
viruses

Communication

Intracellular Sequestration of the NKG2D Ligand MIC B by
Species F Adenovirus

Edson R. A. Oliveira , Lenong Li and Marlene Bouvier *

����������
�������

Citation: Oliveira, E.R.A.; Li, L.;

Bouvier, M. Intracellular

Sequestration of the NKG2D Ligand

MIC B by Species F Adenovirus.

Viruses 2021, 13, 1289. https://

doi.org/10.3390/v13071289

Academic Editor: Glen R. Nemerow

Received: 14 May 2021

Accepted: 25 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Microbiology and Immunology, University of Illinois at Chicago, 909 S Wolcott Avenue,
Chicago, IL 60612, USA; edsonrao@gmail.com (E.R.A.O.); Lenong@uic.edu (L.L.)
* Correspondence: mbouvier@uic.edu

Abstract: The enteric human adenoviruses of species F (HAdVs-F), which comprise HAdV-F40 and
HAdV-F41, are significant pathogens that cause acute gastroenteritis in children worldwide. The
early transcription unit 3 (E3) of HAdVs-F is markedly different from that of all other HAdV species.
To date, the E3 proteins unique to HAdVs-F have not been characterized and the mechanism by
which HAdVs-F evade immune defenses in the gastrointestinal (GI) tract is poorly understood. Here,
we show that HAdV-F41 infection of human intestinal HCT116 cells upregulated the expression of
MHC class I-related chain A (MIC A) and MIC B relative to uninfected cells. Our results also showed
that, for MIC B, this response did not however result in a significant increase of MIC B on the cell
surface. Instead, MIC B was largely sequestered intracellularly. Thus, although HAdV-F41 infection
of HCT116 cells upregulated MIC B expression, the ligand remained inside infected cells. A similar
observation could not be made for MIC A in these cells. Our preliminary findings represent a novel
function of HAdVs-F that may enable these viruses to evade immune surveillance by natural killer
(NK) cells in the infected gut, thereby paving the way for the future investigation of their unique
E3 proteins.

Keywords: adenoviruses; adenovirus species F; viral tropism; gut immune system; enteric viruses;
immune evasion; NK cells; MIC A and MIC B

1. Introduction

HAdVs represents a large family of genetically diverse pathogens. To date, more
than 100 different HAdVs have been identified and classified into seven species, A to
G (http://hadvwg.gmu.edu/ (accessed on 22 November 2019)). HAdVs cause partially
overlapping, species-specific diseases associated with infections of the respiratory (species
B, C, and E), urinary (species B), gastrointestinal (species A and F), and ocular (species
D) systems [1]. HAdVs are highly contagious and can cause severe local outbreaks. Al-
though healthy adults can generally control the virus, HAdV infections in children and
immunocompromised individuals can be fatal [2–5]. HAdV devotes a considerable portion
of its genome to modulation of host immune functions, which presumably enables some
species to establish and maintain lifelong asymptomatic infections. The vast majority
of HAdV genes involved in the modulation of host immune functions are grouped in
the E3 region [6,7]. The E3 region is not essential for HAdV replication in cultured cells,
but the fact that this transcription unit is always maintained in natural isolates strongly
suggests that E3 gene products are critical for natural infections in humans [6,7]. Notably,
E3 is one of the most divergent gene regions between species (see Figure 1). This genetic
variability is not well understood, but it strongly suggests that E3 proteins play a role in
the manifestation of species-specific tissue tropism and diseases [6]. The 19K protein of
HAdV-C binds to and retains MHC class I molecules in the endoplasmic reticulum, thereby
rendering HAdV-C-infected cells less efficient at presenting viral antigens and less sensitive
to lysis by CD8+ T cells [8–22]. That this 19K gene is maintained in HAdV-B, -D, and -E (see
Figure 1) underscores the critical need for these species to retain a MHC I-binding function.
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The x-ray crystal structures of AdV-C2 and AdV-E4 E3-19K bound to HLA-A2 provided
insights into the mechanism of immune modulation [23,24]. Other E3 proteins were shown
to function by inhibiting tumor necrosis factor activities and interfering with apoptotic cell
death processes and leukocyte activation, ultimately suppressing the lysis of infected cells
by NK cells [25] and references therein.

