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Abstract

ECG-based representation of atrial fibrillation (AF) progression is currently limited. We propose a novel framework for
a more sensitive noninvasive characterization of the AF substrate during persistent AF. An atrial activity (AA) recurrence
signal is computed from body surface potential map (BSPM) recordings, and a set of characteristic indices is derived from
it which captures the short- and long-term recurrent behaviour in the AA patterns. A novel measure of short- and long-
term spatial variability of AA propagation is introduced, to provide an interpretation of the above indices, and to test the
hypothesis that the variability in the oscillatory content of AA is due mainly to a spatially uncoordinated propagation of the
AF waveforms. A simple model of atrial signal dynamics is proposed to confirm this hypothesis, and to investigate a possible
influence of the AF substrate on the short-term recurrent behaviour of AA propagation. Results confirm the hypothesis, with
the model also revealing the above influence. Once the characteristic indices are normalized to remove this influence, they
show to be significantly associated with AF recurrence 4 to 6 weeks after electrical cardioversion. Therefore, the proposed
framework improves noninvasive AF substrate characterization in patients with a very similar substrate.

Keywords Electrocardiography - Atrial fibrillation progression - Atrial fibrillation substrate complexity -
Propagation patterns - Recurrence analysis

1 Introduction addressed as AF substrate complexity, may form the basis

for a more adequate AF stratification (not simply based on

Quantification of the degree of electrophysiological remod-
elling in the atria during atrial fibrillation (AF), also
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episode duration) and may provide useful information for
guiding AF therapy [12, 13]. This remodelling influences
the propagation of atrial activity (AA) wave fronts, suggest-
ing that AF substrate complexity can be quantified from
the (dis)organization of AA wave front propagation pat-
terns (e.g. number of waves, atrial fibrillation cycle length
(AFCL), conduction velocity). On the body surface, atrial
signal dynamics during AF are reflected in the f-waves
in the electrocardiogram (ECG), and previous studies have
shown that parameters quantifying f-wave organization can
be used to noninvasively determine AF substrate complex-
ity [7, 21, 25]. This suggests that the ECG can be used
to estimate AF progression and potentially guide therapy
in clinical daily practice. However, the clinical use of the
ECG for AF is still limited to its diagnosis. A possible rea-
son is that ECG-derived AF substrate complexity does not
represent sufficiently well the continuous spectrum of AF
progression, and overlooks the subtle differences in very
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similar AF substrates (with similar degree of remodelling).
However, patients with very similar AF substrate may still
respond differently to the same treatment (for instance, to
catheter ablation [11]).

In a previous study, we showed that propagation of AA
during AF is a process characterized by different short-
and long-term recurrent behaviours [18]. Short-recurrent
behaviours are those related to a single cycle of propagation
of an AA wave (or a single period, and thus related to the
AFCL), while long-recurrent behaviours are those related
to several cycles of propagation. A detailed description of
those AA dynamics may help to better characterize the
AF substrate heterogeneity and complexity. This requires
understanding the origin of this recurrent behaviour, and
linking it to the underlying mechanisms of AF. A starting
point to unravel this link is to notice that since recurrence
in time series data is closely related to repeatability of
(oscillatory) components, recurrence is naturally linked to
the frequency content of a signal. In another recent study,
we speculated that the recurrent behaviour of AA signals,
as recorded on the surface of the body, could be used to
investigate the origin of the time-varying spatio-temporal
properties of AA propagation during AF [6].

In this study, we formalize this approach and propose a
framework for noninvasive characterization of atrial signal
dynamics during persistent AF. For the sake of accuracy,
this framework is developed by using high spatial resolution
body surface potential map (BSPM) recordings. It proposes
the construction of a signal which captures the recurrent
behaviour of AA dynamics as reflected on the body sur-
face, and it is able to separate the short- and long-term
recurrent behaviour in the AA oscillatory patterns. The char-
acteristic indices which can be extracted from such signals
are then correlated to the spatial variability of body surface
AA signals. This allows to speculate on the link between
those indices and the underlying degree of electro-structural
remodelling, and test the hypothesis that the variability in
the oscillatory content of AA is due mainly to a spa-
tially uncoordinated propagation of the AF waveforms. A
simple phenomenological (not mechanistic) model of AA
dynamics is proposed to investigate the validity of this hypoth-
esis, and to reveal an influence of the AF substrate com-
plexity on the short-term recurrent behaviour of AA propa-
gation. Removal of this influence from the aforementioned
characteristic indices helps strengthen their association with
AF recurrence 4 to 6 weeks after electrical cardioversion
(after adjusting for state-of-the-art AF complexity param-
eters [7, 25]), and supports the idea that the proposed
framework allows for a detailed noninvasive analysis of AA
propagation dynamics during AF.
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2 Materials and methods

