure 3F) versus

M.tb-uninfected and LTBI groups (Figure 3G). Mycobacterium, Brevibacillus, Sphaeromonas, Paenibacillus, Streptomyces, Microbacterium,

Cutibacterium, Acinetobacter, and Methylbium were enriched among the active TB group (FDR-corrected p < 0.0001) (Figure 3F). Edapho-

baculum, Methylovers, Caulobacter, Stenotrophomonas, Allorhizobium, ligilactobacillus, Prevotella, Moraxella, and Haemophilus were
6 iScience 27, 110142, June 21, 2024



Figure 4. A novel airway microbiome signature accurately discriminates M.tb infection status

(A) A pie chart illustrating the mean decrease accuracy values of the top airway microbiome signatures predicting active TB status compared to LTBI and M.tb-

uninfected groups, generated using random forest analysis.

(B) Receiver operator curves (ROC) for assessing the performance of three models, i.e., the random forest model (rf, AUC = 0. 996), the support vector machine

model (svm, AUC = 0. 839), and the generalized linear model (glm, AUC = 0.657). Shown at the bottom is a random forest model accuracy of 97.3%.

(C) Bar plots showing linear discriminant analysis (LDA) effect size scores of OTUs in active TB versus LTBI and M.tb-uninfected groups.
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enriched among M.tb-uninfected and LTBI groups (FDR-corrected p < 0.0001) (Figure 3G). To determine the interaction networks in M.tb-

associated airway microbiome clusters, we performed a microbial co-occurrence network analysis using Spearman’s rank correlation anal-

ysis across multiple samples per TB status. Among active TB samples, the co-occurrence network analysis at the phylum level revealed

three major hubs, driven by M.tb from Actinobacteriota (Figures S2A and S2B). At the genus level, active TB strongly correlated with Strep-

tococcus, Brevibacillus, Streptomyces, Bosea, Beijerinckiacea, Gemella, Alloprevotella, Sphaeriminospora, Granulicatella, Neisseria and

Rothia (Figures S2C–S2E). Co-occurrence network analysis revealed a novel airway microbiome signature as a potential biomarker that

could be used to discriminate between active TB from M.tb-uninfected and LTBI individuals, especially in difficult-to-diagnose TB cases,

or monitor treatment response among TB cases.

A novel airway microbiome signature set accurately discriminates M.tb infection status

Microbiome signatures selected through a difference analysis are often unable to determine whether they represent the main differences

of concern or background noise as signatures. Therefore, we used machine learning and weight analysis methods to underpin signatures

as potential biomarkers accurately. We used random forest analysis as a machine learning method to distinguish microbiome signatures

with the potential to discriminate between active TB versus M.tb-uninfected and LTBI individuals. We successfully predicted an airway mi-

crobiome signature (Streptococcus, Neisseria, Fusobacterium, Prevotella, Schaalia, Actinomyces, Alloprevotella, Cutibacterium, and Bur-

kholderia) as a potential biomarker for active TB (Figure 4A), using the random forest model (rf, AUC = 0. 996), the support vector machine

model (svm, AUC = 0. 839) and the generalized linear model (glm, AUC = 0.657) (Figure 4B). To further confirm our biomarker prediction

for active M.tb in our cohort, we performed Linear Discriminant Analysis Effect Size (LEfSe), a weight-based analysis method (Figure 4C).

This analysis revealed that Actinobacteria, Brevibacillus, Microbacterium, Streptomyces, and Beijerinckiacea accurately discriminate active

TB from M.tb-uninfected and LTBI individuals. In conclusion, we report a novel airway microbiome signature comprising Streptococcus,

Neisseria, Fusobacterium, Prevotella, Schaalia, Actinomyces, Cutibacterium, Brevibacillus, Microbacterium, and Beijerinckiacea as top pre-

dictors of active TB in an Ugandan cohort. This signature set warrants further validation in larger TB cohorts to assess its diagnostic per-

formance and accuracy.
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COPD/HIV comorbidity does not impact the airway microbiome composition in an Ugandan rural cohort

Since a COPD/HIV cohort was used as a screening cohort for M.tb-associated microbiome signatures, it was critical to ascertain whether

COPD/HIV comorbidity significantly impacted the airway microbiome composition. To determine the impact of HIV on airway microbiome

composition, we compared alpha diversity indices between HIV-positive versus HIV-negative individuals (Figure S3A). We observed no sig-

nificant differences in microbial richness based on Shannon, Chao1, and Faith’s phylogenetic diversity among HIV-positive compared to HIV-

negative individuals. Similarly, airwaymicrobial evenness based on Pielou, Simpson, and Inverse Simpson scores was not significantly different

amongHIV-positive compared toHIV-negative individuals.Weprojected the genus-level airwaymicrobiome composition of samples accord-

ing to HIV status and performed Principal coordinates (PCoA) analysis of the Bray Curtis dissimilarity of induced sputum samples (Figure S3B).

