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Introduction

The central nervous system (CNS) consists of two
major cell types, neurones and glial cells. Neuronal
communication with other neurones or glial cells is
effected mainly through neuro-transmitters and pep-
tides, while glial cells appear to use an abundant
range of factors for the communication with either
neurones or other glial cells. The communication
between neurones can span large distances in the
body, while glial cell communication is mainly local or
paracrine. During the past decade it has become clear
that the glial cells named after glue (= glia) have more
functions besides acting as a “nerveglue” to form the
brain."” The glial cells appeared to be essential for
neuronal protection, survival and outgrowth during
development and for the neuronal degeneration and
regeneration under pathological conditions. In this
review we summarize glial cell functions and focus on
the role, production and regulation of nitric oxide
(NO), a molecule which has been shown to be
involved in various neuroimmune processes.

Glial Cells

Glial cells can be divided into microglial cells and
macroglial cells, the latter of which are subdivided in
astroglial cells and oligodendrocytes. The oligoden-
drocytes are known for their myelin production that
wraps the axons in the white matter of the brain, and
are affected in diseases like multple sclerosis (MS).
Glial cell activation has been indicated in many
Alzheimer’s dis-
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multiple sclerosis,
p

neuropathological diseases like
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ease, Parkinson’s disease,’
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acquired immune deficiency syndrome (AIDS)
dementia complex (ADC)’!" and other disorders.

Microglial cells

Microglial cells, formerly named Hortegaglia or Meso-
glia, have been described in detail for the first time in
1932 by Del Rio-Hortega'? considered as the father of
microglia. Microglial cells are ubiquitously distributed
in the CNS, show heterogeneous morphology and
comprise up to 20%of the total glial cell population in
the brain." Tt was Del Rio-Hortega who proposed that
microglial cells occur in two morphologically distinct
forms, the ameboid or macrophagedike form repre-
senting as active microglial cells seen in developing
brain and at sites of injury. These cells convert into the

14-17 .
viewed

highly branched ramified microglial cells
. . 18 .

as quiescent cells in the mature CNS° which even-

tually can transform into active macrophages (reactive

19,20

microglial cells) (Fig. 1). Del Rio-Hortega sug-

gested that microglial cells served as macrophages or
phagocytic cells, which has found substantial
support.”

The name mesoglia was derived from their pro-
posed mesodermal origin. Indeed more recent and
elaborative studies support a bone-marrow origin”’24
from the usual macrophage precursor. Blood mono-
cytes or monocyte precursors invade the brain during

25126
development.”

In studies using chimeric rats,
support was found for the bone marrow origin
hypothesis*”**® but in other rat chimera experiments
the contrary was found.””** The prevailing concept is
however that blood monocytes are the precursors of

ameboid microglial cells. There is apparently no need
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FIG. 1. Microglial cell activation cascade. Schematic drawing
illustrating the transition of microglial cells from ramified
microglial cells to the ameboid microglial cell, adapted from
Ref. 371.

for the influx of a large number of monocytes into the
brain parenchyma under normal conditions, since
microglial cells have an extreme long life and have a
low turnover rate.”’”* Their numbers can be aug-
mented by local proliferation'”??7%¢ or by immigra-
tion of blood monocytes.”” Under pathological condi-
tions increased monocyte infiltration into the brain
parenchyma is found®?***? and the influx is suggested
to be mediated by the microglial cell derived chem-
okine MCP-1*" or adhesion molecules.

Microglial cell functions

The microglial cells serve as immunoregulatory cells,
and are essential for resistance to inter- and intra-
cellular pathogens. The microglial cells are present in
a resting or a ramified form (Fig. 2) and are very
important in immunosurveillance. After activation of
the resting cells the microglial cells exhibit a highly
potent phagocytic activity of foreign organisms and
material, phagocytosis of injured or necrotic tissue,
antimicrobial immunity, elimination of tumour cells

Microglial
18,42

and regulate inflammatory responses.”!
cells have been reported to possess Fc receptors,
CD4 alntigen43 and major histocompatibility complex
(MHC) class I and 1I antigens41’44746 and thus are
antigen presentating cells. Interferon-y and inter-
leukin4 (IL4) up<egulate MHC class II expression
and induce microglial cell proliferation.” In addition,
microglial cells show chemotaxic activity, like mono-
cytes and macrophages, to several immunological
factors such as complement factor C5a and to
transforming growth factor B (TGFP) suggesting that
these cells can move to sites of injury and thereby
participate in an inflammatory responsc:.lezAg’49
These observations have led to a redefinition of the
brain as immune privileged site a concept based on
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lack of inflammatory responses through the absence
of T and B cells.

Microglial cells share many functional character-
istics with cells of the monocytic lineage. Interleukin-1
(ID)-1 production by microglial cells has been demon-
strated for the first time by Giulian,’® and later by many
others*™”'=>* and IL-1 is found to be present in injured
brain tissue.”””> Other cytokines produced by micro-
glial cells are TNFa.,> %7 1L6°77> and TGFB®*~*? and
they produce prostanoids such as prostaglandin E,
(PGE,), PGD,, thromboxane®*®* and leukotrienes,
LTBs, LTC4 and S-HETE.®> IL5 was found to be
produced by microglial cells in vitro which may be
involved in the interaction between glial cells and
immune cells in the brain.®® IL-10 and TGFB both
immunosuppressive and antiinflammatory cytokines,
have been demonstrated to be produced by human
microglial cells and down-~regulate microglial cell
functions.®®®”~"! These properties confirm that micro-
glial cells can initiate and regulate immune and
inflammatory responses within the brain.