2.1 BSPM-dataset

In this study, we employed a dataset of body surface
potential maps (BSPM) recorded in 75 patients in persistent
AF (retrieved from Maastricht University Medical Centre,
Maastricht, the Netherlands; the study was approved by
the institutional ethics review board). BSPM were recorded
with 120 anterior and 64 posterior leads (ActiveTwo BSM
Panels Carbon Electrodes, Biosemi B.V., The Netherlands).
All patients underwent electrical cardioversion, and 32 out
of 63 patients with follow-up showed AF recurrence 4 to 6
weeks after procedure. ECGs were sampled at 2048 Hz, and
downsampled to 256 Hz. A 1-min segment was selected for
each subject, low-quality leads were excluded (low signal-
to-noise ratio, poor electrode contact, motion artefacts),
and Wilson’s Central Terminal was subtracted in line with
conventional ECG analysis. All signals were band-pass
filtered between 1 and 100 Hz (3rd-order Chebyshev),
and QRST cancellation was performed using an adaptive
singular value decomposition method, inspired by the
approach in [1], with multiple QRST window templates
defined using hierarchical clustering. The extracted AA
signals were post-filtered with a zero-phase notch filter at
50 Hz (2nd-order IIR filter) to suppress power line noise,
and with a 3 Hz zero-phase high-pass filter (3rd-order
Chebyshev) to remove low-frequency residuals not related
to (persistent) AF.

2.2 Multi-variable AA recurrence signal

In [18], we introduced an approach to investigate the
nonstationary properties of noninvasive AA signals based
on their recurrence behaviour. Given a matrix X of size
£ x N collecting all extracted AA signals from a patient
(¢ leads, and N samples), each column of X is assumed
to provide an £ x 1 vector x(n), n = 1,..., N, which
represents the overall spatial AA from all electrodes (hence
multi-variable) at a given time instant. Then, a square matrix
R of size M x M is generated by computing:

o xOTxG+j -1 withi =1,..., M,
YO 2lXG + = D" withj=1,.... M

ey

where M is the window size of the analysis (M < N),
chosen to capture self-similar behaviour in AA propagation.
Each entry of R is therefore a measure of the cosine of
the angle between two vectors (R; ; = cos(x(i), x(i +
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Fig.1 Schematic representation of the construction of a multi-variable AA recurrence signal r(p), starting from AA signals extracted from ECG

recordings. A visualization of the matrix R is also provided (bottom-left)

j — 1)), and provides a correlation-based distance which
focuses on the shapes of the signal profiles, rather than
their magnitudes. This allows to obtain small angles (high
similarity) for spatial wave fronts with similar morphologies
even when their corresponding amplitudes are different, in
order to highlight the presence of self-similar patterns in the
data. Moreover, column j includes correlation values at lag
p = j— L. The average over each column (per lag) provides
a multi-variable autocorrelation function of the spatial AA
oscillatory patterns, for lags p = 0,..., M — 1, which
is defined as the multi-variable AA recurrence signal r(p)
for a patient. This signal allows to investigate the temporal
recurrence of global AF spatial patterns over the all body
surface covered by the BSPM electrodes. Figure 1 provides
a schematic summary of the procedure used to construct
the signal r(p). Recurrence is expected to be high when
similarity between two vectors x(i) and x(i + j — 1) is high
(or equivalently, R; ; is close to one). For instance, under
the hypothesis that a hypothetical AF cardiac dipole passes
through the same points after a period 7' (with T expressed
in samples), the cosine of the angle between any two vectors
x(i) and x(i 4+ T) which are T samples apart is expected
to equal 1. Equivalently, a value of —1 for the cosine of the
angle is expected to be reached when the two vectors are in
opposition of phase, or half a period (i.e. % samples) apart.
Therefore, a multi-variable AA recurrence signal captures
the spatial similarities of AA propagation patterns (in terms
of spatial correlation) over time, and it exploits the spatial
information in terms of spatial similarity/diversity.

This procedure is repeated over nonoverlapping subsets
of columns of X, called blocks, each block m including
2M columns. A matrix R" and the corresponding
multi-variable AA recurrence signal r(p)™ can then be
computed for each block m, to account for nonstationary

recurrence behaviours in AF propagation (p =0, ..., M —
N

,m = 1,..., {—J) The reason for looking at
2M

consecutive nonoverlapping blocks is that we consider it
sensible to assume that a self-similar behaviour in AA
propagation is likely not to last over a long time interval,
and we expect breaks in the phase of the AF patterns to
occur (piecewise stationarity). We assume the number of
those breaks to be positively correlated with AF progression
and electro-structural remodelling of the myocardium. It
is difficult to know in advance what could be a suitable
window size M for a patient. The smaller M is the better
nonstationarities can be handled, but the more dissimilar
r(p)(’”) will be over consecutive blocks, and vice versa.
A value of M = 500 was used in this study, which
guarantees to span approximately 4 s (i.e. 2M columns)
in each block (at a sampling frequency of 256 Hz), thus
capturing several periods of AF [18]. An example of multi-
variable AA recurrence signals r(p)™, computed over
two consecutive blocks, is given in Fig. 2. Notice the
variability in the shape of r(p)"™ from block to block
(especially for larger lags), underlying the nonstationary
behaviour of AF propagation patterns. AF maintenance has
been explained by different conceptual models: repeated
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Fig.2 r( p)("’) curves from two consecutive blocks in a patient (n.u. is normalized units). The characteristic indices Py, P, tp , and tp, are shown
on the left plot, with the two vertical lines defining the interval for the computation of the LTR index

rapid focal activity [15], rotors [10], or disrupted conduction
of multiple stable wavelets that become fragmented [3, 4].
These mechanisms are charaterized by different degrees of
periodicity and organization (with rapid focal activity and
rotors expected to produce more periodic and organized
wave front propagation patterns than multiple wavelets),
and therefore are expected to be featured differently on
multi-variable AA recurrence signals 7 ( p)(’") (with the first
two showing stronger long-term recurrence than the latter).
This suggests that the proposed framework should be able to
handle different mechanisms of maintenance of AF. Three
characteristic indices associated with an r(p)™ signal are
also introduced:

