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Abstract: The integrator complex has been recently identified as a key regulator of RNA Polymerase
II-mediated transcription, with many functions including the processing of small nuclear RNAs,
the pause-release and elongation of polymerase during the transcription of protein coding genes,
and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a
role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment
or altered expression can contribute to malignancies. Indeed, several studies have described the
mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a
comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members
of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations
affecting Integrator subunit genes and their transcriptional profiles have been investigated in about
11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was
observed, mostly depending on tumor type. Despite the fact that we could not establish them as
cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome
analysis of paired (normal and tumor) samples revealed that the transcription of INTS7, INTS8,
and INTS13 is significantly altered in several cancers. Experimental validation performed on primary
tumors confirmed these findings.

Keywords: integrator complex; somatic mutations; transcriptome profiling; human cancers; TCGA
data analysis

1. Introduction

The integrator complex (INT) is one of the major components of the RNA polymerase II
mediated transcription machinery, playing a role in the regulation of most dependent genes [1–3].
This multiprotein consists of at least 14 different subunits, even though its structure and composition
have not yet been fully characterized [3]. It was originally discovered as a complex implicated in the
3′-end formation of noncoding uridine-rich small nuclear RNAs [1,4–8]. However, in the last few years,
many studies have promptly indicated broader functions for this complex, extending its role to other
aspects of transcriptional regulation [2,3]. For instance, several experimental studies have also allowed
for the assumption of a critical role for the INT complex in the activation of protein-coding genes,
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particularly in the pause-release and elongation of polymerase [9–11]. Moreover, in a very recent paper,
the INT complex was shown to mediate the biogenesis of transcripts derived from distal regulatory
elements (enhancers) involved in the tissue- and temporal-specific regulation of gene expression in
metazoans [12]. Finally, some of its components (particularly IntS3, IntS6, and IntS7) were shown to
participate, together with nucleic acid binding proteins (NABPs), in the formation of other protein
complexes involved in DNA and RNA metabolism, including the DNA damage response [2,13–16].

It is worth noting that, given its main role in transcription regulation and nucleic acid
metabolism, it is feasible that some INT subunits are also involved in human cancer [2]. Indeed,
INTS6/DICE1 was earlier identified as a tumor suppressor gene in lung carcinomas where it was
frequently downregulated [17,18], and in esophageal squamous cell carcinomas where mutations
occurred, although at a low frequency [19]. Furthermore, promoter CpG hypermethylation and the
downregulation of INTS6/DICE1 expression was also observed in prostate cancer cells [20]. More recent
studies have supported the notion that the INTS6/DICE1 gene has a role in malignancy [21–23].
The involvement of this subunit in human malignancy can be hypothesized from its function in the
DNA damage response and the maintenance of genome stability [24]. Similarly, INTS3 was found to
be significantly overexpressed in cell lines and tumor tissues from hepatocellular carcinoma (HCC)
patients compared with their non-cancerous counterparts [25]. In the last few years, both microarray
and exome sequencing analyses have suggested a possible role of INTS8 in gastric cancer and peripheral
T-cell lymphoma, respectively [26,27]. Furthermore, INTS14/VWA9 was found to be upregulated
in immortalized cells, cancer cells, and non-small-cell lung cancer tissues [28]. More recently,
whole-exome sequencing revealed recurrent mutations in the INTS2 gene of gastric cancer patients [29].
Finally, the promoter methylation of INTS1, enclosed in a panel with other genes, was used to
discriminate with high sensitivity and specificity cervical intraepithelial neoplastic lesions (grade 2 or
higher) from samples with no intraepithelial lesions or malignancy [30].

Overall, although most of these studies did not demonstrate a direct participation of INT subunits
in carcinogenesis, it is expected that further alterations of these genes can be discovered in human
cancer because of their key role in fundamental biological processes, often altered in malignancies.

Thus, to date, both mutations and altered expression have been reported for some subunits in
specific cancer entities; however, a systematic and comprehensive approach deciphering the mutational
status and the complete transcriptional profile of the whole INT complex across a large number of
different cancer types is still lacking.