Astroglial cells

Astrocytes, oligodendrocytes and neurons are of
ectodermal origin, and derive from the neuroepite-
lium of the primitive neural tube. Astroglial cells,
unlike neurones, retain the ability to divide through-
out life.”” The multipotential stem cell develops into
the bipotential progenitor cell and finally the glial
lineagerestricted progenitor cell which can differ-
entiate into the oligodendrocyte, the astrocyte type 1
and type 2.7>7¢ The astrocytes outnumber neurones
10:1 in mammalian brain, and as their name imply,
they have a starshaped morphology. The astrocytes
can be identified by using specific markers such as
glial fibrillary acidic protein (GFAP), and glutamine
synthase (GS), that are specific for both types of
astroglial cells.””~®'

Each cell forms processes that contact the blood
vessels, where they form the so<alled end{feet or
sucker processes which also forms part of the blood—
brain barrier (BBB) together with endothelial cells
and the lamina basalis.”? Astrocytes in the white
matter are referred to as fibrous astrocytes, with
numerous fibrils within their cytoplasm. In the grey
matter, the astrocytes generally contain few fibrils and
are called protoplasmic astrocytes. Interestingly, in
vitro also two types of astrocytes can be identified,
type 1 and type 2 astrocytes which are thought to be
in vitro analogous of the protoplasmic and fibrous
astrocytes respectively®® (Fig. 2).

Astroglial cell functions

Initially the function of astroglial cells was thought
to be a structural support within the CNS, with
their processes having junctions with other astro-
glial cells, endothelial cells and neurones. In addi-
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FIG. 2. Microglial cells and astroglial cells in rat brain in vivoand in vitro stained for GSA-I-B4-isolectin and GFAP respectively.
(A) GFAP staining of astroglial cells in rat brain; (B) GSA-I-B4-isolectin staining ramified microglial cells in a rat brain; (C) GFAP
in vitroin a purified astroglial cell culture; (D) GSA-I-B4-isolectin in vitroin a purified ameboid microglial cell culture. A, B, bar

=66mm; C,D, bar =25mm.

tion in repair mechanisms the astroglial cells fill
open spaces by proliferating and thereby forming a
glial scar. 786

It is now known that astroglial cells are very
important cells in the outgrowth and survival of
neurones during development and in neuropathology.
Astroglial cells produce nerve growth factor (NGF)*’
in vitro and in vivo and the production of NGF is
increased by IL-1,*37%2 TNFa,”® IL4 and IL5.°* Other
neurotrophic factors produced by astroglial cells are
ciliary neurotrophic factor (CNTF), brain-derived
neurotrophic factors (BDNF) and fibroblast growth
factor (FGF).”>%¢

Astrocytes produce cytokines like IL-1,
6,'°! IL-3,102TGFBM)’M‘MB_105 and IL15'%° and factors
like prostaglandin E, (PGE,),” 99107108 granulocyte-
macrophage  colonystimulating  factor  (GM-
CSF)19%:110 3nd microglial mitogens (MM).''! TNFa. is

also produced by astroglial cells in wvitro after

41,97-100
97 IL-

lipopolysaccharide (components of Gram-negative
. 6,112
bacterial outer membranes; LPS)’ and IL-1B
. . 59,106 . . 108
stimulation or mycoplasma infection.
Astrocytes can be induced to express MHCI and II
class molecules in wvirro and are able to present

113,114

antigen and thus are important immune cells in

the brain. However, in contrast to microglial cells they
do not express significant levels of MHC class II

115

molecules” ’ in vivo.

Glia—glia interactions

Recent studies have shown various interactions
between microglial cells and astroglial cells. IL-1
produced by microglial cells has been shown to
stimulate astroglial cell proliferation in vitro 16710
Intracerebral injections of IL-1 or local production of
IL-1 by microglial cells elicit astrogliosis which may
result in scar formation'*”'*! and thereby have a
negative effect on axonal outgrowth and remyelina-
tion. In addition the microglial cells influence the
production of NGF by astroglial cells, which is
enhanced after II-1 and IL5 both produced by
microglial cells 0694122

On the other hand, astroglial cells influence micro-
glial cell functions. Interleukin-3 (IL-3) is mitogenic to
microglial cells and has been suggested to be pro-
duced by astrocytes.'>'*? Mitotic activity of micro-
glial cells can additionally be elevated by colony
stimulating factor-l1 (CSF-1), which production is

increased by IL-1, TNFo,'** granulocyte-macrophage
Mediators of Inflammation - Vol 7 - 1998 241



VA. M. Vincent et al.

colony-stimulating factor (GM—CSF)41 109,110,122,125-127

or microglial mitogen (MMM

The microglial cells undergo morphological chan-
ges in response to factors released by or through cell—
cell contact with astrocytes. These factors derived
from astrocytes, induce microglial cells to become the
ramified, functionally resting cells in virro, while
inflammatory mediators like interferon Y (IFNY) and
LPS induce microglial cells to become ameboid.'**'*?
Also, blood monocytes and spleen macrophages
differentiate into ramified microglial cells when cul-
tured onto an astroglial cell monolayer.'’”"*" This
illustrates the capacity of astroglial cells to transform
cells from monocytic origin into cells with microglial
cell morphology.

In addition, astroglial cells have been shown to
functionally regulate microglial cell activity. The
endotoxin induced synthesis of iNOS and release of
NO but not the production of IL-1P by microglial cells
is inhibited in the presence of astroglial cells in
vitro.”!