We observed an overlap between HIV-positive and HIV-negative samples with no significant clustering. Similarly, analysis of alpha diversity

based on COPD status did not reveal any significant influence of COPD on the compositional differences of the sputum microbiota (Fig-

ure S4A). We did not observe any statistically significant difference in bacterial richness based on Shannon, Observed, and Chao 1 indices,

as well as evenness based on Pielou, Simpson, and Inverse Simpson indices, between COPD-positive and COPD-negative individuals. Pro-

jection of genus-level airwaymicrobiome composition of samples according to COPD status and Principal coordinates analysis (PCoA) of Bray

Curtis dissimilarity of induced sputum samples revealed an overlap across COPD-positive and negative groups without any significant clus-

tering (Figure S4B). To assess the impact of HIV-COPD comorbidity on airway microbiome, we compared alpha and beta diversity scores

across HIV-COPD strata i.e., (COPD+/HIV+, COPD-/HIV+, COPD+/HIV-, and COPD-/HIV-) using a pairwise Wilcoxon test corrected for

multiple testing. Generally, we observe homogeneity in airway microbiome diversity across COPD/HIV strata with no statistical differences

(Figure S5A). This homogeneity in alpha diversity was reflected in beta diversity with significant overlap across study groups. By determining

intersample Bray–Curtis dissimilarities, we summarize high-dimensional data into a reduceddimensional space to assessmicrobiome compo-

sitionmore comprehensively. Using principal coordinates analysis, the bray-Curtis dissimilarity between the different groups is visualized, with

no significant differences between groups (p > 0.05) (Figure S5B). In conclusion, HIV and COPD comorbidities did not significantly influence

the airway microbiome composition of our cohort.
DISCUSSION

In this study, we investigated the airway microbiome signature associated with M.tb burden and M.tb-specific IFNg response and under-

pinned a microbiome signature that accurately discriminated active TB from LTBI andM.tb-uninfected individuals in a rural Ugandan cohort.

M.tb-specific IFNg profile of a rural Ugandan cohort showed a comparable prevalence between positive and negative IFNg responders.

Active TB significantly reduced airway microbiome richness and evenness, with comparable results between LTBI andM.tb-uninfected pop-

ulations. These results indicated that airway microbiome changes were largely driven byM.tb rather than IFNg responses. We report a novel

airway microbiome signature which accurately discriminated active TB population from LTBI and M.tb-uninfected populations.

Whereas the prevalence of M.tb-specific IFNg positive and negative immune responses was comparable in our population, IFNg nega-

tivity was higher compared to other studies, which reported between 7% and 25% prevalence.27–30 The interpretation of this difference in

M.tb-specific IFNg negativity, however, should take into account several factors, such as follow-up time, method of diagnostics such as

TST and/or IGRA, degree of M.tb exposure, genetics, urban/rural setting, HIV status, and comorbidities.31–33 Whereas we report a high

prevalence ofM.tb-specific IFNg negativity at a single time-point, in longitudinal studies, we observe that the majority of individuals initially

negative convert into IFNgpositive status.33 Hence, the prevalence ofM.tb-specific IFNg negativity gradually declines to levels between 7 and

25%.32,34–36 M.tb-specific IFNg negativity in our study population could either mean limited exposure to index TB cases or the existence of

IFNg-independent immune responses in our study population.32,34–36 Several social and demographic factors support the former. TB surveil-

lance studies have reported disproportionately higher TB cases in Urban settings than in rural settings.37 Urban settings present challenges of

overcrowding in workplaces, public transportation, and living spaces compared to rural settings. Dense TB transmission networks exist in ur-

ban areas.38,39 Regression models in TB household contact studies suggest that age, number of windows, homestead size, and sleeping in

the same room are score-driving factors among individuals whose IGRA status changes from negative to positive.31 The high M.tb-specific

IFNg negativity could also be accounted for by the high HIV prevalence since immunosuppression dampens T cell responses. However, well-

controlled HIV with virologic suppression in our cohort underscores this possibility. We and others40 did not report an association between

HIV status and M.tb-specific IFNg positivity in Uganda.