Here, The Cancer Genome Atlas (TCGA) deposited exome and RNA-Seq data [31] were used to
perform a systematic analysis of both the mutational status and the transcriptional profile of all INT
subunit genes across 31 distinct human cancer types.

2. Results

2.1. Mutational Profiling of Integrator Complex across Human Cancers

In order to systematically identify somatic mutations within genes encoding INT subunits,
we analyzed exome-Seq data downloaded from TCGA (see Methods) for 31 cancer types. All of
the INT subunit genes, INTS6L included, were analyzed. The number of samples for each cancer type
is illustrated in Table 1.

Overall, 1916 point mutations and 128 insertions/deletions (both in-frame and frame-shift)
affecting the protein products encoded by INT genes have been identified across all examined cancer
types and all analyzed patients (>11,000). Silent (synonymous) mutations ranged between 19% (INTS12)
and 42% (INTS1) of the total of detected mutations for each subunit. More than 50% of mutations
detected in the TCGA data were non-synonymous. In particular, despite the highest percentage of
silent mutations being identified in INTS1, we noticed that this gene has an overall huge number of
mutations (528) and the largest number of non-synonymous ones (306).
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Similarly, INTS8 (209/266) and INTS2 (193/252) were the other INT genes with high
non-synonymous mutations. Nonsense mutations were more recurrent in INTS8 and INTS4 genes
(19 and 16, respectively), whereas splice sites disrupting mutations were more frequently detected in
INTS3 and INTS10 genes (14 and 13, respectively; Figure 1).

Table 1. List of cancer types and number of patients (n) analyzed from TCGA (The Cancer
Genome Atlas).

Abbreviation Cancer Type Mutation
Analysis n

Expression Analysis
n (Paired)

ACC Adrenocortical carcinoma 92 -
BLCA Bladder cancer 412 19
BRCA Breast cancer 1098 57

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma 308 3

CHOL Cholangiocarcinoma 51 9
COAD Colon adenocarcinoma 463 26

DLBC Lymphoid neoplasm diffuse large B-cell
lymphoma 58 -

ESCA Esophageal carcinoma 185 13
GBM Glioblastoma 617 5

HNSC Head and neck squamous cell
carcinoma 528 43

KICH Kidney chromophobe carcinoma 113 25
KIRC Kidney renal clear cell carcinoma 537 72
KIRP Kidney renal papillary cell carcinoma 291 32

LAML Acute myeloid leukemia 200 -
LIHC Liver hepatocarcinoma 377 50
LUAD Lung adenocarcinoma 585 58
LUSC Lung squamous cell carcinoma 504 51

OV Ovarian cancer 608 -
PAAD Pancreas adenocarcinoma 185 51
PCPG Pheochromocytoma and paraganglioma 179 4
PRAD Prostate adenocarcinoma 500 3
READ Rectum adenocarcinoma 172 52
SARC Sarcoma 261 2
SKCM Skin cutaneous melanoma 470 -
STAD Stomach adenocarcinoma 478 -
TGCT Testicular germ cell tumors 150 -
THCA Thyroid cancer 507 57
THYM Thymoma 124 2
UCEC Uterine corpus endometrial carcinoma 560 7
UCS Uterine carcinosarcoma 57 -
UVM Uveal melanoma 80 -

To measure the frequencies of somatic mutations for each INT gene across all tumor types,
only non-synonymous mutations were considered. A global low mutation rate (from 0 to 9.09%) was
found, with INTS3 and INTS7 being frequently mutated in lymphoid neoplasm diffuse large B-cell
lymphoma (DLBC) (8.16%) and in pancreas adenocarcinoma (PAAD) (9.1%), respectively. Conversely,
INTS1 and INTS4 were mutated in almost all cancer types, at low rates (Figure 2 and Table S1). INTS9,
INTS11, INTS13, and INTS14 were mutated in very few cancer types, with a very low mutation rate.
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cancerogenesis (i.e., “passenger events”) is a great challenge. Mutations with a frequency higher than 
the background rate that tend to cluster in specific regions of protein-coding genes are likely to be 
driver genes. To assess whether members of the INT complex may be driver genes in a given cancer, 
we used OncodriveFML to analyze the pattern of somatic mutations undergoing positive selection, 
and therefore, those which are potentially involved in tumorigenesis [32]. 