The enteric HAdV-F, which comprises HAdV-F40 and HAdV-F41, shows a narrow
tropism for epithelial cells of the GI tract and is a leading etiologic agent of acute gas-
troenteritis in infants and young children worldwide [26–29]. Notably, there are marked
differences in the E3 region of HAdV-F compared to the other species (see Figure 1): HAdV-
F lacks the common E3-19K gene and has two genes, 19.4K and 31.6K, that are unique to
that species [30–32]. To date, E3-19.4K and E3-31.6K proteins have not been characterized
and we have no knowledge of their functions. The study of HAdV-F thus offers a unique
opportunity to study how interactions between E3 proteins and the immune microenvi-
ronment at the site of infection contributes to viral tropism and pathogenicity. We suggest
that the selective pressure on HAdV-F40 and HAdV-F41 by the immune system of the GI
tract has led these viruses to adapt in order to replicate effectively in gut cells, and that
E3-19.4K and/or E3-31.6K proteins play an important role in this process. More specifically,
we suggest that HAdVs-F have evolved a function directed at suppressing the expression
of MIC A and MIC B molecules on infected cells. MIC A and MIC B are stress-inducible
surface ligands that are recognized by the NKG2D activating receptor expressed on NK
cells to eliminate stressed cells. Given that the distribution of MIC activating ligands is
largely restricted to intestinal epithelial cells under normal conditions, and that HAdVs-F
are exquisitely adapted to replicate in the intestinal epithelium [33] and references therein,
it might not be surprising that these viruses interfere with MIC A and MIC B to suppress
immune surveillance by NK cells.

To advance our understanding of HAdVs-F, and given the significance of these viruses
as pathogens, we have initiated a study to examine the effects of HAdV-F infection on
cell surface expression of MIC ligands. We have established an in vitro culture system
based on infection of human intestinal HCT116 cells with HAdVs-F from which we show
that HAdV-F41 causes the intracellular sequestration of MIC B. These preliminary results
support the hypothesis that interferences with NKG2D MIC ligands is a mechanism used
by HAdVs-F to evade immune surveillance in the gut and may be a determinant of
viral tropism.
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Figure 1. Sequence alignment showing the coding potential of E3 regions of the most common
HAdVs-A, -B, -C, -D, -E, and -F. The expected molecular mass of each gene product is indicated.
Proteins with amino acid sequence homology, generally ~35%, have the same shade coding: 19.4K
and 31.6K are unique to HAdV-F.
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2. Materials and Methods
2.1. Virus Growth and Cells

HAdV-F41 (ATCC® VR-930™) was grown in 50–60% confluent HEK-293 cells (ATCC®

CRL-1573™) in DMEM (ATCC® 30-2002) supplemented with 1–2% FBS (ATCC® 30-2020™).
Infection was done with virus at passage five at an MOI = 1. After infection, when cells
show clear cytopathic effect (round up with increased nucleus size), cultures were harvested
with a cell scraper and transferred to falcon tubes. Cell suspensions were centrifuged at
700× g, 4 ◦C for 10 min, and cells were resuspended in culture medium discharging the
supernatant. Samples were subjected to three freeze/thaw cycles (−80 ◦C and 37 ◦C), then
centrifuged at 1500× g, 4 ◦C for 10 min. Supernatants were aliquoted in small volumes
and kept at −80 ◦C until use. To determine viral titers, an aliquot of the virus preparation
was used for titration in HEK-293 cells via immunohistochemistry using the QuickTiter™
Adenovirus Quantitation Kit (Cell Biolabs, Catalog no. VPK-109, San Diego, CA, USA),
following instructions by the manufacturer. Two cell types were used for the in vitro
infection models: human colorectal carcinoma HCT116 cells (ATCC® CCL-247, Manassas,
VI, USA). HCT116 cells were grown in McCoy’s 5A medium (ATCC® 30-2007™, Manassas,
VI, USA) supplemented with 10% FBS.