Apparently both glial cells communicate through
the production of various factors including cytokines
and growth factors. In this way the glial cells appear
to tightly regulate each others morphology, activity

and secretion of products.

Glia—neurone interactions

The presence of glia-derived cytokines in the CNS and
the function of these cytokines in vitro suggest that
they are important for normal brain development and
homeostasis.'’>'>> However, excessive expression of
these cytokines may be a factor in abnormal glial
functions leading to neuropathological events.

In general astrocytes have been found to express
neurotrophic factors such as ciliary neurotrophic
factor (CNTF), neurotrophin-3, fibroblast growth
factor (FGF) and NGF near the site of injury.13 135 1
vitro experiments show that astrocytes protect dopa-
minergic neurons against H,O, toxicity136 through
actions of glutatione. Interestingly, survival of these
dopaminergic neurones in vitro is enhanced by the
presence of glial cells derived from striatal astroglia:
the target-derived astroglial cells, illustrating astroglial
cell heterogeneity."””'*® The survival of dopaminergic
neurones is promoted by glial celldined derived
neurotrophic factor (GDNF) in vivo."*® In vitro co-
cultures of neurones and astrocytes induced an
increased cell survival and neurite outgrowthmm142
and axons might trigger glial differentiation.'*? The
ability of astrocytes to augment neuronal survival was
increased after treatment of the astrocytes with
macrophage conditioned medium'** indicating that
factors produced by macrophages induce the produc-
tion of neurotrophic factors.

Neurones are less sensitive to oxygen or glucose
deprivation or treatment with glutamate when co-
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cultured with astrocytes.'® In addition astrocytes
increase neuronal survival under pathological condi-
tions since they have an energy reserve stored as
glycogen which becomes available for neurones
under conditions of energy substrate limitations.'*®
Astroglial cells are important in the metabolism of
glutamate and GABA and other neurotransmitters,147
and maintain the microenvironment by regulating the
ionic composition of the extracellular space around
the neurones.'*®

Neurotrophic effects i.e. neuronal survival and
neurite extension have also been reported by micro-
glial cell conditioned medium'*’ and more specifi-
cally by the production of NGF"’ and thrombo-
spondin.151’152 In addition secretion of IL-6, IL-1, FGE
TGFB, TNFa by microglial cells and astroglial cells
may stimulate nerve growth factor production by
astroglial cells for the regeneration of neu-
rones.”> 341537158 These factors also directly improve
the survival of neurones and/or have synergistic
effects with NGE'*1¢°

While in general factors released by astroglial cells
actually increase the survival of neurones,'®' micro-
glial cells in contrast, can directly participate in
neuronal cell death through the release of neurotox-
ins.'? Microglial cells have been reported in the
presence of degenerating neurones in various regions
in the brain.'®'*7'% In these regions the microglial
cells clearly contribute to the removal of pycnotic cell
bodies. Prior to this scavenger role, the active
participation of microglial cells in neurite amputation
has been shown on electron microscopic pictures of
microglial cells engulfing axon processes which
display no obvious signs of degeneration.166 It is
therefore thought that interactions between neurones
and microglial cells may not be restricted to cell
debris scavenging but microglial cells may also induce
neuronal cell death.

In vitro studies have demonstrated the production
of many different neurotoxins by microglial cells.
Activated microglial cells release several cytotoxic
compounds i.e. reactive oxygen intermediates,'®”"'%®
NO, proteases’'®~'7? and inflammatory cytokines
i.e. IL-1, TNFy or TNFa, 006 1191271570781 74 ha play a
role in neuronal damage in the CNS. Finally microglial
cells produce large amounts of glutamate and aspartate
in vitro."”’ The release of these excitatory amino acids
points to a further role of microglial cells in NMDA
175 In addition,
cultured microglial cell release large amounts of H,O;,

which leads to neuronal cell death in neurone-—
172,176,177

receptor-mediated neuronal injury.

microglial cell cocultures.

Taken together, activated microglial cells display a
broad repertoire of cytotoxic functions which could
be involved in tissue damage during CNS injury. In
addition, microglial cells activate astroglial cells in a
way that benefits regeneration. Further, the effect of
neurotoxic factors released by microglial cells can be
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attenuated by proteins released from astroglial
cells.”®'7? This illustrates the fascinating and delicate
interactions that exist between glial cells and neu-
rones, which are crucial in maintaining neural func-
tioning and integrity. These studies have contributed
towards a concept which considers reactive micro-
glial cells as an opposing force to neurotrophic
astroglia, the two glial cell populations rivaling in

. . 180
regulating survival of neurones.

Nitric Oxide in the CNS

Various cell types in the CNS, i.e. neurones, endothe-
lial cells, microglial cells and astroglial cells produce
NO. Different isoforms of the nitric oxide synthase
(NOS) are responsible for the production of NO by
these cell types. NO in the brain is multipotent and is
responsible for blood flow regulation, may act as a
neurotransmitter or as a neurotoxic agent, depending
on the cellular source, amount and production site.