— Long-term recurrence (LTR): computed as the average
over all blocks of the mean absolute value of the
portion of an r(p)"™ signal comprised between 150
< p < 450 (portion within the two vertical bars in
Fig. 2 left). In [18] we showed that the envelopes of
r(p)™ signals are characterized in general by two
distinct behaviours: an early phase characterized by a
decreasing autocorrelation value (for small values of
the time lag p), and a later phase characterized by
an approximately constant behaviour, for values of p
in the range 150 < p < 450 (Fig. 3 in [18]). This
suggests that the propagation of AA during AF is
a process characterized by different short- and long-
term recurrent behaviours. LTR is therefore considered
a measure of long-term recurrent behaviour of AA
propagation in a patient, and it is assumed to be related
to the overall AF substrate complexity (with a higher
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LTR value to be related to a lower degree of electro-
structural remodelling).

—  The absolute value of the first negative peak | P | and the
first positive peak P; in an r(p)"™ signal (Fig. 2 left):
they can be interpreted as a measure of the strength of
short-term recurrent behaviour of AA propagation in a
patient (with higher values of | P;| and P, being related
to a lower degree of electro-structural remodelling). P;
is expected to occur at approximately half a period of
the AA propagation waveform (~ half of the AFCL),
while P, at approximately a full period (~ one AFCL).

— tp, and tp,: time lags corresponding to P; and P»,
respectively. They are expected to be correlated with
the AF dominant frequency (or the AFCL, with higher
values of tp, and tp, being related to a lower AF
dominant frequency, and thus a lower degree of electro-
structural remodelling).

2.3 Spatial variability of AA propagation

Given that a multi-variable AA recurrence signal 7 ( p)m
contains information about the temporal repetitiveness of
spatial AA oscillatory patterns on the body surface, a
quantification of the organization of those patterns could be
used to provide an interpretation of r(p)™ signals, and its
characteristic indices. This can be achieved by looking at the
amount of spatial variability in AA propagation (SVAAP),
as reflected on surface AA signals. In [6] we proposed
to measure SVAAP from the complexity of surface AA
signals. SVAAP is assessed by computing the AA subspace
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dimension, which is defined starting from identifying the
point in the spectrum of matrix X (i.e. the set of its
eigenvalues) that minimizes the distance between the plot of
the spectrum and the origin (in a similar way to how the best
cutoff point on a receiver operating characteristic (ROC)
curve is identified; see Fig. 3). Once this point is identified,
its x-coordinate represents the index of the corresponding
eigenvalue. Since this eigenvalue can be considered as the
first negligible eigenvalue of X (being at the corner of the
plot of the spectrum), the index of the previous eigenvalue
is then chosen as a measure of SVAAP. Thus, if we assume
that the vector v = [x, y]T identifies a generic point in the
plot of the spectrum of X, SVAAP can be defined as:

SVAAP = argmin ||v||; — 1.
X

The spectrum of X is generated by applying singular
value decomposition to X, and then by scaling all singular
values by (f#l (where o is the first singular value). Scaling
ensures to have same units on both axes of the spectrum,
and accurately estimate SVAAP. SVAAP is assessed over
short (s-SVAAP) and long (I-SVAAP) AA segments. [-
SVAAP is computed over nonoverlapping 5-s segments (i.e.
focusing on portions of X of size (¢ x Fy - 5), with Fj
the sampling frequency), while s-SVAAP is computed over
nonoverlapping segments of ¢ samples (with ¢ = fi L
where f4F is the AF dominant frequency, and focusing on
portions of X of size (£ x ¢q)), and then averaged over all
segments. This choice for g allows to have an adaptive way
to set the segment length in a patient, to cover a time span
of about a full cycle of the overall AA propagation. Patients
with persistent AF have been shown to be characterized
by unstable patterns of activation (including wave fronts
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Fig. 3 Example of calculation of SVAAP from the spectrum of a
matrix. Indicated with an arrow is the point that minimizes the distance
with the origin. n.u., normalized units (by scaling all singular values
by £)

1

and disorganized activity) and by narrow fibrillation waves
[3, 14]. Based on those observations, we assume that the
variability in the oscillatory content of AA is due mainly to
a spatially uncoordinated propagation of the AF waveforms,
and we expect a patient affected by persistent AF to show
[-SVAAP > s-SVAAP.

2.4 Phenomenological model of atrial signal
dynamics during persistent AF

A simple phenomenological model of atrial signal dynamics
as observed on the body surface is proposed to investigate
the hypothesis introduced at the end of the previous section.
The model is able to generate pseudo-AA signals that can
replicate the overall behaviour of r(p)" signals computed
on patients’ data (Fig. 4 middle). The model assumes
a process with time-varying spatial properties of AA
propagation. In [6], we showed that this assumption reflects
more accurately what is observed in real patients (s-SVAAP
< [-SVAAP, see Section 3.1), than its counterpart (a process
with stationary spatial properties of AA propagations and
time-varying frequency properties only, for which s-SVAAP
~ [-SVAAP is expected). The model is given in (2):

mi(n) = cos2m Ln + 51" () + k/2),
with s,Ed’”] (n) being a random walk process.