Airway microbiome interaction with M.tb could influence M.tb infection status or outcome. In this study, microbiome diversity was

greatly influenced by M.tb infection. Moreover, active TB significantly reduced airway microbiome richness and evenness, with comparable

results between LTBI and M.tb-uninfected populations. These results indicated that airway microbiome changes were largely driven by

M.tb rather than IFNg responses. The significant reduction in microbiome diversity in the context of M.tb infection was majorly driven

by M.tb replication upon establishment of infection in the airways. M.tb infection strained the ecosystem, depleting nutrients and making

it harder for symbionts to thrive and compete in the same microenvironment. Consequently, M.tb dominated in the airways at the expense

of other bacterial species. This demonstrates cell-to-cell microbiome crosstalk that happens in the airway microenvironment.41 M.tb inter-

acts with the innate immune cells, which, upon activation, prime the adaptive system to produce type II interferons (IFNg).42,43 It is not

surprising that IFNg levels increased in the setting of M.tb and negatively correlated with airway microbiome diversity. The comparable

airway microbiome profile in LTBI versus the M.tb-uninfected states clearly infers homogeneity in the airway microenvironment in these

two states. Successful containment of the bacilli within granulomas seals off M.tb infection in LTBI.44 At the airway mucosal surface, there

are no significant changes in oxygen saturation and nutrient availability, which maintain cell-to-cell bacterial crosstalk.41,45 In addition, the
8 iScience 27, 110142, June 21, 2024



ll
OPEN ACCESS

iScience
Article
proportion of keystone bacterial species is not significantly altered.45 Therefore, a microbiome profile similar to the M.tb-uninfected group

is maintained. What remains unknown are the acute changes in the microbiome features that signal the airway immune cells to promote

M.tb containment. Furthermore, understanding microbiome signatures that significantly correlate with a transition from the uninfected or

LTBI to active TB in a carefully designed longitudinal study will be key in understanding the critical role of the microbiome in M.tb infection

outcomes in humans.

We successfully identified top airway microbiome signatures associated with active TB versus LTBI and M.tb-uninfected states using

differential microbiome abundance analysis. In our study, it was evident that active TB primarily drives M.tb-specific IFNg response, and

its association with other bacterial genera does not directly indicate their influence on IFNg production but rather co-existence with M.tb,

a primary inducer of M.tb-specific IFNg response. The pertinent questions to answer here are: why do such bacterial genera cluster with

M.tb during infection, unlike other bacterial genera? Do they exert a direct immunostimulatory effect on IFNg production? Although currently

unknown, these bacterial genera might likely share a unique motif in their cell wall or produce a conserved molecule, which, upon immune

recognition, can elicit or augment IFNg responses. A detailed analysis of these signatures focusing on conserved motifs with M.tb is war-

ranted. It has been recently shown that T cell immune responses can be elicited by highly expressed, widely conserved cell surface epitopes

frommany commensal bacteria.46 Suchmotifs include specific binding protein (SBP) and tetratricopeptide repeat lipoprotein (TPRL). Further-

more, it is also likely that the metabolic needs of these genera are significantly similar to those of M.tb and that they co-exist in the same

environment.M.tbmost likely has a competitive advantage over the cluster of the identified bacterial genera. In the absence ofM.tb infection,

these bacteria flourish in airways with limited competition for nutrients and space.45 However, during infection, the stiff competition for space

and nutrients results in a significant decline in the bacterial density of such genera.45 The production of bacteriocins directly kills these

genera.47 In a nutshell, the metabolic needs of these genera significantly differ from those of M.tb in that they cannot co-exist in the same

environment. They, hence, are enriched in the uninfected airways. Currently, we don’t know if these bacterial genera exert any immunomod-

ulatory or stimulatory effect.

Using a microbiome-centric analysis, we identified a novel signature that accurately discriminated active TB from LTBI and the M.tb-un-

infected. Simultaneous appearance of M.tb infection with other bacterial infections is not common. Such occurrence has been reported in

both immunodeficient48 and immunocompetent states.49 Neisseria species are generally considered non-pathogenic. In the setting of