Isoforms of nitric oxide synthase

NO, a free radical gas, was found to be responsible
for the vasodilatation in arteries and at first named
endothelium derived relaxing factor (EDRF).'®' Later
the source of NO was elucidated revealing the
enzymatically conversion of Larginine to Lcitrulline
by NO synthase whereby NO is produced (Fig. 3).'**
Three isoforms of NOS, encoded by different
geneslg3 have been characterized, isolated and
cloned to further study the physiologic and/or
pathologic functions of NO."** All three isoforms,
endothelial (eNOS, ecNOS or type IIl), constitutive
(cNOS, nNOS, bNOS or type 1) found in astroglial
cells and neurones and inducible (iNOS, mNOS,
macNOS or type II), NOS are found in the CNS and
play a role in certain physiological or pathological
functions of the CNS (see following section).'®’
Constitutive NOS is constitutively expressed in neu-
Ca?*
mediates the production of only small amounts of
NO after stimulation. This neuron derived NO is very

rones, is and calmodulin dependent, and

rapidly produced and released since c¢cNOS is con-
stitutively expressed and does not require mRNA
synthesis, acts as a neurotransmitter with properties
that differ from other neurotransmitters: (a) it is not
stored in vesicles, (b) there are no specific release or
uptake mechanisms and (c) its transmission is not
synaptic. NO diffuses into the target cell and directly
regulates enzymes systems, such as activation of
guanylate cyclase, resulting in increased ¢cGMP lev-
els.”®®'® NO has a half life of a few seconds in
contrast to the milliseconds of the neurotransmitters
in classical synapses.'®®'® It is important in neuro-
transmission, and NO is considered a candidate for
a memory-elated process named long-term-potentia-

tion (LIP)."?%'"! Indeed, inhibitors of NOS can

NO-Synthase

Hzg H2N> Hzt;
HN H :/:DPH HN o ‘;SNADPH NO . HN o
H4Biopterin H4Biopterin
HN HoN H,N
CoH COMH CoH
L-arginine L-Ng-OH-arginine L-citrulline

FIG. 3. Biosynthesis of NO through the so-called L-arginine-
NO pathway, adapted from Ref. 372.

192,1
block ITP"*'?3 In areas such as the cerebral cortex,

hippocampus, cerebellum and corpus striatum,
c¢NOS expressing neurones compose 1-2% of all
neuronal cells."”® Activation of c¢NOS in astroglial
cells was observed after challenge with calcium

) .. 18
ionophores, bradykinin or glutamate.'®’

Endothelial NOS (eNOS) produced by endothelial
cells is a constitutive Ca’*-dependent enzyme that is
essential for the control of vascular tone. NO trans-
duces a signal from the endothelial cell to the vascular
smooth muscle eventually leading to ¢cGMP produc-
tion and vasodilation. In the brain, eNOS-derived NO
regulates cerebrovascular blood flow.'”’

Inducible NOS (iNOS) is a Ca** and calmodulin
independent enzyme. It requires gene transcription,
is slowly produced and is activated only under
pathological situations where microglial cells and
macrophages exert cytotoxic effects in response to
cytokines.'”® The generation of NO by iNOS is long-
lasting, in contrast to the ¢cNOS and eNOS isoforms
where NO is generated in short bursts.'””'”® The
mechanism of iNOS induction involves transcription
of mRNA and novel protein synthesis and it takes
several hours before NO is generated after the
initiating signal."”” Tt induces a 1004old higher local
concentrations of NO than eNOS or ¢NOS and act as
a antimicrobial defence mechanism of the immune
system. iNOS is not expressed in normal brains but
expression can be induced in astroglial and microglial
cells through viral infection or trauma.”®”*°' Tt is
mainly expressed under inflammatory conditions, and

L . L 202220
after transient ischaemic periods. >

Nitric oxide in neuropathology

NO can be neurotoxic under different circumstances.
The NO mediated neuronal cell death can be induced
by overexpression of ¢NOS in neurones and astroglial
cells or iNOS induction in glial cells, both pathways
will be further discussed below (see Fig. 4).

eNOS induced NO mediated neurotoxicity
Glutamate binding to its NMDA receptor induces NO
production by c¢NOS activation. Derangements of

Mediators of Inflammation - Vol 7 - 1998 243
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Nitric Oxide Mediated Neurotoxicity

‘Donor Neuron’ ‘Donor Glial Cell’

NO'

‘Target Neuron’

/N :— | Mitochondrial respiration
NO® NO'+OZ‘,’\0N —£ONOOH — OH+NO;
DS |

(@)

2%_——*H,0O, — Cell Death
H

e}

FIG. 4. NO as neurotoxin. Excessive NO is formed on
sustained glutamate stimulation of NMDA receptors by
cNOS in neurones or by activation of iNOS or cNOS in glial
cells. NO freely diffuses to adjacent target neurones where it
combines with the O, to yield the peroxynitrite, ONOO",
which is an extremely potent oxidant. Although NO can
function as a toxin directly, the peroxynitrite pathway may be
the major pathway of cell death, adapted from Ref. 303.

glutamate neurotransmission leading to neurotox-
icity has been implicated in Alzheimer’s disease,
Huntington’s disease, amyotrophic lateral sclerosis
(ALS), epilepsy and stroke.”®*"” Glumate neurotox-
icity is demonstrated to be mediated through NO
production. After binding of glutamate with the
NMDA subtype of glutamate receptors, Ca** enters
the channel and binds to calmodulin, a cofactor for
c¢NOS and stimulates NOS activity whereby NO is
produced.”” 1In addition, O; is produced which
results in the formation of ONOO™ which subse-
quenty leads to neuronal death.”*’”*'' Neurones
obtained from ¢NOS null transgenic mice are mark-
edly resistant to ischaemic conditions,”’” in which
the primary mechanism of damage is mediated by
activation of the NMDA receptor and subsequent
formation of NO. This indicates that ¢cNOS is capable

. . 21
of producing neurotoxic amounts of NO.*"?