@)

F; is the sampling frequency, and k = 1, ..., £ allows to
generate AA propagation loops in a £-D space. For instance,
£ = 3 allows to generate 3-D loops which simulate the
AA cardiac dipole during AF (also in case no randomness
is introduced). s,id’vl(n) is a stochastic process where each
point is randomly drawn from a normal distribution, such
that:

i) = sk — 1) + Al ),

3
with Al () ~ N (0, v2), st [s ()] < d. )

Hence, d controls the range of s(n) (the larger d the larger
the range), while v controls the rate of variation of the
increment (the larger v the larger the rate of variation). The
use of a stochastic component in (2) is suggested by what
can be observed on real AA signals during AF. Indeed,
for the same set of parameters (d, v) (same AF substrate),
model (2) will give different AA dynamics over different
runs, as for the different dynamics of AF propagation
captured by r(p)™ over consecutive blocks in the same
patient (Fig. 2). It should be recalled that the instantaneous
frequency of a pure cosine is the derivative with respect to
time of its argument or phase. Then the model introduced
in (2) exhibits also a time-varying frequency because of
the stochastic process. If this stochastic process is the
same regardless the value of k then, for ¢ = 3, the
corresponding 3-D loops lie all on the same plane, whereas
if it differs with k, the 3-D loops will span the space
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Fig.4 Examples of real and
simulated pseudo-AA signal
(top; only the first 400 samples

real patient
— — —Model

are displayed), ()™ and
#(p)™ signals (middle), and
amplitude spectra (bottom),
from a patient and from model

(2), with d and v optimized on
the patient as described in the
main text
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differently, in agreement with our hypothesis. In both cases,
the instantaneous frequency will vary with time.

The £-D my (n) pseudo-AA signals in (2) are then linearly
mapped into a 184-D space to simulate AA signals from
BSPM recordings (mapping obtained by means of a 184 x £
random matrix). These simulated AA signals are in turn
used to investigate the hypothesis. Figure 4 top and middle
show the pseudo-AA signal and 7(p) ™ signal, obtained by
fitting (2) to a patient from the BSPM-dataset (where the
" shows that this is assessed from the model; more details
about how optimal values for the parameters d and v for a
specific patient were obtained are provided in Section 2.4.1).
Figure 4 bottom shows that the corresponding pseudo-AA
signals in (2) give amplitude spectra similar to those we
observed in persistent AF patients (with no strong harmonic
components). It is important to remark that, when fit to a
patient, the model is expected to give similar dynamics of
their AA signals, and not to replicate exactly the morpho-
logies of the AA signals and the r(p)™ signal, which
explains the different morphologies in Fig. 4 top and middle.

The model is simple as it only generates a single
sinusoidal waveform, with phase modulation. In this
respect, it does not aim to be a mechanistic model
that reproduces the electrophysiological substrate of AF
characterized by multiple interacting waveforms wandering
in the atria, nor it accounts directly for the heterogeneity of
the atrial tissue. It mainly aims to be a descriptive model
which allows to replicate the effects of the AF substrate on
the body surface as observed on persistent AF patients (as
shown from the model output and the corresponding 7 (p) ™
signal in Fig. 4), to be able to draw conclusions on the global

@ Springer

frequency (Hz)

spatio-temporal behaviour of AF propagation patterns. As
a consequence, the s-SVAAP and [-SVAAP values of the
184-D simulated AA cannot theoretically exceed ¢, while
the corresponding values computed on real signals can
be greater than ¢ (with ¢ equal to the median /-SVAAP
observed on patients).

2.4.1 Fitting the model to patients’ data

The following approach was used to find realistic values
for parameters d and v in (2) which could generate pseudo-
AA signals with #(p)"™ signals similar to those observed
in real patients. For each of the 75 patients from the
BSPM-dataset, and given a specific pair of parameters d
and v, 40 different models were generated, and linearly
mapped to a 184-D space. From each model output, the
average 7(p)™ signal was obtained and the corresponding
|ﬁ1|, 132, and LTR were computed, and compared with
those from a patient by measuring the sum of the absolute
differences. For each patient, the average AF dominant
frequency computed over all leads was used as input for f4
in (2). Additionally, for each pair of d and v parameters,
faF was varied over the range [ far — 1, far + 1] Hz, with
step 0.5 Hz, to account for variability in the AF dominant
frequency. d was varied over the range [6,14] (with step
1), and v over the range [0.16,0.32] (with step 0.02). All
possible combinations of the two parameters were tested.
The ranges were defined by empirically varying d and v and
observing what ranges provided realistic AA dynamics. For
each patient, the pair (d, v) which minimized the average
sum of the absolute differences was selected. The resulting
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median(IQR) of range d and rate v were 8.0(3.8) and
0.30(0.06), respectively.

2.5 Analyses

2.5.1 Correlation between spatial variability
of AA propagation and AA recurrence

Correlation between spatial variability of AA propagation
and AA recurrence was investigated on the BSPM-dataset.
We also looked at the relation between [-SVAAP and s-
SVAAP, to test the hypothesis that the variability in the
oscillatory content of AA is due mainly to a spatially
uncoordinated propagation of the AF waveforms (results are
reported in Section 3.1)

2.5.2 Assessing SVAAP on the model’s output

s-SVAAP and /[-SVAAP were then assessed on the pseudo-
AA signals generated by means of (2), with £ = 15 (based
on the median value of /-SVAAP obtained on patients; see
Section 3.1)). For each of the 75 pairs of optimal parameters
d and v identified for each patient, 100 different models
were generated (and linearly mapped to a 184-D space). s-
SVAAP and [-SVAAP were then assessed on the output of
each model and averaged over the 100 simulations, to give
an average value of s-SVAAP and [-SVAAP per d and v pair
(result are reported in Section 3.2).