The INTS7 and INTS8 mutation patterns significantly differed from the background in uterine 
corpus endometrial carcinoma (UCEC) (INTS7, q-val = 0,182; INTS8, q-val = 0,184; Figure 3). However, 
when analyzing the co-occurrence among mutations in INT genes and those in known driver genes, 
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Distinguishing between so called “driver events”, i.e., somatic alterations (point mutations and
gene rearrangements) that provide a growth advantage to cancer cells and which are positively
selected during clonal tumor expansion, and mutations that stochastically occur during cancerogenesis
(i.e., “passenger events”) is a great challenge. Mutations with a frequency higher than the background
rate that tend to cluster in specific regions of protein-coding genes are likely to be driver genes. To assess
whether members of the INT complex may be driver genes in a given cancer, we used OncodriveFML
to analyze the pattern of somatic mutations undergoing positive selection, and therefore, those which
are potentially involved in tumorigenesis [32].

The INTS7 and INTS8 mutation patterns significantly differed from the background in uterine
corpus endometrial carcinoma (UCEC) (INTS7, q-val = 0,182; INTS8, q-val = 0,184; Figure 3). However,
when analyzing the co-occurrence among mutations in INT genes and those in known driver genes, we
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observed that a very small fraction of the total cohort of UCEC patients was hypermutated, and that
most of them carried mutations in both INTS7 and INTS8 genes.
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at least one somatic mutation in UCEC Exome-Seq data. Red dotted line indicates coincident values of
expected and observed distributions of p-values. INTS7 and INTS8 genes are highlighted in red and
green, respectively.

2.2. Differentially Expressed INT Subunits across Human Cancers

In order to ascertain whether the expression of INT genes is affected in human primary cancers,
we took advantage of RNA-Seq datasets from paired samples (cancer vs. benign counterpart) available
at the TCGA web portal. For the analysis of differential expression, we only considered, for each
tumor type, samples with the corresponding “non-tumor” counterpart (see Methods and Table 1).
Globally, 590 patients across 22 cancer types were analyzed. The gene expression profiles differed
considerably between normal and tumor specimens, depending on the cancer type, as shown by the
principal component analysis (see Supplementary_file_S1). The results of the gene expression profiling
of INT genes across all available cancer types are summarized in Table S2.

Data indicate that a small subset of INT genes is consistently deregulated across several cancer
types. In particular, a significant overexpression was measured for INTS7, INTS8, and INTS13 (Figure 4).
Notably, INTS13, which is significantly up-regulated in rectum adenocarcinoma, lung cancer small
cells, and cholangiocarcinoma, is the most frequently deregulated INT gene at the transcriptional level
(eight out of 22 analyzed cancer types).

On the other side, INTS10, INTS6, and INTS6L are more often downregulated across tumors.
Our analysis reveals that among these genes, INTS6L is significantly down-modulated in breast cancer
(logFC = −1.75; FDR = 1.47 × 10−21).

A strong deregulation of all INT genes was only measured in cholangiocarcinoma. Indeed,
in this cancer type, 11/15 genes encoding INT subunits were overexpressed in tumor vs. healthy
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counterparts. Among them, the expression of INTS6L (logFC = 2.58; FDR = 1.26 × 10−5), INTS3
(logFC = 2.42; FDR = 2.96 × 10−10), INTS8 (logFC = 2.26; FDR = 9.84 × 10−12), INTS9 (logFC = 2.18;
FDR = 1.63 × 10−7), and INTS7 (logFC = 1.97; FDR = 2.72× 10−9) is significantly increased. Conversely,
pheochromocytoma and paraganglioma (PCPG), thyroid cancer (THCA), and PAAD are the cancer
types with the greatest number of downregulated genes.
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2.3. The Expression of INTS7, INTS8 and INTS13 Is Increased in Human Primary Tumors