iNOS induced NO mediated neuroroxicity

The iNOS-mediated release of NO by astrocytes and
microglial cells in the brain may be important in
antimicrobial or tumoricidal responses to inflamma-
tory signals."”” In acute CNS inflammatory conditions
like rabies, herpes simplex, Borna, and lymphocytic
choriomeningitis virus, iNOS is expressed”???147217
as well as in experimental pneumococcal meningitis
and toxoplasmosis and in humans during encephali-
tis.'??218722% INOS mediated NO is considered to
mediate neuronal and oligodendrocyte degeneration

. L 202,271,222
under neuropathological conditions. The
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role of iNOS in neuropathology in general is indirect,
microglial cells and/or macrophages become acti-
vated either through direct infection with virus or
other pathogens, or by local cytokine production and
subsequently produce iNOS which eventually leads to
damage. Excessive amounts of NO produced by glial
cell are probably neurotoxic. iNOS-derived NO is one
of the major sources of toxic free radicals in the brain,
since its reaction with the superoxide anion (O3)
leads to the
(ONOO") which is an extremely potent oxidizing

formation of peroxynitrite anion

algc:nt.223 Peroxynitrite generates DNAwinglestrand
breaks with subsequent activation of the DNA repair
enzyme poly ADP ribosyltransferase (PARS).”** Fur-
thermore, NO and peroxynitrite have been shown to
inhibit the mitochondrial respiratory chain and dis-
rupt normal cellular iron homeostasis.*’"***~**” Per-
oxynitrite and/or NO can terminally damage neu-
rones, leading to cell death.??87%32 1ow levels of or
sustained exposure to NO or peroxynitrite cause
apoptosis, whereas sudden exposure to high concen-

. .. . 233
trations of NO or peroxynitrite leads to necrosis.

NO in Alzheimer’s disease and MS

iNOS expression is found in Alzheimer’s disease*?3°
and in experimentally infected brains of rats with
various viral agents.”*® NO has been implicated in
demyelination and destruction of oligodendrocytes
and subsequent demyelination, the process found in
MS™¢ and in the primary animal model for MS,
experimental allergic encephalomyelitis (EAE) 21237
During EAE, iNOS mRNA is detectable before the
onset of the clinical symptoms and the levels of
protein correlate with the severity of the disease.”’’
Further evidence supporting a role for iNOS in the
pathogenesis of MS is the finding that human iNOS
protein and mRNA is markedly elevated in the active
lesions in brains of MS patients.””®**” In MS lesions,
macrophages appear to produce INOS and are
NADPH-diaphorase positive after histochemical stain-
ing.240 In another study, NADPH-diaphorase activity in
MS lesions was found in reactive astroglial cells*’
which was later shown to be ¢cNOS.*** The cellular
source of INOS mRNA expression in brains of patients
with MS has been confirmed to be macrophages/
microglial cells.””® In EAE an increase was found in
eNOS in blood vessels in the inflamed lesions and
iNOS  in
cel iNOS expression can be (further) induced
by cytokines like TNFa, IFNY and IL-1, that are all
detected in brains of MS patients.”*?~**°

increase in
216,241
Is.

infiltrating  inflammatory

NO in AIDS dementia complex

iNOS-mediated NO production has also been descri-
bed to be involved in acquired immune deficiency
syndrome (AIDS)-related neuropathology. iNOS pro-
tein and mRNA was found in the CNS of patients with
AIDS dementia (AD(:),246’247 and is

complex
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expressed at higher levels than in brains of AIDS
patients without neurological symptoms. The cell
types expressing iINOS however, remain unknown. In
these patients there is a clear correlation between the
severity of the dementia and iNOS expression in the
brain. In addition in brain tissue of simian immunode-
ficiency virus (SIV) infected monkeys iNOS mRNA
was detected.”*® The microglial cells have been
postulated to be involved in the pathogenesis of ADC
because they are preferentially infected by the
virus. 247721 Neuropathological manifestations
such as loss of cortical neurones, loss of synapses and
neuronal apoptosis have therefore been suggested to
be mediated indirectly by cytokines like TNFa***2°?
and IL17°%75% or by nitric oxide.”” 72" TNFo, IL-1

and iNOS have been demonstrated in brains of AIDS
247,256,262-265

patients as  well as in  ADC
patients>*”2*“*’ (Vincent et 4/, submitted). In cyto-
megalovirus (CMV) infected retinas from AIDS

patients iNOS immunoreactivity and NADPH-diaphor-
ase were found in (CMV)-infected cells identified as

Miiller cells and astrocytes.”®®

NO in parkinson’s disease

In Parkinson’s disease, which is primarily charac-
terized by a loss of midbrain dopaminergic neurones,
iNOS was present in glial cells®® in the mesecephalon
In addition,
NOS inhibitors attenuate malonate-induced degenera-

probably in activated macrophages.%9

tion by NMDA receptor activation of the nigrostriatal
pathway in rats’’’ suggesting a role for NO in
neurodegeneration. The inhibition of tyrosine hydrox-
ylase resulting in reduced dopamine synthesis is
triggered by peroxynitrite, a reaction product of

NO.

NO in brain activation

During ischaemic brain damage ¢NOS is induced in
endothelial cells which then has beneficial effects by
enhancing the vasodilation, further increasing blood
flow in the peri-infarct area.’’**”? In addition iNOS is
induced leading to NO production, which leads to
neuronal death after cerebral ischaemia.””* During
postnatal brain development of rats, large numbers of
NADPH-diaphorase positive neurones and NADPH-
diaphorase positive cells with macrophage morphol-
ogy were observed. The latter are possibly involved in
developmental shaping of the brain, which includes
cell death and fagocytosis of cellular debris.””” High
levels of NADPH-diaphorase were found in evenly
distributed astroglial cells in areas surrounding a
mechanical lesion in the brain. Within the lesion the
NADPH-diaphorase positive cells most probably were

276
macrophages.