2.5.3 Relation of |P]| and P, with LTR

The proposed phenomenological model was used to
investigate the relation of |P;| and P, with LTR, for a
fixed value of faf, and reveal (at a simulation level) a
possible influence of the AF substrate complexity on the
short-term recurrent behaviour of AA propagation. For this,
d and v were varied again over the range [6,14] (with
step 1) and [0.16,0.32] (with step 0.02), respectively. For
each parameter combination, 20 different models were
generated, and linearly mapped to a 184-D space. Py,
P,, and LTR were computed from the corresponding 7(p)
curves, and averaged over the 20 simulations. This analysis
was repeated for fsr equal to 5, 6.5, and 8 Hz. These
values were chosen based on the range of f4r observed
in the patients. After the influence of the AF substrate
complexity on the short-term recurrent behaviour of AA
propagation was revealed, | P1| and P, were divided by LTR,
to produce normalized indices |Pi| and P,. This was done
to remove the influence of the AF substrate complexity
on the short-term recurrent behaviour, and allow to better
compare among patients by bringing them to a similar level

of complexity, and in turn to better interpret the short-term
recurrent behaviour of AA propagation during AF (results
are reported in Section 3.3)

2.5.4 Relation of |I~’1 | and P, with AF recurrence after
electrical cardioversion

Finally, given that | P{| and P, are expected to carry infor-
mation on short-term AA dynamics during AF, we investi-
gated their relation with AF recurrence 4 to 6 weeks after
electrical cardioversion, in order to infer a possible associ-
ation. Assuming that patients showing AF recurrence after
cardioversion are characterized by a more complex AF sub-
strate (or equivalently, a more progressed electro-structural
remodelling), we would expect this to be reflected in a
lower | P;| and P; (less self-similar waveform morphologies
on the short term). We also looked at other state-of-the-
art ECG-based indices of AF complexity and investigated
their association with AF recurrence 4 to 6 weeks after
electrical cardioversion. Based on our previous work on
standardization of noninvasive indices for the assessment
of AF complexity [7, 22, 25], we selected the following
parameters: spatial complexity, variability of spatial com-
plexity, spatio-temporal stationarity, dominant frequency,
spectral concentration and spectral variability, multivariate
organization index, multivariate spectral entropy, sample
entropy, f-wave amplitude, f-wave power, relative harmonic
energy. These parameters differ in terms of domain of anal-
ysis (time-based vs. frequency-based), and use of temporal
and/or spatial information. Some of these parameters are
multi-lead based, while others are single-lead based. For the
single-lead based parameters, parameters were computed on
each lead, and the average over all leads was taken. We
refer the interested reader to the studies cited in [7, 25],
for a definition of these parameters, and their relation with
AF substrate complexity and the degree of electro-structural
remodelling in the atria. A univariate logistic regression
model was generated for |ﬁ1| and P, and each state-of-the-
art parameters to assess their association with AF recurrence
after electrical cardioversion. Moreover, a multi-variable
logistic regression model was also generated with all state-
of-the-art parameters and | P;| and P, as input. Finally, the
univariate analysis for |Pj| and P, was repeated on the
12-lead ECG recordings extracted from the corresponding
BSPM recordings, to investigate whether the information
carried by the 12-lead ECG is still sufficient to accurately
determine |P;| and P, and provide a possible association
with AF recurrence after electrical cardioversion (results
are reported in Section 3.4). This is relevant as the 12-lead
ECG is considered the standard tool to assess the electrical
functioning of the heart in the clinics.
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Fig.5 Scatter plots of /-SVAAP vs. LTR (left), s-SVAAP vs. | P| (middle), and s-SVAAP vs. P (right). The corresponding lines of best fit and

the Pearson correlation coefficients r are also shown

3 Results

3.1 Correlation between spatial variability
of AA propagation and AA recurrence

[-SVAAP and LTR showed a moderate negative correlation
of —0.52 (p < 107%; Fig. 5 left). This result suggests
that the more organized the overall AA is (and the less
complex the AF substrate) the more uniform in time and
space its propagation patterns are (fewer propagation paths),
thus reaching a higher average long-term spatial correlation.
Correlation between s-SVAAP and |P;|, and s-SVAAP
and P, showed negative correlations of —0.88 and —0.70,
respectively (p < 107%; Fig. 5 middle and right). This
result suggests that on the short-term (half or full AF
cycle), the more organized the AA is, the more stable its
propagation patterns are. This is in agreement with the
fact that a less progressed AF, which reflects in a less
complex AF substrate (lower degree of electro-structural
remodelling), manifests in more organized and stationary
AA signals [13]. These results show the ability of r( p)(m)
curves and its characteristic indices to capture different
types of information about AA dynamics during AF. Finally,
when compared with each other, s-SVAAP was significantly
lower than I-SVAAP (6.2(1.2) vs. 15.5(2.3), p < 1074,
median(IQR); assessed by Wilcoxon signed-rank test for
paired measurements). Therefore, SVAAP tends to become
smaller when quantified on smaller portions of an AA
signal. This means that AA propagation patterns are overall
more self-similar on a short-time period than on a long-
time period, confirming the hypothesis that the overall
variability in the AA propagation patterns measured on
noninvasive atrial signals during persistent AF is due
mainly to a spatially uncoordinated propagation of several
simultaneous AF waveforms (whose spatial self-similarity
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decreases over progressively longer time intervals), rather
than to the stable propagation of a single (or few) waveform
with time-varying frequency properties (time-varying speed
of propagation). This does not exclude a time-varying
periodicity of the AF pattern; for instance, time-varying
speed due to changes in the electrophysiological properties
of the atrial tissue the waveforms travel through.

