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Abstract

Read-through transcription from the adjacent E1a gene region is required for wild-type (wt) activity of the downstream
adenovirus E1b promoter early after infection (read-through activation). However, whether a cellular chromosomal template
can support read-through activation is not known. To address this issue, read-through activation was evaluated in the
context of stably expressed templates in transfected cells. Inhibition of read-through transcription by insertion of a
transcription termination sequence between the E1a and E1b promoters reduced downstream gene expression from stably
integrated templates. The results indicate that the mechanism of read-through activation does not depend on the structure
of early adenovirus nucleoprotein complexes, a structure that is likely to be different from that of cellular chromatin.
Accordingly, this regulatory interaction could participate in the coordinated control of the expression of closely linked
cellular genes.
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Introduction

In higher eukaryotic genomes, functionally or developmentally

related transcription units are often arranged in groups [1–3].

Sometimes, such gene arrangements result in cis-acting transcrip-

tional interactions between the genes in a cluster [4–8]. One well

recognized cis-acting transcriptional interaction is transcriptional

interference, the suppressive influence of one active transcriptional

unit on another linked unit. Transcriptional interference has been

described in a variety of experimental systems [9–12].

Transcription from an upstream promoter also can activate a

downstream promoter. The E1a and E1b genes of adenovirus 5

are tightly linked. Part of E1a exon 2, including amino acid

coding sequences and the 39 untranslated region, overlaps the

E1b promoter region [13–15] (Figure 1A). Primary transcripts

initiated from the E1a promoter invade the E1b promoter and

coding region, and these read-through transcripts are processed

to produce E1a mRNA [16,17]. Only transcripts that originate

from the E1b promoter are precursors of E1b mRNA [18,19].

Artificial termination of read-through transcription from the E1a

promoter by insertion of ectopic transcription termination

sequences (GGT: globin gene termination sequence) dramatically

reduces early E1b gene expression in cis [20–22]. Since point

mutations that inactivate the transcription termination function

of GGT restore downstream promoter activity, the ability to block

read-through transcription is the only property of GGT that is

required for inhibition [21,22]. Therefore, read-through tran-

scription is required for wild-type (wt) activity of the E1b

promoter early after infection. There is evidence that the

mechanism of the interaction depends upon a cis-dominant

property of the early viral template [21] but the effect is ‘‘local’’

rather than global [22].

The mechanism of read-through activation could depend on

the structure of early adenovirus nucleoprotein, which is likely to

be different from that of cellular chromatin. Alternatively, read-

through activation might not require early viral chromosome

structure, allowing adjacent genes to take advantage of this

interaction for coordinated expression in the context of cellular

chromatin. To explore this possibility, read-through activation

from reporter constructs that retained the basic genetic organi-

zation of the E1a-E1b region from the viral genome was evaluated

in the context of templates stably integrated into the cellular

genome.

Results

Read-through activation early after infection is readily observed

with recombinant adenoviruses that have the E1b coding region

replaced by the luc reporter gene [22]. In these viruses, insertion of

the mouse b-globin gene transcription termination sequence GGT

between E1a and E1b strongly reduces early expression of the

downstream E1b-luc gene, whereas inactivation of the termination

function of the inserted sequence restores E1b promoter function.

To determine whether read-through activation affected gene

expression in chromosomal DNA copies stably integrated in the

cellular genome, we constructed plasmids with regulatory
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sequence arrangements identical to those in the virus but with

coding region gene replacements to facilitate selection and analysis

of cell lines. The E1a coding region was replaced with a selectable

marker gene (neo, G418 resistance) and the gfp or luc reporter genes

were substituted for the E1b coding region. This strategy allowed

read-through activation in G418-resistant cell lines to be scored

readily by evaluating fluorescence intensity or luciferase produc-

tion. To evaluate the read-through requirement for reporter gene

expression, plasmids contained GGT (pNeoGGTE1bGFP and

pNeoGGTE1bLuc), GGT inactivated by a double set of point

mutations (DPM, pNeoDPME1bGFP and pNeoDPME1bLuc), or

no insertion (pNeoE1bGFP and pNeoE1bLuc) between the E1a-

neo and E1b-reporter genes (Fig. 1B).