2.2. Immunofluorescence Staining

For immunofluorescence (IF) staining, cells were grown on sterile glass coverslips
placed on 12-well plates prior to infection with HAdV-F41 (MOI 0.5). After 2 days, cells
were fixed in 4% PFA for 10 min, permeabilized with 0.1% triton x-100 for 20 min, and
blocked with 1% PBS/BSA for 30 min. For virus staining, a rabbit anti-pVIII polyclonal Ab
(provided by Dr. W. Wold, St-Louis University, St. Louis, MO, USA) was used. Cells were
washed and stained for 1 h with a mixture of donkey anti-rabbit secondary Ab conjugated
with rhodamine (Invitrogen, Catalog no. 31685, Waltham, MA, USA), and Phalloidin-iFluor
488 (Abcam, Catalog no. ab176753, Cambridge, UK) to stain actin fibers. MIC A and MIC B
staining were done using primary mouse anti-MIC A and mouse anti-MIC B Abs. A goat
anti-mouse-FITC was used as the secondary Ab. Coverslips were mounted on slides using
ProLong™ Diamond Antifade with DAPI (Invitrogen, Catalog no. P36962, Waltham, MA,
USA) and cured at 4 ◦C for 24 h in the dark. Samples were analyzed under an Olympus
BX51 IF microscope coupled with a CCD camera to acquire individual channels of DAPI,
alexa fluor 488 or rhodamine. Acquired channels were merged using ImageJ software
v1.53a. Uninfected cells, and secondary Abs alone, produced no relevant signals in the
rhodamine channel.

2.3. Flow Cytometry

HCT116 cells were infected with HAdV-F41 (MOI 0.5) and expression levels of MIC A
and MIC B were determined on the cell surface and intracellularly by flow cytometry on
days 2 and 4 post-infection. Infection was assessed based on the expression of intracellular
hexon protein. At the harvest time, cells were scraped, washed in PBS by centrifugation
at 700× g for 10 min, incubated with Zombie Violet Fixable Viability Kit (Biolegend, Cat-
alog no. 423114, San Diego, CA, USA) at 1:500 for 30 min in the dark for discriminating
live versus dead cells, washed, and fixed in 4% PFA for 20 min on ice. Cells were then
washed and incubated with a mixture of anti-MIC A-phycoerythrin (PE) (Sino Biological
Catalog no. 12302-MM04-P, Beijing, China) and anti-MIC B-allophycocyanin (APC) (Sino
Biological Catalog no. 10759-MM12-A, Beijing, China) Abs for 40 min on ice. Isotype
Abs recommended by the manufacturer, as well as uninfected HCT116 cells, were used
as negative controls. In the case of samples prepared for extra- and intra-cellular staining,
cells were incubated with Ab cocktail for surface staining prior to permeabilization with
0.1% triton x-100 for 10 min at RT. Hexon staining was carried out using a 2Hx-2 mon-
oclonal anti-hexon Ab (provided by Dr. W. Wold, St-Louis University, St. Louis, MO,
USA) [34] with further detection using a secondary anti-mouse-FITC Ab. After staining,
cells were washed 2 times in PBS, resuspended in 300 µL PBS, and data were acquired on



Viruses 2021, 13, 1289 4 of 11

a Gallios flow instrument (Beckman & Coulter, Brea, CA, USA). Samples were analyzed
offline using FlowJo software v10 considering only live cells, after exclusion of cell debris
and aggregates.

2.4. Protein Sequence Analysis

The GenBank accession number for HAdV-F41 E3 region is M85254 [32]. Bioinfor-
matics software and servers used for protein sequence analysis were: SignalP v. 5.0 (DTU
Bioinformatics, Denmark) [35], SMART (EMBL, Heidelberg, Germany) [36], TMHMM v.
2.0 (DTU Bioinformatics, Denmark) [37], and PHYRE v. 2.0 (Imperial College, London,
UK) [38].

3. Results
3.1. E3 Region

E3 is one of the most divergent gene regions between species (Figure 1): while some
E3 proteins are found in all species, others have counterparts in only a few species, and
some E3 proteins are unique to a given species. Remarkably, HAdV-F lacks the common
E3-19K protein and instead expresses two proteins, 19.4K and 31.6K, that are unique to this
species (Figure 1). To date, the functions of these proteins are unknown.