3.2 Assessing SVAAP on the model’s output

The model gave [-SVAAP > s-SVAAP in all simulations
(15(0) vs. 5.7(09), p < 10~%; Wilcoxon signed-
rank test for paired measurements). This result supports
the hypothesis that the variability observed in the AA
oscillatory patterns (and thus in the AF frequency) during
AF is associated with global irregular AA propagation
patterns, and nonstationary spatial AA dynamics (at the
whole atria level). Simulations based on completely random
processes in a 15-D space gave similar values for s-SVAAP
and [-SVAAP (15(0) vs. 15(0)), thus showing that the
size of the segment per se does not influence the value
of SVAAP, and supporting the fact that the significant
difference observed for the model (and the patients) did not
occur by chance.

3.3 Relation of | P;| and P, with LTR

Figure 6 shows |P1| (left) and Pz (right) vs. LTR for
different far. |P1| and P2 are positively correlated with
LTR, and this correlation is maintained for different values
of far. This shows at a simulation level an influence of the
AF substrate complexity (captured by LTR) on | P;| and P>.
The larger the AF substrate complexity (the lower LTR) the
lower the short-term recurrent behaviour of AA propagation
(the lower |Pi| and P,), independently of fsp. This is



Med Biol Eng Comput (2020) 58:1933-1945

0.9
AL NA
0.8 i
A AR Aéxx XXX
AL BN
A A >QZAAA Pl
N ) LA PR
1B MMAWXX x
! LA e o ©° ® 5Hz
0.6 AA ° X 6.5Hz|
£3 ><4é:o.. °® A gHz
Py
X g0 o
05 a o ¢ .
x XX Kgea®
X
X 26w
® o
04 o ° 8 b
. e
P
03 , , , ,
0.03 0.04 0.05 _  0.06 0.07 0.08
LTR

1941
0.7 . .
MRA DA
o cmp reﬁ“ o
A%XX A . R
L A
05 QA x A, " S % e
. . -
Py AAAAX%& x % ® 5Hz
04r P X  6.5Hz|
A .&: A 8Hz
[ )
Y eoce
03F A% % oo
A x ° .'.
X && &<O‘.
02(x 4 2 o &
x%..:.
[ ]
e °
04 . . . .
0.03 0.04 0.05 006 0.07 0.08
LTR
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in agreement with the observation that more regular AA
signals are expected with a less complex AF substrate [24].
We therefore normalized | P;| and P, from the patients’ data
accordingly, to remove this influence. Correlation between
|f’1| and 7p, gave a value of —0.65 (p < 1074; Fig. 7 left),
compared with a correlation of only —0.33 (p < 0.01) when
| P1] is not normalized. Correlation between 132 and tp, gave
a value of —0.56 (p < 10~*; Fig. 7 right), compared with
a correlation of only —0.16 (p = 0.16) when P, is not
normalized. Additionally, correlation between fp, and AF
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dominant frequency was —0.86 (p < 10~%), and correlation
between tp, and AF dominant frequency was —0.94 (p <
10~*) confirming that ¢p, and ¢p, are correlated to the half
and full AF period, respectively, of an AA propagation
waveform. Overall, this suggests that the faster the AA is
propagating (the lower tp, and tp,), the more stable its
propagation paths are on the short-term (the larger the short-
term spatial correlation, captured by Py and Py), regardless
the level of AF substrate complexity, as we have removed its
influence. We can only speculate that this could be related to
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a cardiac tissue locally characterized by more homogeneous
electrophysiological properties, which would allow for a
faster and more stable propagation.

3.4 Relation of |f’1 | and P, with AF recurrence after
electrical cardioversion

Both |P| and P, were significantly higher in patients not
showing AF recurrence after cardioversion (5.7(1.4) vs.
5.1(1.2), p < 0.03, and 5.2(0.9) vs. 4.8(0.6), p < 0.003;
Wilcoxon rank-sum test for unpaired data), suggesting a
less complex AF substrate in these patients. The univariate
logistic regression model generated for each index showed
that both | P;| and P, are significantly associated with AF
recurrence after electrical cardioversion (p = 0.03 and
p < 0.01, respectively). The univariate logistic regression
models for the state-of-the-art parameters showed that,
for the data set used in this study, no parameter was
significantly associated with AF recurrence after electrical
cardioversion, as reported in Table 1. The reason for the
large difference in the order of magnitude of the two indices
f-wave amplitude and f-wave power is due to the different
pre-processing used to compute those, as described in the
original studies [2, 17].