M.tb infection,Neisseriamucosa has been reported to cause atypical infection.50 Several studies have reported Fusobacterium and Prevotella

as common genera in the airways of individuals with active TB.15,21,51–53 Actinomyces including Schaalia have also been described in M.tb-

infection.54–57 In other scenarios, these bacteria cause infections that mimicM.tb infection.58,59 It is also worth mentioning that actinomycetes

are notorious producers of antibiotics.60,61 Brevibacillus is known for its production of a lipopeptide, brevibacillin, with potent antimycobac-

terial activity.62,63 Other metabolites produced by Brevibacillus such as Laterosporulin10 are also critical in antimicrobial defense.64,65 Micro-

bacterium is an environmental bacteria. In most cases, it is considered a contaminant upon isolation. In the context ofM.tb infection, little is

known about this bacteria. However, it is very critical in the biodegradation of sulfonamide antibiotics and heavy metals.66,67

To date, the utility of a microbiome signature as a TB diagnostic has not been realized yet in the TB world of diagnostics. Although our

findings provide a preliminary picture of an airway microbiome-based TB signature, several questions need to be answered. Defining micro-

biome signature combinations with higher predictive power is a work in progress. It requires careful iterations of individual signatures, tested

using multiple predictive models in large cohorts of well-characterized TB-infected individuals. Furthermore, the sensitivity and specificity of

microbiome signatures must be carefully assessed, considering several factors such as prior antibiotic use, different geographic settings, and

potential confounders such as age, sex, body mass index, nutrition, HIV status, respiratory comorbidities, and smoking status. However, with

robust biostatistical tools that control for microbiome confounders in microbiome-wide association studies such as MetadeconfoundR,68,69

and LongDat,70 such hurdles can easily be overcome. In our study, a careful interrogation of potential confounders such as COPD, HIV, and

antibiotic use was carefully considered. An additional look at the metabolites produced by these signatures could be valuable. Teasing

out the direct influence of IFNg levels on microbiome diversity is a critical step that needs to be taken to decipher signatures predicting

TB outcomes. Validation of the microbiome signatures in large ongoing multicenter TB trials will be critical to addressing gaps in refining

microbiome signatures as biomarkers of TB susceptibility and disease progression.
Limitations of the study

In this study, we analyzed the microbiome to the genus level using 16S amplicon sequence data. A deeper interrogation of the above sig-

natures at a species level would be critical in illuminating further their utility as predictors of TB outcomes. Furthermore, as previously noted,

we did not tease out the direct influence of IFNg levels on microbiome diversity, a critical step that needs to be undertaken to decipher sig-

natures predicting TB outcomes.
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Hyötyläinen, T., Thirion, F., Arora, T., Lyu, L.,
Stankevic, E., Hansen, T.H., Déchelotte, P.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

341F (50 NNNNNNNNNNCCT

ACGGGNGGCWGCAG)

LGC Biosearch Tech 341F

785R (50 NNNNNNNNNNGACTA

CHVGGGTATCTAAKCC)

LGC Biosearch Tech 785R

MyTaq buffer Bioline GmbH MyTaq buffer

MyTaq DNA polymerase Bioline GmbH MyTaq DNA poly

BioStabII PCR Enhancer Sigma-Aldrich Co BioStabII

Critical commercial assays

Xpert MTB/RIF Cepheid kit Cepheid GXMTB/RIF-US-10

QuantiFERON-Gold (QFT) tubes Qiagen Catalog. no. 622130

IFNg ELISA kits Qiagen Catalog. no. 622130

DNA collection, preservation, and isolation kit Norgen Biotek Corp Catalog no.RU46100

Deposited data

Metadata Mendeley Data https://data.mendeley.

com/preview/vwt6g5gp22

https://doi.org/10.17632/vwt6g5gp22.1

Raw 16S reads Mendeley Data https://data.mendeley.

com/drafts/gf3vxvptsd

https://doi.org/10.17632/gf3vxvptsd.1.

Processed Sequences Mendeley Data https://data.mendeley.

com/preview/vwt6g5gp22

https://doi.org/10.17632/vwt6g5gp22.1

Code Mendeley Data https://data.mendeley.

com/preview/vwt6g5gp22

https://doi.org/10.17632/vwt6g5gp22.1

Software and algorithms

ProGenomes2 microbial genome database Mende et al., 202071 Hildebrand et al., 201472

LotuS, version 1.62. Hildebrand et al., 201472 Mende et al., 202071

UPARSE Edgar et al., 201373 Edgar et al., 201373

SILVA Quast et al., 201274 Quast et al., 201274

RTK version 0.93.1 Saary et al., 201775 Saary et al., 201775

EdgeR, version 3.14.0 Thandapani et al., 202276 Thandapani et al., 202276

DESeq2, version 1.43.1 Ho, Xuan Dunge

t al., 201777
Ho et al.,77

MetadeconfoundR Forslund et al., 202178 Forslund et al.,78
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Dr Alex Kayongo at

email address: akayongo@chs.mak.ac.ug.