We considered targeting insertions to a specific site for these

experiments. However, whether any particular site contained cis-

dominant elements or properties that might affect read-through

activation could not be predicted. On the other hand, it was likely

that the potential for cis-dominant effects of the integration site to

confound the analysis would be revealed by comparing the results

from either pooled or individual cell clones with untargeted

integration sites. Accordingly, untargeted clones were isolated and

both pooled and individual clones were analyzed. Also, it was

possible that cis-acting effects of a particular selection or reporter

gene would interfere with read-through activation. To reduce the

possibility that such interference would compromise the analysis,

the plan was to use two selection genes, as well as the two reporter

genes. However, attempts to isolate puromycin-resistant HeLa

cells from E1a promoter-driven constructs analogous to the

plasmids shown in Fig. 1B were unsuccessful (data not shown).

To obtain integrated sequence arrangements in the untargeted

clones as similar as possible to that of the E1 gene cluster in the

adenovirus genome, we sought conditions for DNA introduction

predicted to favor low copy number integrations. For electropo-

rated DNA, parameters can be adjusted to produce integration of

from one to about 20 copies of plasmid DNA [23–26], as opposed

to a large amount of genomic DNA in each cell [27]. Similar

information is not available for lipofection. For three different

experiments, companion G418-resistant cell lines expressing high

(+) or undetectable (2) levels of GFP after introduction of the

pNeoGGTE1bGFP plasmid were analyzed for the pattern of

integrated plasmid DNA. The results (Fig. 2) show that we were

successful in obtaining cells lines with low copy number

integrations. None of the cell lines had more than a few copies

of integrated plasmid. There was no relationship between GFP

expression and a particular integration pattern. GFP-expressing

cell lines had both single copy (B+, C+) and tandem copy (A+)

insertions. Likewise, GFP-negative lines were single copy (B2) or

multi-copy (A2, C2). Cell line B- may not have retained a viable

copy of the GFP gene. Also, at least in this small sample, there

seemed to be no advantage to be gained by selecting clones of a

particular integration class to standardize the subsequent analysis.

In the first set of experiments, GFP expression was evaluated

quantitatively either by visual scoring of individual G418-resistant

colonies (Table 1) or flow cytometry of pooled cell cultures

(Table 2, representative histograms of GFP-expressing cells in the

cultures are shown in Fig. 3). For the latter, G418 was omitted

during the plating to avoid selective amplification of any of the

original clones and to maintain the GFP profile of the population.

By either method, GFP expression was inhibited by insertion of

GGT and expression was restored by inactivation of the

transcription termination sequence (DPM, Tables 1 and 2,

Fig. 3). Similar results were obtained when RNA was assayed in

the pooled cultures by hybridization and nuclease protection

(Fig. 4). This method allowed correctly initiated transcripts to be

measured, a particularly important consideration for E1b-promot-

ed RNA since read-through transcripts initiated from the E1a

promoter can contain E1b sequences [e.g., (17)]. Standardized to

the amounts of E1a-neo RNA, E1b-gfp transcription from the

integrated DNA was inhibited by GGT and partially restored when

the terminator was inactivated (Fig 4A, ‘‘Neo’’ and ‘‘GFP’’ panels,

quantification shown in Fig. 4B). As observed previously in early

virus infections, GGT reduced read-through transcription substan-

tially and inactivation of the termination function partially

restored levels of read-through transcription (Fig. 4A, ‘‘RT’’

panel). These results show that termination of E1a-neo transcrip-

tion interfered in cis with expression of the downstream E1b-gfp

gene from integrated DNA copies.