The multi-variable logistic regression model showed that,
when all state-of-the-art parameters are accounted for, only
P, is still significantly associated with AF recurrence 4
to 6 weeks after electrical cardioversion (p < 0.03).
This may be due in part to the fact that |151| and P,
are significantly correlated (Pearson correlation coefficient
0.83, p < 0.001). These results suggests that P, (and
partially |P;|) may provide a more sensitive measure of
AF substrate complexity than state-of-the-art parameters.

The lower performance of the latter may be due to the fact
that all state-of-the-art parameters used in this study mainly
capture the long-term recurrent behaviour in AF dynamics,
unlike | P;| and P, which carry information on short-term
recurrence, thus suggesting that the proposed indices may
be more suitable to distinguish among patients characterized
by a very similar AF substrate complexity. Finally, logistic
regression on the 12-lead ECG recordings showed that only
15% was close to significance (p = 0.049), compared with
[P1] (p = 0.66).

4 Discussion

In this study, we presented a novel framework for the nonin-
vasive analysis of AA dynamics during persistent AF, which
focuses on the recurrent behaviour of these dynamics, as
observed on body surface recordings. The main motivation
for this framework was the need for a methodology which
could better capture the continuous spectrum of AF pro-
gression, its spatio-temporal heterogeneity and complexity,
and the subtle differences in very similar AF substrates.
Our findings suggest that the proposed framework allows
for a detailed analysis of AA propagation dynamics during
AF and for a physiological interpretation of their recurrent
behaviour, and may be suitable to characterize patients with
a very similar AF substrate complexity. The phenomenolog-
ical model introduced to help validating this framework is
simple. At the same time, it was sufficient to offer a global
description of our analyses and fundamental in revealing
an influence (at a simulation level) of the AF substrate
complexity on the short-term recurrent behaviour of AA
propagation, as observed on the body surface. This allowed

Table 1 State-of-the-art parameters for the AF recurrent and non recurrent patients

Parameter AF recurr Non-AF recurr p value
Spatial complexity (average count) 12.58 (5.17) 11.83 (5.83) 0.2209
Variability of spatial complexity (SD of count) 1.22 (1.12) 1.03 (0.85) 0.9916
Spatio-temporal stationarity (n.u.) 0.79 (0.20) 0.80 (0.18) 0.4240
Dominant frequency (Hz) 6.44 (0.79) 6.54 (0.85) 0.7784
Spectral concentration (n.u.) 0.53 (0.1) 0.49 (0.08) 0.1081
Spectral variability (n.u.) 0.42 (0.17) 0.42 (0.13) 0.4651
Multi-variate organization index (n.u.) 0.24 (0.02) 0.25 (0.03) 0.1398
Multi-variate spectral entropy (n.u.) 9.38 (0.08) 9.38 (0.09) 0.0940
Sample entropy (n.u.) 0.50 (0.02) 0.49 (0.02) 0.1976
f-wave amplitude (a.u.) 0.02 (0.01) 0.02 (0.01) 0.9732
f-wave power (a.u.) 251.06 (42.70) 244.86 (56.50) 0.4469
Harmonic energy (n.u.) 0.20 (0.08) 0.17 (0.09) 0.1446

Results are shown as median(IQR), and the p values from the corresponding univariate logistic regression models are also reported
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us understand how to remove this influence, and achieve a
better description of this short-term behaviour. Following
this hint, we showed that the faster the AA is propagating,
the more stable its propagation paths are in the short-term.

This is relevant since several studies over the last
decade investigated how to assess the complexity of the
AF substrate from the ECG, and addressed the clinical
relevance of ECG-based AF substrate characterization [7,
21, 25]. Accurate noninvasive methods are needed to be
able to unveil differences in patients with very similar AF
substrate, likely due to structural strengthening of already
existing remodelling processes [23]. Our findings suggest
that the proposed framework could be used in combination
with state-of-the-art ECG-based and clinical parameters to
improve prediction of treatment outcome. In this respect,
we showed that, for the dataset analysed in this study, state-
of-the-art AF complexity parameters were not significantly
associated with AF recurrence after electrical cardioversion.
This suggests that these parameters are not able to properly
capture the short-term behaviour of AA propagation, which
is concealed by the long-term behaviour, and this may
be regardless computing those parameters on smaller time
windows, as almost all of them are already computed on
sequential time windows of 10 s (based on the original
studies). On the other hand, the proposed normalization by
the long-term recurrent benaviour helps enhance the short-
term information and finally obtain normalized short-term
indices by which all patients have been normalized to the
same level of long-term complexity, and the only remaining
inter-individual variability can be associated mainly with
short-term behaviours. This suggests that the proposed
framework may complement the information provided by
state-of-the-art measures to help their clinical applicability
for AF diagnosis and treatment.

In a computational study, Manani et al. highlighted the
role played by local critical patterns of uncoupling due
to microstructural changes (e.g. fibrosis or gap junctional
uncoupling), in anchoring microreentrant wave fronts that
trigger AF [16]. This study suggests that it is the number
of local critical patterns of uncoupling as opposed to global
uncoupling that determines AF progression. Our hypothesis
is that the long-term information about recurrence, captured
by LTR, may include to some extent information on the
global average uncoupling (fibrosis burden) at the level of
the all atria, as reflected on noninvasive atrial recordings.
Normalization of the short-term information, represented
by |P;| and P,, by this global long-term information may
then help highlight the contribution of local critical patterns
of uncoupling, and the corresponding microreentrant wave
fronts, to the normalized short-term indices |P;| and
P, and better capture those microstructural changes in
the myocardium. This may explain to some extent our
observation that the faster the AA is propagating, the more

stable its propagation paths are on the short-term (the
larger the short-term spatial correlation), as fibrosis is more
extensive on more progressed stages of AF (and more
complex AF substrates).