3.2. In Vitro Models of HAdV-F Infection

That HAdVs-F are one of the least characterized species may be due to the difficulty
of propagating these viruses in most common human cell culture systems that permit
replication of all other HAdVs. We established an in vitro culture system for infection of
human intestinal HCT116 with HAdV-F41 (Figure 2). To characterize this cell system, we
used IF staining of HAdV structural proteins hexon and pVIII as a way to track infected
cells. HCT116 cells were infected with HAdV-F41 (MOI 0.5) and results shows a clear
nuclear staining of pVIII on day 2 post-infection, consistent with the permissiveness of these
cells for HAdV-F41 infection. The results establish new conditions for HAdV-F41 infection
in HCT116 cells.
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Figure 2. Immunofluorescence staining of HAdV pVIII protein in HAdV-F41-infected HCT116 cells.
Cells infected with HAdV-F41 (MOI 0.5) at day 2 post-infection showing nuclear localization of the
viral structural pVIII protein (red). Actin fibers and cell chromatin are presented in green and blue,
respectively. Samples were analyzed under an Olympus BX51 IF microscope coupled with a CCD
camera Acquired channels were merged using ImageJ software v1.53a. Uninfected cells or secondary
Ab alone yielded no relevant signals.
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3.3. HAdV-F41 Interferes with Cell Surface Expression of MIC B

We examined if HAdV-F41 impairs the cell surface expression of MIC A and MIC
B in HCT116 cells by flow cytometry and IF. We first characterized the basal expression
levels of MIC ligands in uninfected HCT116 cells over four days. Results show that for
both MIC A and MIC B, expression levels are higher intracellularly than on the cell surface
(Figure 3a). Furthermore, MIC B is more abundant overall than MIC A (Figure 3a,b), and
MIC A is negligibly expressed on HCT116 cells (Figure 3a). Finally, it is important to note
that, in uninfected HCT116 cells, MIC B cell surface expression levels decreased slightly
from day 2 to day 4 (Figure 3a). This may be due to the proteolytic shedding of MIC B from
the cell surface, a process that occurs during normal cell growth and the expression of MIC
proteins [39].
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Figure 3. Expression of MIC ligands in uninfected HCT116 cells. (a) Flow cytometry histograms showing levels of MIC A
and MIC B on the surface and in the intracellular environment of uninfected HCT116 cells. Cells were harvested at day
2 and 4 in culture. Isotype Abs recommended by the manufacturer were used as negative controls. Sample were analyzed
on a Gallios (Beckman & Coulter, Brea, CA, USA) flow instrument and analysis was done offline using FlowJo software v10.
Histograms are gated on live cells, after exclusion of cell debris and aggregates. (b) Immunofluorescence staining of MIC A
and MIC B in uninfected HCT116 cells at day 2 in culture, with DAPI in blue and MICs in green. Data are representative of
three independent experiments.

We then examined if HAdV-F41 modulates the expression levels of MIC ligands in
infected HCT116 cells over four days using flow cytometry. To account for the natural
proteolytic shedding of MICs, the controls consisted of uninfected HCT116 cells collected
at each time point. HAdV-F41-infected cells were detected using a monoclonal anti-hexon
Ab (Figure 4a). Results show that MIC A expression levels, whether on the cell surface
or intracellularly, are consistently higher in hexon+ cells than hexon- cells (Figure 4b).
The same observation was made for MIC B (Figure 4b). Thus, the expression of MIC
ligands is upregulated by HCT116 cells infected with HAdV-F41. The data in Figure 4b
were further analyzed by considering changes in median fluorescence intensity (MFI) of
MIC expression levels in hexon+ cells relative to hexon- cells and the values plotted as
“fold increase” (Figure 4c, see legend). The analysis revealed that hexon+ cells expressed
significantly more MIC B in intracellular compartments relative to hexon- cells, 18-fold
increase on day 2 versus 15-fold increase on day 4. In contrast, there was only a small
increase of MIC B expression on the cell surface, 1.5-fold on day 2 versus 3.7-fold on day 4
(Figure 4c). Thus, although HAdV-F41 cause an upregulation of MIC B in HCT116 cells, this
did not lead to increased expression of the ligand on the cell surface suggesting that MIC B
is largely sequestered intracellularly in infected cells. A similar trend for MIC A could not
be observed in these cells, instead similar relative changes in intracellular and cell surface
expression levels of MIC A were determined (Figure 4c). Finally, consistent with the flow
cytometry results showing higher levels of MIC B expression in hexon+ cells (Figure 4b), IF
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analysis showed that fluorescence intensity signals are stronger in HAdV-F41-infected cells
(shown as pVIII+ cells) (Figure 5b) relative to uninfected cells (pVIII- cells) (Figure 5a).
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histogram showing expression levels of MIC A and MIC B on the cell surface and intracellularly. Hexon- populations
were gated from uninfected samples. Dashed lines represent the MFI levels of MIC A or MIC B on uninfected samples.
(c) Fold increases in expression of MIC A and MIC B upon HAdV-F41 infection were calculated as MFIhexon+ / MFIhexon-.
** p < 0.01 defined by t student test.
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Figure 5. Immunofluorescence assay of MIC B in HAdV-F41-infected HCT116 cells. IF assay showing (a) uninfected and
(b) HAdV-F41-infected HCT116 cells (MOI 0.5; day 2). HAdV-F41 was traced using a rabbit polyclonal anti-pVIII Ab and
a secondary goat anti-rabbit-Rhodamine. MIC B detection was performed using a mouse anti-MIC B Ab followed by
incubation with a goat anti-mouse-FITC. Cell nuclei were counterstained with DAPI. Arrows show HAdV-F41-infected cells
exhibiting stronger signals of MIC B compared to uninfected cells.