Thus, although iNOS and NADPH-diaphorase activ-
ity can be induced in astrocytes and microglial cells
through viral infection or trauma most of the studies
have revealed INOS immunoreactivity and iNOS

mRNA in the brain in infiltrating macrophages or
microglial cells.”'” In general, exposure of brain cells
to signals, such as microbial products, viruses, gluta-
mate or yet unknown signals in diseases like MS,
Alzheimer’s and Parkinson’s disease leads to the
secretion of inflammatory cytokines that induce
either de novo synthesis of INOS by glial cells or
c¢NOS in astroglial cells or neurons as has been
demonstrated in iz vitro studies. This NO may be
neurotoxic and may
neuropathology.

subsequently lead to

Production of iNOS in vitro

To answer some more fundamental questions regard-
ing iNOS production and regulation in vitro studies
are widely used. Sources, induction mechanism and
intervention of iNOS production are studied in detail
in various glial cell cultures. In addition, a model has
been developed that allows studies of the possible
neurotoxic effects of glial NO, on cultured neurons.
These in vitro studies have led to new insights in the
functions of glial cells in normal brain and in
neuropathology.

Several techniques have been described for isola-
tion of rat murine or human brain microglial cells,
astroglial cells and maintenance of these cells in
vitro 18240277282 The microglial cells and astroglial
cells are isolated from mixed glial cultures in most
instances or from disrupted adult or neonatal tis-
sue, > 127:171.279,283-285 1y yissue culture, the ameboid
and ramified microglial cell can be identified, most
probably corresponding to its morphological diversity
in the adult brain.”®® The astroglial cell cultures can be
contaminated with microglial cells, since the purifica-
tion of astroglial cells is a rather delicate technique
and microglial cells remain a significant contami-
nant.’®'"* Many studies showing production of,
for example, cytokines like IL-1 or TNFa by astroglial
cells in vitro have to be interpreted with care. In
vitro studies also provide a very useful technique to
study both the functions of glial cells and of neurones
as well as the interactions between these cell types.
Therefore techniques for selective isolation, co<ultur-
ing, labeling and stimulation of microglial cells and
astroglial cells allow investigators to study some
fundamental questions in neuro-immunology.

Glial cellderived iNOS

iNOS expression by glial cells has been studied in in
vitro systems of highly purified microglial cell and
astroglial cell cultures and in mixed cultures contain-
ing both cell types from human or rodent brain.
Following incubations with various stimuli, both
microglial and astroglial cells have been demonstrated
to produce nitrate, one of the endproducts of nitric

oxide oxidation.???
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iNOS has been identified in rodent astrocytes and
microglial cells in response to IL-1P, LPS or Gram-
positive bacterial products.'®>??***2%? I[ENy induces
NO in microglial cells and macrophages but not in
astroglial cells,”””?*"*?°72°? while synergism of IFNY
and IL-1P or TNFa induce significant levels of nitrite
in rodent and human astroglial cells,203239:250,293,294
LPS induction of iNOS required CD14 expression on
glial cells.”” As yet it is not clear whether cytokines
activate gene expression via one or muldple path-
ways. Experiments with phorbol esters, which induce
iNOS, suggest that protein kinase C may be involved
in the induction process in microglial cells and
astrocytes.”’

Agents like IFNY and LPS are more effective
inducers of iNOS in rodent than in human microglial

198,250,288,2
cells, 0825 97

which therefore appears to be
species-dependent as described for NO production by
retinal pigment epithelial cells.””® Recently, some
studies did however reveal NO and iNOS mRNA
production in human ramified microglial cells upon
LPS or TNFo. stimulation.*¢” 2%

HIV or the HIV type I coat proteins gp120 or gp4l
induce iNOS in cultured microglial cells, monocytes

9,246,257,258,266
or macrophages.

In human fetal glial
cells, comparable amounts of NO were induced by
gp120, gp41 and the proinflammatory cytokines IFNy
and IL-1B.° HIV-infected brain mononuclear macro-
phage secrete NO and O3, 26 especially after immune
activation and TNFa. further increases NO production.
In MS and EAE, macrophages isolated from lesion
areas produced significant amounts of nitrite and
were shown to be iNOS positive without any further
stimulation.”**?%°

B-amyloid, the major component of the senile
plaques in Alzheimer’s disease, causes a significant
increase in NO by microglial cells and not in astroglial
cells. The NO production induced by the B-amyloid
was increased by IFNY’°'?°* or phorbol-myristate-
acetate (PMA) chatllenge.168

Studies that have attempted to compare rat micro-
glial cell and astrocyte NO production have con-
cluded that microglial cells produce more NO on a
per cell basis than astrocytes.”*******° This has led to
the suggestion that activated microglial cells rather
than astrocytes are the principal source of reactive
nitrogen intermediates in the CNS, and that the NO
produced by astroglial cells might be beneficial,
whereas microglialderived NO might be involved in

. .18
neurotoxicity. >

Nitric oxide mediated neurotoxicity in vitro

In vitro co-cultures of glial cells with neurones have
proven to be a valuable tool in the identification of
NO as a neurotoxin and the cellular sources of NO.
Exogenous NO generated from NO donors have been
shown to kill neurones i vitro.”** Cytokine-activated
murine microglial cells and astroglial cells apparently
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generate substantial amounts of NO that kill neurones
.. 202,222,259,288,303,304 _. T
in vitro, since inhibition of endo-
genously formed NO by specific NOS inhibitors
blocks this microglia-or astrocyte-mediated neurotox-
icity.”0>2%%%% For example, factors like LPS, gp4l1 and
B-amyloid can indirectly kill neurones in mixed
cultures with glial cells, which is abrogated by NOS-

C 246,301
inhibitors.**®?