Materials availability

This study did not generate new unique reagents.

Data and code availability

� De-identified human data is deposited at Mendeley Data, V1, https://doi.org/10.17632/vwt6g5gp22.1. as metadata. Raw and

processed 16S sequences are deposited at Mendeley Data, V1, https://doi.org/10.17632/gf3vxvptsd.1. and Mendeley Data, V1,
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https://doi.org/10.17632/vwt6g5gp22.1. respectively, and is publicly available as of the date of publication. DOIs are listed in the key

resources table.
� All original code has been deposited at Mendeley Data, V1, https://doi.org/10.17632/vwt6g5gp22.1, and is publicly available as of the

date of publication. DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participant screening and enrollment

We screened for M.tb infection using QuantiFERON-TB Gold and GeneXpert assays on participants previously enrolled in an existing HIV

Lung Microbiome cohort established in rural Uganda.79 Briefly, the HLM cohort is a longitudinal cohort established in 2018 comprised of

200 individuals stratified by HIV and COPD status.79 From February 2018 to February 2021, the HLM cohort was randomly recruited from

two large independent cohorts, i.e., The Lung Function study in Kampala and Nakaseke (LiNK, comprised of n=656 HIV-negative individ-

uals) and the HIV-infected Lung Function study in Nakaseke (HiLiNK, comprised of n=722 HIV-positive individuals)26 in the same

geographic location. The HLM cohort was comprised of 50 HIV+COPD+ individuals, 50 HIV+COPD- individuals, 50 HIV-COPD+ individ-

uals, and 50 HIV-COPD- individuals (total n = 200). Participants were eligible for inclusion if they resided within the Nakaseke district, were

R35 years of age, had confirmed HIV serostatus and spirometry-based COPD status at enrollment, were capable of understanding study

procedures, underwent successful sputum induction, had no history of prior antibiotic use in the past two weeks and did not have con-

traindications for spirometry and sputum induction procedure. During the genesis of the HLM cohort, matching was attempted based

on three participant characteristics (age, sex, and smoking status). However, it was limited by a small sampling frame of 50 individuals

in the COPD+/HIV� group from the LiNK cohort and COPD+/HIV+ group from the HiLiNK cohort, as well as differences in sociodemo-

graphic and clinical characteristics between the LiNK and HiLiNK cohort. To control for these matching limitations, the study team deter-

mined the differences in the distribution of sociodemographic characteristics across the main groups (COPD+/HIV+, COPD�/HIV+,

COPD+/HIV�, COPD�/HIV�) and used post-hoc testing for the role of these covariates using a confounder-aware statistical tool in all

downstream analyses.78 During the follow-up period from April 2022 to January 2023, we collected 5mls of induced sputum for the TB

GeneXpert test, using the Xpert MTB/RIF kit (Cepheid, USA), from 192 participants and 20mls of peripheral blood for the QFT assay using

the QuantiFERON-TB GOLD kit (Qiagen Sciences, Inc., Germantown Road, MD, USA) from 99 individuals who agreed to have their blood

drawn. Hence, we performed TB GeneXpert on 192 sputum samples and QFTs on 99 matched blood samples from the same individuals.

All assays were performed following the manufacturer’s instructions.

Ethical considerations

We obtained written informed consent from all study participants. Ethical approval was granted by the Mulago Hospital Research and

Ethics Committee (MHREC) (no.1996 and no. 2152), Makerere University School of Biomedical Sciences Research and Ethics Committee

(SBS-REC) (no. SBS-2023-312), and the Uganda National Council for Science and Technology (UNCST) (no. HS2375 and HS2035ES) in Kam-

pala, Uganda.

METHOD DETAILS

Sputum induction and blood sample collection

Before the sputum induction procedure, the following three-step cleansing routine using sterile water was followed: rinsing the mouth

(gargling and discarding) three times, clearing the back of the throat followed by discarding, and blowing the nose tominimize contamination

with saliva or postnasal drip. Each sputum sample was assessed for mucoid consistency upon deep coughing and expectoration, and Gram’s

stain procedure was performed for quality assessment. Sputum samples with less than 10 squamous epithelial cells per low-power field (310)

microscopy (indicative of a lower airway sample) passed the quality control check.80 Otherwise, the sample was rejected, and the induction

procedure was repeated. Each participant was instructed to inhale and exhale 3% nebulized hypertonic saline through the mouth with the

nose clipped.81 Three 5-minute nebulizing periods were used during the collection, with a rest period of 2 min. We performed the

procedure in a negative pressure sputumbooth. During each rest, spirometry was performed to determine the percentage fall in FEV1. Fifteen

(15) minutes post-nebulization, 2 to 4 mL of expectorates were collected in sterile sputum containers. For all successful inductions, after a

quality check, a sputum sample was collected in a sputum DNA collection, preservation, and isolation kit (Norgen Biotek Corporation,

Canada; catalog no. RU46100) as per the manufacturer’s instructions for downstream 16S rRNA sequencing or a sterile sputum container

for TB GeneXpert assays.