Individual G418-resistant clones produced by transfection with

NeoLuc plasmids were screened for luciferase activity and

luciferase-positive clones derived from the different plasmids were

analyzed quantitatively for RNA production by hybridization

protection (Fig. 5). The cell lines differed markedly in the

transcription activity of the NeoLuc cassette. E1a-neo and E1b-luc

Figure 1. Genetic system for analysis of read-through activa-
tion. A. Organization of the region of the adenovirus 5 genome to the
left of the E1b transcription start. The top diagram shows the
relationship of the two major transcription initiation sites (E1a,
nucleotide position 499; and E1b, 1702) and the position of insertion
of the ectopic translation termination sequence GGT (1339). The E1a
enhancer region is indicated as a filled rectangle and alternate E1a
transcription initiation sites as arrows. The E1a coding exons are shaded
(exon 1) and open (exon 2) rectangles. Below is an expanded view of
the E1b transcriptional control region indicating mapped sites of DNA-
protein interaction in the distal region (I-V), and proximal binding sites
for Sp1 (GC) and TBP (AT). The locations of the E1a translation
termination codon and poly(A) addition site within the E1b control
region also are indicated. B. Selection marker-reporter plasmids:
structures of plasmids with neo and gfp or luc gene replacements.
pE1a: E1a promoter; Neo: G418 resistance gene; T: termination
sequences, GGT or DPM; pE1b: E1b promoter; GFP: green fluorescent
protein gene; Luc: luciferase gene.
doi:10.1371/journal.pone.0015704.g001
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RNA levels (Table 3) varied more than thirty-fold and the latter

correlated well with the results of luciferase assays from the same

cell line (data not shown). After normalization to E1a-neo RNA,

E1b-Luc RNA expression in the cell lines containing an inactivated

termination sequence (DPM) was increased over the levels

obtained from inserted sequences with a functional terminator

(GGT) (Table 3). As with the NeoGFP cassettes, the termination

sequence was effective in reducing read-through transcription to

near background levels in all of the cell lines obtained by insertion

of a NeoGGTE1bLuc expression unit (Table 3). Note that some

cell lines produced levels of read-through RNA that were below

the threshold that could be measured (nd, Table 3). These results

support the conclusion obtained with the NeoGFP cell lines, that

integrated DNA can support read-through activation.

Discussion

Here we provide evidence that cellular chromatin supports

read-through activation of a closely linked gene. The activation of

downstream gene expression was observed at both population and

individual clone levels in non-targeted gene insertions. Read-

through transcription enhances expression of a downstream HIV-

1 proviral genome inserted into an intron of the dihydrofolate

reductase (DHFR) gene when the DHFR promoter and HIV

promoter are in the same orientation [28]. Our results support and

extend this finding by showing that activation by read-through

transcription in the cellular genomic context did not require either

a specific site of integration or the retrovirus proviral elements.

Accordingly, the read-through activation mechanism should be

available to coordinate gene expression of closely linked genes in

both viral and cellular genomes. Non-coding transcription also has

been implicated in transcriptional activation of at least one

downstream cellular gene [29], although a trans-acting function for

the non-coding transcript was not ruled out completely.

Activation in cis of downstream gene expression in the cells lines

by read-through transcription was modest, about two-fold in our

experimental system, and less than the magnitude of activation we

observed in early virus infections [21,22]. The modest effect of

read-through on activation of the downstream reporter in cell lines

could be related to the use of the Neo gene for selection. Silencing

of linked promoters by neo was reported previously in assays of

activity from transiently transfected templates and integrated

sequences [30]. We also observed sharply reduced E1a-neo and

E1b-mediated transcription in adenovirus strains with Neo gene

replacements for E1a (D. Spector, unpublished data). Conceivably,

the silencing elements in the Neo coding region, or other DNA

sequences in that region, could directly impact the activation

mechanism as well. If so, identification of the relevant sequences in

the Neo coding region could provide further insight into the

mechanism of activation.

Gene expression from integrated sequences also is undoubtedly

affected by the local chromatin environment and nearby

regulatory elements. In fact, selection for Neo expression probably

favors the survival of cell lines with integration sites in genomic

locations that are transcriptionally active. Such a bias might

increase the probability of integration in the vicinity of a strong

cellular enhancer; strong enhancers relieve the requirement for

activation by read-through transcription in adenovirus [22]. If the

same is true for the cellular copies integrated near strong

enhancers, then GGT-containing clones should have higher levels

of E1b-mediated expression than expected. This circumstance

would also result in underestimation of the potential benefit from

the read-through mechanism.

We note that, as in viruses, GGT blocked read-through

transcription in integrated sequences and that mutation of the

hexanucleotide recognition sequence for polyadenylation restored

read-through. These results highlight the versatility of the b-globin

element as an effective transcription termination sequence.