3.4. E3-19.4K and E3-31.6K Proteins

Given the uniqueness of E3-19.4K and E3-31.6K to HAdV-F, and the strong possibility
that these proteins participate in immune evasion functions in the gut, we characterized
their basic properties. HAdV-F41 19.4K has 173 residues (Supplementary Figure S1) and its
amino acid sequence is 99% identical to its counterpart in HAdV-F40 except for a single
amino acid change at residue 144, which is an isoleucine in HAdV-F41 and asparagine
in HAdV-F40 [31,32]. An analysis of HAdV-F41 19.4K sequence using the Bioinformatics
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software SignalP-5.0, SMART, and TMHMM [35–38] predicts that the protein is a type I
transmembrane protein with the signal sequence comprising the first 15 or 18 N-terminal
residues (depending on the software used) and transmembrane domain spanning residues
144 to 166 (Supplementary Figure S1). Because residue 144 is predicted to be membrane-
localized, the ectodomains of E3-19.4K are expected to be identical between HAdV-F40 and
HAdV-F41. Secondary structure predictions using the Phyre2 package indicated that
E3-19.4K has 13% α-helix, 58% β-strand, and 20% disordered regions, with the putative
transmembrane domain correctly identified as an α-helix. The accuracy of these predictions
awaits a determination of the three-dimensional structure of E3-19.4K. A BLAST analysis
indicated that the amino acid sequence of HAdV-F41 E3-19.4K shows no homology to the
common E3-19K immunomodulatory proteins of species B, C, D, and E. The BLAST analysis
also revealed that HAdV-F41 E3-19.4K is 50% homologous to the E3 CR1-α1 protein of
HAdV-G52 [40]. The homology comprises residues 39 to 122 (underlined in Supplementary
Figure S1) and represents a conserved region within E3 named “adenoE3CR1rpt” (also
known as 6.7K) [41,42]. HAdV-G52 has not been extensively studied and the function of its
CR1-α1 protein is unknown. However, it was shown that HAdV-C2 CR1-α1 directs E3-19K
to the ER [43] and can also cooperate with the RID proteins to evade TNF-α-induced NK-κB
activation [44]. The lack of general information about E3 CR1-α1 proteins makes it difficult
to draw any conclusions on the role of this motif in E3-19.4K.

HAdV-F41 E3-31.6K has 276 residues (Supplementary Figure S2) and its amino acid
sequence is 99% homologous to that of HAdV-F41 E3-31.6K, except for two amino acid
changes at residues 192 and 264 which are both glutamic acid in Ad41 and lysine in
Ad40 [31,32]. E3-31.6K is predicted to be a type I transmembrane protein with the signal
sequence comprising the first 16 N-terminal residues and the transmembrane domain
spanning residues 234 to 256 (Supplementary Figure S2). Secondary structure predictions
using Phyre2 indicated that E3-31.6K has 17% α-helix, 50% β-strand, and 11% disordered
regions, with the putative transmembrane domain correctly identified as an α-helix. A
BLAST analysis indicated that the amino acid sequence of HAdV-F40 E3-31.6K shows no
homology to E3-19K proteins. No other significant sequence homology was identified.