Blood collection and processing for QFT assays

We collected 20 ml of peripheral blood into a single blood collection tube containing lithium heparin as the anticoagulant. Blood was then

transported at room temperature within 1 hour before transferring into QFT tubes (catalog. no. 622130, QIAGEN, 19300 Germantown Road,

MD 20874, USA) following the manufacturer’s instructions. Briefly, we labeled QFT tubes appropriately, making sure each tube (Nil-negative

control, TB1, TB2, and Mitogen-positive control) was easily identifiable by its label. We recorded the time and date of blood collection and
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ensured that blood collection tubes were kept at room temperature at the time of blood collection. For each participant, we transferred 1ml of

collected blood into each of theQFT blood collection tubes following themanufacturer’s instructions. Immediately after filling theQFT tubes,

we shook them 10 times firmly enough tomake sure the entire inner surface of the tube was coated with blood. Following labeling, filling, and

shaking, the tubes were transferred to a 37�C incubator within 1 hour of collection and incubated UPRIGHT at 37�C for 24 hours. After incu-

bation of the blood collection tubes at 37�C, we harvested the plasma by centrifuging the QFT tubes for 15 minutes at 2000g using a pipet.

Harvested plasma samples were stored at –20�C.

IFNg ELISA

We used IFNg ELISA kits from Qiagen (catalog. no. 622130, QIAGEN, 19300 Germantown Road, Germantown, MD 20874, USA) following

the manufacturer’s instructions. Briefly, plasma samples and reagents, except for conjugate 100x concentrate, were brought to room tem-

perature before use. We allowed at least 1 hour for equilibration. We reconstituted the IFNg Standard with the volume of distilled water

indicated on the label of the vial. We mixed gently to minimize frothing, ensuring that the entire content of the vial was completely dis-

solved. Reconstitution of the IFNg standard to the correct volume produced a solution with a concentration of 8.0 IU/ml. Using the recon-

stituted standard, we prepared a serial dilution of four IFNg concentrations, and we generated a standard curve with these concentrations.

We prepared fresh dilutions of the kit standard for each ELISA session. We reconstituted lyophilized conjugate 100x concentrate with

0.3 ml of distilled water and then mixed gently to minimize frothing, ensuring that the entire content of the vial was completely dissolved.

We thoroughly mixed the stored sample before addition to the ELISA well. We added 50 ml of freshly prepared working strength conjugate

to each ELISA plate well, followed by 50 ml of test plasma sample to appropriate wells. Finally, we added 50 ml each of the Standards 1-4 to

the appropriate plate wells. We covered the ELISA plate and mixed the conjugate and plasma samples/standards thoroughly using a mi-

croplate shaker for 1 minute at 500 rpm, avoiding splashing. We covered the ELISA plate and incubated it at room temperature for 2 hours.

We took caution not to expose the ELISA plate to direct sunlight. During the ELISA plate incubation, we prepared a working strength wash

buffer and diluted one part of Wash Buffer 20x concentrate with 19 parts of distilled water and mixed thoroughly. When ELISA plate in-

cubation was complete, we washed the ELISA plate wells with 400 ml of working strength wash buffer at least 6 times to ensure that each

well was filled with wash buffer to the top of the well for each wash cycle. We tapped the ELISA plate face down on an absorbent towel to

remove residual wash buffer and added 100 ml of Enzyme Substrate Solution to each plate well, covered the plate, and mixed thoroughly

for 1 minute at 500 rpm using a microplate shaker. We covered the ELISA plate and incubated it at room temperature for 30 minutes.

Following the 30-minute incubation, we added 50 ml of Enzyme enzyme-stopping solution to each plate well in the same order as the sub-

strate was added and mixed thoroughly at 500 rpm using a microplate shaker. We measured the Optical Density (OD) of ELISA plate wells

within 5 minutes of stopping the reaction using a microplate reader fitted with a 450 nm filter and a 650 nm reference filter. OD values were

used to calculate the IFNg concentrations.