In this study we focused on inference and not on pre-
diction (or classification), and we only investigated whether
the proposed indices |P1| and P were associated with AF
recurrence after electrical cardioversion in persistent AF
patients. Prediction of treatment outcome and patient strati-
fication were outside the scope of the study. A future study
should look at how this novel approach could be combined
with other ECG-based and clinical parameters to improve
outcome prediction of electrical cardioversion and other
therapies for AF. For the interested reader, the multi-variable
logistic regression model assessed on the whole data set had
an AUC of 84%. At the optimal operating point of the ROC
curve, sensitivity was 84%, specificity 74%, and accuracy
79%.

Previous studies have used the concept of recurrence to
characterize atrial wave front propagation patterns during
AF and its spatio-temporal dynamics. In this respect,
recurrence plots provide a way to visualize and quantify
recurrent behaviour of the phase space trajectory of a
dynamical system [8]. Ng et al. [20] tested the hypothesis
that morphology recurrence plot analysis would identify
sites of stable and repeatable electrogram morphology
patterns, and found a distribution of sites with high
and low repeatability of electrogram morphologies. They
suggested that sites with rapid activation of highly repetitive
morphology patterns may be critical to sustaining AF.
Zeemering et al. [24] used recurrence plot analysis
combined with principal component analysis to build a
reliable tool to visualize dynamical behaviour and to assess
the complexity of contact mapping patterns in AF. Both
studies propose alternative ways to analyse atrial regions
to detect local differences in electrogram morphology
recurrence, in order to identify possible targets for ablation
of AF. More recently, Almeida et al. used recurrence plots
and recurrence quantification analysis to characterize the
dynamics of atrial tissue activations from atrial electrograms
of human persistent atrial fibrillation, and showed that
this analysis allows discriminate between normal and
fractionated atrial electrograms [5]. van Hunnik et al.
used recurrent plots to investigate stability of conduction
patterns during AF, and found that this poorly correlates
with stationarity of AF properties [9]. All these studies
focused on invasive recordings of AA during AF, while
our study proposes the use of noninvasive recordings to
assess recurrence in AA propagation during AF, and uses
this information to improve quantification of AF substrate
complexity. Narayan et al. [19] showed that temporal
and spatial phase analysis from the ECG helps quantify
progressive levels of organization in atrial and ventricular
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arrhythmia, and stratify intra-atrial and intra-ventricular
organization during arrhythmia. Similar to their study,
our study suggests that spatio-temporal regularity of AA
propagation patterns can be noninvasively quantified by
looking at the reproducibility of AA waveforms as recorded
on the body surface, which is assessed by means of
correlation-based measures (as for Eq. (1) in [19], and (1) in
our study). Again, this shows the potential of surface ECG
in providing subtle information about the underlying AF
substrate which may be lost at a visual inspection.

The less significant association of the proposed indices
with AF recurrence after electrical cardioversion obtained
with the 12-lead ECG recordings extracted from the
corresponding BSPM recordings suggests that a sufficiently
high spatial resolution is required for the proposed
framework. However, this may be improved by adding a
few leads to the standard 12-lead ECG in key locations
for the representation of the AA propagation patterns as
reflected on the body surface. A future study should look
at how much the BSPM lead system can be reduced while
preserving accuracy, and how close the resulting system
is to the standard 12-lead ECG. One limitation of this
study is that all patients were in persistent AF. This was
no arbitrary choice, as we wanted to investigate if the
proposed framework could help characterize patients with
very similar AF substrate. However, the suitability of this
framework in both representing patients in an earlier stage
of AF (as paroxysmal AF) and in distinguishing AF patients
at different stages of the disease needs to be investigated
in future studies. Moreover, in this study we used spatial
information in BSPM recordings not in terms of locations,
but with the goal of exploiting their spatial diversity,
and in turn say something about the global complexity
(disorganization) of the AF propagation patterns, and how
disorganized over space those patterns are at the whole atria
level. In this respect, potential spatial information present
in BSPM recordings in terms of locations should also be
investigated in a future study. Finally, all hypotheses put
forward in this study on the relation between noninvasive
AF recurrence and AF substrate complexity should be
validated by a future study including both body surface
and intracardiac recordings, and markers of structural
remodelling.

5 Conclusion

A novel framework for the noninvasive characterization
of short-term atrial signal dynamics during persistent AF
was presented. It involves the computation of an AA
recurrence signal from ECG recordings which is able to
separate the short- and long-term recurrent behaviour in
body surface AA oscillatory patterns. The results suggest
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that the proposed framework, and the corresponding short-
term AA recurrence measures, can be used to link the
properties of body surface AA dynamics to the underlying
AF substrate, and shed more light on how the progression
of AF and the degree of electro-structural remodelling
reflect on body surface AA signals. They also suggest that
this framework can be integrated with state-of-the-art AF
substrate complexity parameters to help stratify AF patients
and improve selection of treatment.
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