We analyzed read-through from randomly integrated expres-

sion cassettes because we could not predict how any particular

configuration of the targeted integration site would affect the

interaction. The results here provide some guidance in that

respect. It would seem desirable to minimize potential effects of

nearby control elements, either by utilizing an ‘‘inert’’ site or

providing insulator sequences [31,32] as boundaries for the

expression cassette. Also, careful consideration must be given to

choice of selectable marker and reporter gene sequences to ensure

that they are inert as well with respect to the molecular mechanism

under investigation.

Figure 2. Integrated NeoGGTE1bGFP sequences in stable cell
lines. DNA was extracted from G418-resistant stable cell lines
established with the plasmid pNeoGGTE1bGFP (Fig. 1b). Blots were
prepared and probed as described in Materials and Methods. Lane
designations: M, size markers derived from an EcoRI/PshA1 digest of the
plasmid (sizes shown on the left); 2, reconstruction with 2 copies of
SphI-digested (linear) plasmid (7.2 kbp), based on quasi-tetraploid
human DNA content; 20, reconstruction with 20 copies of plasmid; A+,
GFP-expressing cell line 1 isolated after electroporation of 1 mg of DNA;
A2, GFP-negative cell line from the same experiment as A+; B+, GFP-
expressing cell line isolated in a second experiment after electropora-
tion of 1 mg of DNA; B2, GFP-negative cell line from the same
experiment as B+; C+, GFP-expressing cell line isolated after lipofection
with 1 mg of DNA; C2, GFP-negative cell line 2 from the same
experiment as C+. An irrelevant lane was removed from between lanes
20 and A+. The diagram below shows the results expected from a single
(top) or tandem (bottom) integration of the complete plasmid
sequence (open box). For the former, the sizes of the two junction
DNA fragments that hybridize to the probe (shaded box) will depend
on the site of insertion. For the latter, in addition to the junction
fragments, a unit length band (7.2 kbp) will be generated and its
intensity will depend on the number of copies in the tandem array.
There is a single site for SphI (S) cleavage in the plasmid neo gene.
doi:10.1371/journal.pone.0015704.g002
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Materials and Methods

Cell culture
HeLa cells (ATCC-CCL-2) were purchased from Flow

Laboratories (currently MP Biomedicals). Monolayers were

maintained in DMEM with 5% fetal bovine serum as described

previously [13,21].

Recombinant DNA
Plasmids with neomycin (Neo) resistance gene (neo) and the

green fluorescent protein (GFP) reporter gene (gfp) were con-

structed from two sources. The Neo and GFP genes were derived

from the donor plasmid, pEGFP-N3 (Clontech). The genes were

inserted into ‘‘term’’ vector plasmids, which contain E1a

enhancer-promoter regulatory sequences, a wt or mutated GGT,

respectively, and the E1b promoter and gene.

The backbones of the ‘‘term’’ vectors were plasmids pm563,

which has a mutation at the 59 end of the E1a coding region that

introduces an NcoI site [15,33], and p563/112 [15]. The former

contains adenovirus sequences from E1a and the 59 portion of

E1b, whereas the latter includes most of the E1b gene and has an

E1b dl112 allele [34]. pm563D lacks E1a sequences between

positions 563 and 1338, which were removed by excising the DNA

between the unique NcoI and XbaI sites in the plasmid and adding

an XbaI linker to retain the XbaI site at the junction. To make the

first donor ‘‘term’’ plasmid, pDterm, the MscI-BglII fragment of

pbmajG [obtained from Erik Falck-Pedersen [20]], containing the

mouse bmaj gene transcription termination sequence, was inserted

into the XbaI site of pm563D.

The second donor ‘‘term’’ plasmid, pDtermdpm, was construct-

ed in multiple steps. First, pterm and pterm112 were constructed

by inserting the MscI-BglII fragment of pbmajG into the NcoI site

of pm563 or p563/112, respectively. Next, pDterm112 was

produced by exchanging the HpaI fragment from pDterm that

includes the E1a deletion for that of pterm112. Then, the BstXI-

XbaI fragment in pDterm112 that contains the polyadenylation

sites in the transcription termination sequence was exchanged for

the corresponding fragment from pD’’EF (obtained from Erik

Falck-Pedersen [20]), which has those sites inactivated by

mutation, to produce pDtermdpm112. The deleted E1a region

was restored by exchange of the HpaI fragment from pterm to

produce plasmid ptermdpm112. Finally, the EcoRI-XbaI fragment

from ptermdpm112 that contains the mutated polyadenylation

sites was exchanged into pDterm to produce pDtermdpm.