4. Discussion

HAdVs-F replicate preferentially in the GI tract and cause severe gastroenteritis
in children. The selective pressure on HAdVs-F by the microenvironment of the gut
has led these viruses to eliminate the E3-19K gene, and presumably the MHC I-binding
function, and to evolve two new E3 genes that are conspicuously absent in all other species.
This raises intriguing questions on the underlying mechanisms by which HAdVs-F are
exquisitely adapted to the GI tract. Given that E3 proteins modulate various host immune
functions [6,7], it is reasonable to assume that the distinct pathogenicity of HAdVs-F stems
in some way from interactions of their E3 proteins with the immune system of the gut. On
that basis, we have investigated the effect of HAdV-F infection on stress-induced MIC A
and B molecules. MIC A and MIC B are normally expressed at low levels almost exclusively
on intestinal epithelial cells and engage with activating receptors on NK cells as part of
host immunosurveillance of stressed cells.

HAdVs-F are notoriously difficult to grow in most cell culture systems [45–47] and
whether this characteristic arises from a feature unique to this species, namely that they
contain two different fiber proteins (long and short) and unique penton base proteins,
is unclear [48–50]. We have developed optimal cell culture conditions for infection of
intestinal HCT 116 cells with HAdV-F41. Our results showed that HAdV-F41 infection of
HCT116 cells upregulated the expression of MIC A and MIC B relative to uninfected cells,
on the cell surface as well as intracellularly. These results are consistent with the role of
MIC A and MIC B as stress-inducible ligands and underline a possible role for the NKG2D
pathway in HAdV-F infection. Our results also showed that for MIC B, this response did
not however lead to a significant increase of the ligand on the cell surface. Instead, MIC B
was largely sequestered intracellularly. Thus, although HAdV-F41 infection upregulates
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the expression levels of MIC B in HCT116 cells, the ligand remained inside infected cells. A
similar trend for MIC A could not be observed in HCT116 cells and therefore it remains to
be further evaluated if HAdVs-F selectively target MIC B-the selective targeting of MIC
ligands (MIC A or MIC B) has been reported previously for several human viruses [51–55].
Taken together, we showed for the first time that HAdV-F41 infection of HCT116 cells led
to the intracellular sequestration of the NKG2D activating ligand MIC B. Whether our
findings represent a viral escape mechanism to prevent recognition and elimination of
HAdV-F41-infected cells in the gut by NK cells requires further investigation.

Our results raise important questions concerning the mechanism by which HAdV-F
sequesters MIC B inside cells, and the viral factor responsible for this effect. The E3-
19.4K and E3-31.6K proteins are highly conserved in HAdVs-F, 99% amino acid sequence
identity between HAdV-F40 and HAdV-F41, which suggests that these proteins are critical
for viral tropism or virulence in the gut. Interestingly, it was shown previously that
infection of human fibroblasts by HAdV-C2 and HAdV-C5 led to the sequestration of
MIC A and MIC B inside infected cells [56], an effect that was attributed to the E3-19K
protein [56,57]. HAdVs-C are tropic for epithelial cells of the lungs and cause respiratory
illnesses. However, these viruses can also cause GI symptoms, as part of a systemic infection
with accompanying respiratory disorders, and are persistently detected in stools of healthy
and infected individuals. Furthermore, tumorigenic HAdV-A12 of species A, which is also
associated with gastroenteritis, was shown to suppress the expression of NKG2D activating
ligands on transformed mouse and rat cells through the transcriptional repression of these
ligands [58]. The protein responsible for this effect has not yet been identified. Taken
together, interferences with NKG2D activating ligands may be an important mechanism by
which HAdVs mediate immune evasion in the GI tract, most especially for species F. In
this context, others have shown, using a model system of human enteroids, that HAdV-
F41 was resistant to the activity of enteric alpha-defensin 5 while in contrast HAdV-C5 was
neutralized [59,60]. These results show that a host factor such as alpha-defensin 5, an
innate defense peptide expressed in the crypts of the intestine, could also modulate the
tropism of enteric species F.

In conclusion, we showed that HAdV-F41 sequesters MIC B inside infected cells.
This represents a novel function of HAdVs-F. HAdVs-F have received considerably less
attention than the other HAdVs, despite being significant pathogens, and our findings cast
a new light on how these viruses, under immune pressure in the GI tract, have remarkably
adapted to this site. Future investigations will provide more details about this function
and the viral protein responsible for it, and will reveal if the suppression of MIC ligands
impairs the recognition of HAdV-F-infected cells by NK cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13071289/s1, Figure S1: The amino acid sequence of HAdV-F41 E3-19.4K protein (residues
1-173), Figure S2: The amino acid sequences of HAdV-F41 E3-31.6K protein (residues 1- 276).
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