LPS or cytokine activated glial cells
stimulate the production of neurotoxins, e.g. NO,
because LPS and cytokines do not directly influence
the viability of purified neurones.’®” These studies
clearly illustrate the indirect mechanism by which
neurones are thought to be killed.?*¢

The glial cells produce large amounts of NO by
iNOS activity which can form peroxynitrite which is
toxic to neurones as previously described. In addi-
tion, glutamate neurotoxicity is also mediated by NO
in primary neuronal cultures.’” Peroxynitrite, NO
and NMDA can damage neurones in vitro leading to
necrotic or apoptotic cell death pending on the
concentration and duration of the exposure.””” In
addition, oligodendrocytes are also being killed by an
NO dependent mechanism by ameboid microglial
cells 7n witro, suggesting that iINOS expression by
invading and intrinsic brain cells play a role in lesion
formation in multiple sclerosis.”*'

Although glial cells produce various neurotoxins
i.e. TNFa, glutamate and PAE production of NO
appears to play a key role in different neurotoxic
pathways since inhibition of iNOS spares the neu-
rones.2"393% These in vitro findings suggest an
important role for glial iNOS derived NO in the
pathophysiology of CNS diseases.

Regulation of NO Production

Since NO is shown to play an important role in
neurotoxicity, inhibition of NO could be a possible
route of intervention in the prevention of neu-
ropathogenesis. Experimentally often used inhibitors
of NOS production are synthetic arginine analogues
like Nc—mono—methylarginine (NMMA), Nw -nitro-
Larginine methyl ester (L-NAME), aminoguanidine
and Naitroarginine.”*”*°*3%? They are often used in
in vitro studies to certify the Larginine dependent
origin of NO.

Intervention of NO synthesis iz vivo by using NOS
specific inhibitors has been described in EAE using
different arginine analogues e.g. aminoguanidine,
LNMMA and LNAME*"300310310 [ these experi-
ments, the effects of these inhibitors on the clinical
score of EAE were not conclusive. The aspecificity of
these inhibitors for the subtypes of NOS, and thereby
effects on eNOS and ¢NOS leading to e.g. vascular
changes, may explain these different results. The
search for pharmacological tools that selectively
inhibit iINOS, eNOS or ¢NOS is currently getting much
attention and thus far has yielded some agents. The
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agent 7-nitroindazole is a selective ¢NOS inhibitor and
NCaitro-Larginine shows a preference for eNOS and
cNOS over iNOS, whereas L-N°{14minoethyl)lysine is
selective for iNOS over ¢cNOS.>'?

Interestingly, NO can also act as a negative feedback
signal on iNOS activity, by inhibiting the transcrip-
tional induction of NOS, indicating a selfregulatory

313,314

mechanism. In cultures of rat astroglial cells

and dexamethasone have been
257,288,289,315 [

norepinephrine
shown to suppress iNOS induction.
addition, prostanoids are involved in the regulation of
iNOS since prostaglandin E, but also cyclooxygenase
inhibitors suppress iINOS expression in LPS activated
rat microglial cells.*’® In addition several endoge-
nously produced cytokines have been shown to
inhibit NO production. TGFP, IL4 and IL-10, are
known to inhibit NOS
cytes”?21266:305:3172320 5 g synergistically suppress
NO production.”’ TGF is an important modulator in
the brain during development®*' and TGFB has been

demonstrated in brains of HIV patients, around brain

activity in  mono-

tumours, in MS, Alzheimer’s disease, brain ischaemia,
peripheral nerve transections and in several experi-

. . . 322-330
mental lesions in animals.

Transforming growth factor B (TGFp)

TGFB is a 25 kDa homodimeric protein secreted by a
variety of cells as a latent protein complex.®® There
are at least five distinct gene products that constitute
the TGFP family, TGFP1 through TGFB5 which show a
(70-80%) of amino acid
identity. The three highly homologous mammalian
TGFp isoforms are TGFB1, TGFB2 and TGFB3 with
relatively high sequence similarities but differences in
receptor binding affinities.’”" Three different TGFB
receptors have been identified, type I to type III,

high degree

sequence

which distributions are ubiquitous in various body
tissues.

In a variety of studies of microglial cell cultures,
TGFpB has been shown to be a potent immunosup-
pressive cytokine’’” and inhibits NO production by
microglial cells.’””” TGFB inhibits iNOS expression by
decreasing iNOS mRNA stability and inhibiting its
translation and increasing iNOS protein degrada-

. 4 o 317,
tion,”** resulting in reduced NO production.’'”?*

Not only NO but also O; is inhibited by TGFB’" and
thereby the formation of the highly toxic peroxyni-
trite is prevented.