To produce the plasmids containing neo and gfp, a fragment

containing the Neo coding region was excised from pEGFP-N3 by

AvrII digestion and inserted into the BseR1 site of pDterm or

pDtermdpm. The resulting plasmids, with neo in place of the E1a

coding region, were designated pNeoGGT and pNeoDPM. A

SmaI-SspI fragment containing the GFP coding region, its

polyadenylation signals, and polyadenylation site, was excised

from pEGFP-N3 and substituted for an EcoNI-HindIII fragment

(the E1b gene region) of the NeoGGT and NeoDPM plasmids.

The resulting plasmids, pNeoGGTE1bGFP and pNeoDP-

ME1bGFP, contained neo driven by the E1a enhancer-promoter

(E1a-neo), a wt or mutated GGT terminator, and gfp under the

control of the E1b promoter (E1b-gfp).

A third plasmid, pNeoE1bGFP, without termination sequences

between the two genes was constructed by excising the CT

termination sequence [22], as a BstXI-HindIII fragment, from

pNeoCTE1bGFP and self-ligating the vector. To construct

pNeoCTE1bGFP, a BstXI-SalI fragment that contains CT and

the E1b promoter was excised from pACCTE1bLuc [22] and

substituted for a BstXI-BamHI fragment, containing GGT and the

E1b promoter, of pNeoGGTE1bGFP.

Table 2. Effect of GGT insertion on GFP expression in pooled
cultures of G418-resistant coloniesa.

Plasmid Experiment No.

1 2

%
fluorescentb

mean
intensityc

%
fluorescent

mean
intensity

pNeoE1b GFP 45 470 31 73

pNeoGGTE1bGFP 28 146 21 30

pNeoDPME1bGFP 61 442 44 64

None 0.0 3.4 ndd

aColonies (collected from three plates per plasmid) in pooled cultures were
harvested and analyzed by flow cytometry as described in Materials and
Methods.

bpercentage of cells in the population with FL1-H.101.1.
cper cell.
dnot done.
doi:10.1371/journal.pone.0015704.t002

Table 1. Effect of GGT insertion on the expression of a downstream gfp reporter in G418-resistant cell lines.

DNA Preparation mg DNA added Transfection procedure % colonies expressing GFP (total No. scored)

No GGTa GGT DPMb

1 1 Lipofection 67 (141) 54 (169) 69 (123)

5 Electroporation 49 (49) 35 (111) 50 (62)

5 Electroporation 27 (41) 20 (41) 40 (102

2 Electroporation 24 (79) 11 (291) 16 (146)

1 Electroporation 28 (25) 3.1 (97) 29 (42)

1 Electroporation 50 (39) 25 (84) 62 (93)

2 1 Electroporation 21 (168) 13 (271) 21 (68)

1 Electroporation 19 (128) 16 (238) 39 (147)

1 Electroporation 35 (83) 18 (96) 39 (104)

adifference from GGT, p,0.0003, paired t-test.
bdifference from GGT, p,0.0003, paired t-test.
doi:10.1371/journal.pone.0015704.t001
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The expression cassettes from pNeoE1bGFP, pNeoGGTE1bGFP,

or pNeoDPME1bGFP were excised as EcoRI-NdeI fragments and

substituted for the EcoRI-FseI fragment in pAC343CTE1bLuc [22],

which includes the E1a and E1b-luciferase gene (luc) regions, to

produce pACNeoE1bGFP, pACNeoGGTE1bGFP, or pACNeoDP-

ME1bGFP, respectively. Plasmids with neo in place of E1a and luc in

place of E1b were constructed by exchanging a PshAI-EcoRI fragment

of p343E1bLuc [22] containing E1b-luc for a similar fragment contain-

ing E1b-gfp in pACNeoE1bGFP, pACNeoGGTE1bGFP, or pAC-

NeoDPME1bGFP. The resulting plasmids were designated pNeoE1-

bLuc, pNeoGGTE1bLuc, or pNeoDPME1bLuc, respectively.