Sputum processing for GeneXpert assay

Briefly, upon receipt of the sputum sample in a Biosafety level-3 lab (BSL-3) under the cold chain, we quantified the M.tb burden using the

Xpert MTB/RIF Cepheid kit following the manufacturer’s instructions. Briefly, we carefully opened the lid of the sputum collection container

and pipetted approximately 2 times the volume of the sample reagent into the sputum (2:1 dilution, Sample Reagent: sputum). We shook

vigorously 15 times and incubated the sample for a total of 15 minutes at room temperature. Between 5 and 10 minutes into the incubation

period, we shook vigorously 15 times. To add the sample and reagents into the cartridge, we opened the cartridge lid and then opened the

sample container. Using the provided transfer pipette, we aspirated the liquefied sample close to the line on the pipette and dispensed

the Sample reagent-treated sample slowly into the sample chamber of Xpert MTB/RIF cartilage to minimize the risk of aerosol formation.

The cartilage lid was firmly closed and loaded into the Expert instrument for processing. The GeneXpert Instrument System generated

the results from measured fluorescent signals and embedded calculation algorithms. These results were seen in the View Results window

as high, medium, or trace MTB detected.

16S rRNA amplicon sequencing

DNA was extracted from samples using a sputum DNA collection, preservation, and isolation kit (Norgen Biotek Corporation, Canada; cat-

alog no. RU46100). DNApurity and concentration were determined using both a spectrophotometer and aQubit fluorescent-based kit. V3-V4

hypervariable region of the 16S rRNA gene was PCR amplified using 16S rRNA-specific 341F (50 NNNNNNNNNNCCTACGGGNG

GCWGCAG) and 785R (50 NNNNNNNNNNGACTACHVGGGTATCTAAKCC) primers. All samples were tagged with unique 10 nucleotide

sequences (‘‘barcodes’’) incorporated into the forward primer. The PCRs included about 1 to 10 ng of DNA extract (total volume, 1 mL),

15 pmol of each forward primer, and reverse primer in 20 mL of 13 MyTaq buffer containing 1.5 units MyTaq DNA polymerase (Bioline

GmbH, Luckenwalde, Germany), and 2 mL of BioStabII PCR Enhancer (Sigma-Aldrich Co). PCRs were carried out for 30 cycles. DNA concen-

tration of amplicons of interest was assessed by gel electrophoresis. About 20 ng amplicon DNA of each sample was pooled for up to 48

samples carrying different barcodes. The amplicon pools were purified with one volume of Agencourt AMPure XP beads (Beckman Coulter,

Inc., IN, USA) to remove primer dimer and other small mispriming products, followed by an additional purification on MinElute columns

(Qiagen GmbH, Hilden, Germany). About 100 ng of each purified amplicon pool DNA was used to construct Illumina libraries using the

Ovation Rapid DR multiplex system 1-96 (NuGEN Technologies, Inc., CA, USA). Illumina libraries (Illumina, Inc., CA, USA) were pooled

and size-selected by preparative gel electrophoresis. Bacterial 16S rRNA gene amplicons were sequenced targeting the V3-V4 (300-bp
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read length, paired-end protocol) region using the IlluminaMiseq platform. Sequence processing andOTU classification. The raw sequences

were processed to remove potential human contamination. The human genomewasmaskedwith the ProGenomes2microbial genome data-

base.71 Raw reads were mapped to the human genome, discarded upon 95% identity, masked, and then filtered. Finally, we validated the

human reads found by filtering out potential ‘‘human’’ contamination and aligned these against the NCBI nucleotide (nt) database, resulting

in only top human hits. After removing human contamination, the remaining raw reads were processed using LotuS (1.62). Poisson binomial

model-based read filtering was applied. OTU clustering (UPARSE) was based on sequence similarity of 97%, while SILVA was incrementally

used as a database for a taxonomic assignment using a Lambda taxonomic similarity search. The taxonomic classification (genus thresholded

at 95% identity) was parsed using a customPerl script, such that unassigned taxonomic levels were assigned to the last known taxonomic level

and sequentially numbered. Normalization and computation of alpha diversity measures were performed using the rarefaction tool kit (RTK

0.93.1) with default settings.