TGFB is a chemotactic agent for monocytes and
macrophages and is suggested to be important in the
recruitment of circulating monocytes into brain tissue
after d.elmalge.336 TGFB has protective effects in
different experimental autoimmune diseases®’ ™%’
whereas neutralizing antibodies to TGFP1 worsen
clinical severity.>***! During EAE, and after cerebral
trauma or hypoxic-ischaemic damage, TGFB expres-
sion is increased when neurological symptoms are
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FIG. b. Effect of immunoneutralizing of TGFB1 and TGFB2 on
endotoxin induced expression of IL-18 and iNOS by con-
fluent mixed glial cell cultures containing mainly astroglial
cells and microglial cells. Numbers of immunopositive cells
in 24h endotoxin (1pg/ml) stimulated mixed glial cell
cultures. Different cultures were stained with the microglial
cell marker GSA-I-B4-isolectin (LECT) or for IL-1B or iNOS.
Data are expressed as the mean and SE (n = 3). **P <
0.005.
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severe, which might indicate an inflammation limiting
of TGFPB in the recovery phase thereby controlling
the inflammatory reaction.’**~3*°

Astroglial and microglial cells are known to con-
stitutively produce TGFB in vivo®"**** and in
vitro S2 1037105346347 The isoforms TGFP1, TGFP2 and
TGFf3 are produced by astroglial cells in vitro, while
microglial cells only produce the TGFB1 isoform.®’
TGFpB production in microglial and astroglial cells is
increased after TNFo**® or IL1'°***° or TGEB expo-
sure itself.?”°

In co<ultures of astroglial cells and microglial cells
bioactive TGF was found to inhibit iNOS expression
and thereby NO production by endotoxin activated
microglial cells. The presence of astroglial cells was
shown to be essential for the activation of TGFP in
these co<ultures of astroglial and microglial cells®?

(see Fig. 5).

Regulation of TGFp activity

TGFB is produced by glial cells in a latent, inactive

60
form

and forms a complex with the latency-
associated protein (LAP).>>">? Activation of latent
TGFp consists of releasing TGFB from the LAP, which
occurs after heat treatment, acidification, alkalization
or proteolysis by plasmin.’”"*>®> Plasmin is generated
by the plasminogen activator system. Plasminogen
activators (PA)s are serine proteases consisting of a

50kD urokinase-type plasminogen activator (u-PA)
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FIG. 6. Activation mechanism of latent TGFB by plasmin.
Plasmin releases TGFB from its latency associated protein
(LAP) whereby active TGFB is generated. Plasminogen is
cleaved into plasmin by plasminogen activators i.e. uroki-
nase PA (uPA) or tissue-type PA (tPA) which are inhibited by
plasminogen activators inhibitors (PAI).

and a 68 kD tissue-type plasminogen activator (tPA),
secreted as inactive proforms, which major substrate
is plasminogen. uPA and tPA can cleave plasminogen
into plasmin which subsequently activates latent
TGEB?>*3% (Fig. 6). These PAs are specifically inhib-
ited by the plasminogen activator inhibitors (PAI),
PAI-1, PAI-2 and PAI-3 (Table 1),356’3 37 by formation of
a tight complex with PAs.

Plasmin has a broad range of substrates including
fibrin, fibronectin, laminin and matrix metalloprotei-
nases (MMP). The PAs and PAls play an important role
by fine regulating the proteolytic degradation of fibrin

Table 1. Plasminogen activators and their inhibitors (adapted
from Ref. 311)

Plasminogen activators (PAs)

Pro form Active form
molecular weight molecular weight
(kDa) (kDa)
uPA 55 33.50
tPA 70 70

Plasminogen activators inhibitors (PAls)

Molecular weight Substrate specificity

(kDa)
PAI-1 46-54 uPA=tPA
PAI-2 47-60 uPA>tPA
PAI-3 50 uPA>tPA
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clots (fibrinolysis) in the circulation, mediated by
plasmin®>*?°® and therefore tPA is now used for the
treatment of thrombotic stroke. Only recently func-
tions for PA were found in the brain, and proteolysis
of the extracellular matrix (ECM) by MMP activation,
amplified by PAs, has been suggested. The breakdown
of the ECM is thought to be involved in brain
development and neurite outgrowth but also in
neuropathology like growth and invasion of brain
tumours, leukocyte infiltration in MS and EAE, break-
down of the BBB and nerve demyelination.”"’
Microglial cells secrete proteases such as elastase,

9,360 .
359360 W hich have a

uPA and secrete plasminogen
direct neurotrophic effects on various types of
neurones.*®! Astroglial cells can synthesize and
secrete both tPA and uPA as well as PAI—1,178’3627364
and tPA is involved in motor learning but also in
Alzheimer’s disease and neuronal degenera-
tion.’*>~3*” PAs and PAls have been demonstrated in
cerebrospinal fluid of patients with neurological

. 368,369
disease

and tPA expression was found’’” in MS
lesions supporting a role of PA and PAl in neuropatho-
logical processes.

An important role of tPA and PAI and the regulation
of TGF activity was shown in a glial cell coculture.'”®
tPA and PAI-l produced by astroglial cells regulated
the bioactivity of TGFB, and thereby indirectly the
production of NO by microglial cells.'”® Therefore,
we postulate that tPA-mediated activation of TGFf

plays an important role in neuroprotection.

Summary

In neuropathological conditions such as Alzheimer’s
disease, Parkinson’s disease, AIDS dementia complex
and multiple sclerosis, activation of microglial cells
and astroglial cells is evident. Under these neu-
ropathological conditions cellular damage in the brain
is considered to arise indirectly from cytotoxic
substances produced by activated glial cells. One of
these toxins is NO which has been demonstrated to
be produced during several neuropathological condi-
tions. High NO levels are produced by glial cells and
exert neurotoxic effects. Astroglial cells and micro-
glial cells communicate in various ways to reduce NO
production by microglial cells which is essential to
maintain homeostasis in the brain. The production of
TGFB by glial cells and its activation by astrocyte-
derived tPA represents one mechanism by which
astroglia limit NO production in the brain.
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