Stable cell line isolation
Both lipofection and electroporation were used for DNA uptake

and isolation of stable neomycin-resistant cell lines with copies of

plasmid DNA randomly integrated into the cellular genome. For

lipofection, HeLa cells were subcultured into 6-well plates one day

before transfection at 70–90% of confluence. 3 ml of Fugene 6

Figure 3. Histograms of GFP-expression in cells from pooled colonies analyzed by flow cytometry. The plots from Experiment 2 of
Table 2 show the gating for the threshold of GFP-positive designation. The plasmid used to generate the colonies is indicated above each histogram.
doi:10.1371/journal.pone.0015704.g003
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reagent and 1 mg of plasmid DNA were diluted to a volume of

100 ml with Opti-MEM medium and added to 1 well. After

48 hrs, cells were subcultured 1 to 30 into 150 mm dishes and

placed under G418 selection (400 mg/ml) for two weeks until

resistant cell colonies appeared.

For electroporation, HeLa cells were removed from monolayer

surfaces and suspended in electroporation buffer (16 HeBSS,

pH 7.10) at a concentration of 16107 cells/ml. 1 ml of cell

suspension was transferred to a sterile electroporation cuvette.

Linearized plasmid DNA (1, 2, or 5 mg) was added to the cuvette

and the suspension was mixed by inversion. Electroporation was

performed at a setting of 230V/960 mF in the Gene Pulser XcellTM

(Bio-Rad Laboratories, Inc.). The suspension was removed and

sequential rinses were performed with 0.8 ml aliquots of medium to

ensure complete removal of the cells. The rinses were combined

with the electroporated cells and transferred to a T75 flask

containing 40 ml of medium. After allowing 48 hrs for cell recovery,

the cells were inoculated into 150 mm dishes at 66105 cells/dish,

corresponding to three to six dishes for each electroporated cell

sample and construct. Cells were placed under G418 selection

(400 mg/ml) for two weeks until resistant colonies appeared. The

E1b-luc-containing colonies were trypsinized and subcultured into

12-well plates (one colony per well). After reaching confluence, cells

from a single well were expanded for maintenance under neomycin

selection and screened for luciferase activity. About 70% of the neo-

resistant colonies produced measurable luciferase.

RNA analysis
Total RNA was prepared from cell lines with Trizol (Invitrogen

Corp.) using the protocol provided by the supplier. Specific

Figure 5. Read-through activation in Neo-Luc cell lines. Total
RNA prepared from individual cell lines isolated after electroporation
with 1 mg of DNA was assayed by hybridization and protection from
nuclease S1 digestion. Expression of E1a-neo, read-through transcrip-
tion (RT), and E1b-luc produced the specific protected bands indicated
in the diagram below the autoradiographic data. The diagram is laid out
as in Fig. 4. Each lane represents a different cell line. He: Hela cells; DPM:
cell lines derived from pNeoDPME1bLuc; GGT: cell lines derived from
pNeoGGTE1bLuc; M: size standards.
doi:10.1371/journal.pone.0015704.g005

Figure 4. Read-through activation in Neo-GFP cell lines. A.
Nuclear RNA prepared from pooled cultures of cell lines isolated after
electroporation with 1 mg of DNA was assayed by hybridization and
protection from nuclease S1 digestion. Expression of E1a-neo, read-
through transcription (RT), and E1b-gfp produced the specific protected
bands indicated in the diagram below the autoradiographic data. The
arrows indicate the relative positions of the transcripts in the template
(the uncertain end of the read-through transcript is indicated by the
dashed line). The probe is indicated by a line with the position of the 59-
end label shown as an asterisk. The region of the probe protected by
each transcript is indicated as double-stranded (DNA-RNA hybrid). The
position of divergence of the sequence of the probe for read-through
transcription from the read-through RNA product is shown by the loss
of DNA-RNA hybrid formation. Variation in migration of the RT and E1a-
GFP products probably was caused by sequence differences at the
junction site produced during plasmid construction. Lane designations:
1: HeLa cells; 2: culture derived from pNeoE1bGFP; 3: culture derived
from pNeoGGTE1bGFP; 4: culture derived from pNeoDPME1bGFP. The
positions of size markers (not shown) are indicated on the left of the
autoradiograms. B. E1b-GFP RNA levels from two experiments (Expt 1 is
shown in A) were quantified and normalized to the quantity of E1a-Neo
RNA. The results are expressed relative to the pNeoE1bGFP value (1.00).
doi:10.1371/journal.pone.0015704.g004