Quality control for 16S amplicon sequencing

All participants underwent sputum induction following a standard protocol to reduce sample variability. To avoid sample contamina-

tion, we used a single kit (Norgen Biotek sputum DNA isolation and preservation kit) that eliminated multiple steps of sputum

processing and allowed for transportation at room temperature and inactivating microbial growth in the sample, hence preserving

microbial composition. A stringent quality control check during sample collection was followed to reduce saliva and postnasal

drip contamination. We also included negative controls (sputum kit with sterile water and buffer) during sample collection, DNA extrac-

tion, PCR amplification, and sequencing. Negative controls were negative for V3-V4 amplicons at PCR, and no sequences were

generated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Exposure and outcome variables

Our exposure variables included QFT and TB GeneXpert status. Our primary outcome variable included airway microbiome signatures.

Sample size calculation

We based on taxonomic-based human lung microbiome project (HMP) data to estimate our sample size. A conservative approximation of

power to detect microbiome associations at the genus level between groups was tested using a t-test. Given n = 200 individuals in the

HLM cohort, assuming an effect size of 0.8 (Cohen’s d) and an alpha threshold of 0.05/30, reflecting a Bonferroni correction for the 30

main airway bacterial genera, power was approximately 80% to conclude significance for each true microbial biomarker. Clinically relevant

microbial feature abundance effects that fall within the convention of a ‘‘large’’ effect size Cohen (d R 0.8) are frequently used as starting

points for translational medicine.

Analysis plan

We summarized participant sociodemographic and clinical characteristics using proportions and used chi-squared tests to assess for differ-

ences in the distribution of these variables per three strata: Active TB, LTBI, andM.tb-uninfected. 16sRNA seq data: Operational taxonomical

unit (OTU) counts were rarefied to the smallest retained sample size to obtain relative abundances of microbiota in each sample, accounting

for read depths. Only major taxa and OTUs detected after rarefaction in at least 10% of samples were used in downstream analysis. We sum-

marized the airway microbiome compositional differences across three strata using relative abundances (proportions) and assessed for dif-

ferences in compositions across the strata using chi-squared tests. Univariate analysis was done using metadeconfoundR (version 0.2.9), and

relative abundances were tested for univariate associations with clinical variables, requiring a Benjamini-Hochberg adjusted FDR of <0.1 and

the absence of any clear confounders. Nonparametric tests were used for all association tests. The Wilcoxon or the Kruskal-Wallis analysis of

variance was used for discrete predictors. For pairs of continuous variables, a nonparametric Spearman correlation test was used. Benjamini-

Hochberg false discovery rate control (FDR) was applied in all multiple testing situations, requiring controlling the family-wise error rate at

10%. For sputum typing, we fitted a Dirichlet multinomial model on the count matrix of the genus relative abundance to classify genus

abundance based on probability.82 For microbiome network analysis, we performed Spearman’s rank correlation analysis. Microbial taxa

that co-occurred were considered positively associated, while mutually exclusive OTUs were negatively associated. We computed the

mean co-occurrence score as the average strength of positive associations betweenOTUs, calculated by taking the average of the correlation

coefficients. To underpin topmicrobiome signatures enriched in active TB versusM.tb-uninfected/LTBI individuals, we performed differential

microbiome abundance analysis between active TB versus M.tb-uninfected and LTBI individuals, using EdgeR (3.14.0) and DESeq2 (1.43.1).

We then projected the top enriched signatures in active TB versus M.tb-uninfected and LTBI individuals using a volcano plot and illustrated

the top 10 enriched airway microbiome signatures in active TB versusM.tb-uninfected and LTBI groups. For Biomarker discovery analysis, we

performed Random forest analysis in r (version 4.2.3), classified and generated microbiome signature importance plots, confusion matrices,

and accuracy rates. We further conducted repeated cross-validation analyses to assess the optimal number of microbiome signatures using

the Random Forest model (rf), support vector machine model (svm), and the generalized linear model (glm) models. To evaluate the perfor-

mance of the models, we conducted a Receiver Operator Curve (ROC) analysis for the rf, svm, and glm models. We additionally performed

Linear Discriminant Analysis Effect Size (LEfSe), a weight-based analysis method to further predict microbiome biomarkers forM.tb infection
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status in our cohort. We used The LDA_Micro function in r (version 4.2.3) to conduct Linear Discriminant Analysis (LDA) in a microbiome

context and identified differentially abundant features (OTUs) stratified by active TB versus LTBI andM.tb-uninfected. The identified features

were ranked and filtered based on significance thresholds.We visualized the output using bar plots depicting differential features stratified by

active TB versus LTBI and M.tb-uninfected at the genus level with LDA scores. All of the statistical details have been summarized and

presented in the figure legends, figures, and results.
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