Read-through Activation of Transcription
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transcripts were quantified by hybridization and protection from

nuclease S1 digestion as described previously [15]. For hybridiza-

tion, double-stranded probes labeled at a single 59-end with T4

polynucleotide kinase and [gamma-32P] ATP were prepared as

described previously [15]. To detect E1a-neo transcription, an

1126-bp probe was prepared as a NcoI (labeled site)-EcoRI

fragment from pNeoGGTE1bGFP or pNeoE1bLuc. To detect

E1b-luc RNA, a 1576-bp probe was prepared as a ScaI (labeled

site)-SacII fragment of pAC343E1bLuc [22]. To detect E1b-gfp

transcription, a 536-bp probe was isolated as a BssSI (labeled site)–

PshAI fragment from pNeoGGTE1bGFP. To detect read-through

transcription from cell lines with the luc gene, a 1215-bp probe was

prepared as a HpaI (labeled site)-SacII fragment of pAC343E1-

bLuc. To detect read-through transcription from cell lines with

E1b-gfp genes, a 1410-bp probe was prepared as an HpaI-FspI

fragment from pNeoCTE1bGFP or pNeoCTDPME1bGFP. The

latter was constructed by isolating a BstXI-SalI fragment from

pACCTdpmE1bLuc [22] and replacing the BstXI-BamHI frag-

ment of pNeoGGTE1bGFP.

Band intensities were quantified at the Penn State Hershey Core

Facility by scanning densitometry of 6-ray film (Kodak 6AR5) in a

GS-800 Calibrated Densitometer (Bio-Rad), or by using a Molecular

Dynamics phosphorimaging screen that was analyzed with Quantity

One software and an FX scanner (Bio-Rad Laboratories, Inc.). E1b-

dependent transcription was normalized for template copy number

and gel loading as described previously [15].

Luciferase assays
Luciferase assays were performed on cell lines harvested at

about 80% confluence. Cell lysates were prepared and the

luciferase activity was assayed using the Luciferase Assay System

with Reporter Lysis Buffer (Promega Corp.) according to the

manufacturer’s protocol. Light emission was quantified on an

FB12 Luminometer (Zylux Corp.). All values were normalized to

extract protein concentrations (DC protein assay; Bio-Rad Corp.).

Flow cytometry analysis
Flow cytometry was performed at the Penn State Hershey Core

Facility. For determination of GFP expression, G418-resistant

colonies generated as described above were trypsinized, pooled,

and the cells were replated for expansion without G418 selection.

Cell suspensions were prepared subsequently at a concentration of

about 16106 cells/ml and about 10,000 cells were analyzed in

each flow cytometry run. Cells with a fluorescence intensity

parameter FL1-H $101.1 (determined from a sample that

expressed no GFP) were scored. The percentage of green cells in

the population and the fluorescence intensity per cell were

recorded for each sample. Values from replicates were averaged.

DNA blot hybridization analysis
To detect plasmid DNA sequences integrated in the genomes of

stable cell lines, G418-resistant colonies obtained as described

above were trypsinized and subcultured into 6-well plates (1

colony per well). After reaching confluence, cells from a single well

were expanded for maintenance under neomycin selection.

Cellular DNA was extracted and digested (10 mg/sample) with

SphI, and blot hybridization was performed as described [35]. The

probe was an EcoRI-NdeI fragment that contains the full expression

cassette in plasmid pNeoE1bGFP. Reconstructions were per-

formed with salmon sperm DNA but calculations were based on

copies per quasi-tetraploid human DNA content of HeLa cells.
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