The re-analysis of TCGA RNA-Seq data from paired samples (tumor vs. healthy) revealed
a robust over-expression of INTS7, INTS8, and INTS13 genes in different tumors. As shown in
Figure 5, the expression of these three genes is increased in cholangiocarcinoma, colon and lung
adenocarcinomas, as well as in liver and lung squamous cell carcinomas. Additionally, INTS7 is
specifically over-expressed in breast cancer, whereas INTS8 and INTS13 is particularly over-expressed
in kidney renal clear cell carcinoma.
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To validate these findings obtained from the analysis of TCGA datasets, we assayed a cDNA panel
array containing eight different tumors (breast, colon, kidney, liver, lung, ovary, prostate, and thyroid).
The panel contained normal and cancer tissues from independent patients diagnosed at various clinical
disease stages and selected from mixed ages and genders. As illustrated in Figure 6, breast, colon,
kidney, liver, lung, ovary, and prostate cancer tissues revealed a general over-expression of all analyzed
genes. However, statistically significant differences in the expression of INTS7, INTS8, and INTS13
between tumor and healthy samples were only measured for breast and colon cancers. Additionally,
the INTS13 gene was confirmed as being significantly overexpressed in kidney and ovarian tumors.
Although not significant, a mild reduction of INTS7, INTS8, and INTS13 expression was measured in
thyroid cancer samples compared to normal ones.

1 
 

 
Figure 6. Relative expressions (mean ± ES) obtained by real-time PCR in breast, colon, kidney, liver,
lung, ovary, prostate, and thyroid cancer tissues vs. corresponding normal tissues (with arbitrary
expression value equal to 1). INTS7 (a); INTS8 (b) and INTS13 (c). Significance: * p < 0.05 vs.
normal tissues.

3. Discussion

This is the first study providing a systematic and comprehensive overview of both the mutational
status and the expression profile of all the genes encoding INT complex subunits across a large number
of different cancer types. This complex plays key roles in transcription regulation and nucleic acid
metabolism; besides, previous literature data indicated that some of the INT components are also be
involved in human diseases, including many malignancies [2].
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In the last few decades, the recent progress in high-throughput sequencing technology has
contributed to the construction of genome-wide somatic mutation and transcription profiles in diverse
cancer samples. In this regard, the large collection of multi-omic datasets available at the TCGA web
portal represents a unique data source to study human cancers, especially for pan-cancer analysis.
Particularly, genome-wide somatic alterations have been automatically catalogued starting from exome
and whole-genome sequencing data in thousands of tumor samples. Similarly, gene expression—both
at gene and transcript level—has been measured from RNA-Seq datasets in paired and unpaired tumor
samples for the same cancer types [31].

The acquisition of somatic mutations is a key mechanism for the onset and progression of cancer,
as well as for the sensitivity to chemotherapy. Thus, many researchers have tried to identify mutations
causative of specific types of tumors, as well as to obtain a complete catalog of significantly mutated
genes across all major cancer types [33,34]. Given the considerable number of somatic gene mutations
found in tumor tissues, in the last few years, a huge effort has been employed in discerning mutated
genes conferring a selective growth advantage (drivers) from those without a proven role in cancer
and which have simply gradually accumulated randomly over the course of development or during
uncontrolled cell growth (passengers) [33,35,36]. To date, several sophisticated mathematical tools have
been developed to distinguish driver from passenger genes and to rank protein-coding genes using
different strategies, such as the rate of cancer mutations over the background, the clustering patterns
of mutations, and their functional impact [37]. Moreover, since many genes with an altered expression
in tumor tissues can also provide a small growth advantage to tumor cells, a sub-classification
was proposed to differentiate “Mut-driver genes”, usually altered by somatic gene mutations from
“Epi-driver genes”, which are aberrantly expressed in tumors through epigenetic modifications, but are
not frequently mutated [33]. In this regard, our pan-cancer investigation of mutations in the INT
complex by OncodriveFML revealed that INTS7 and INTS8 can potentially be Mut-driver genes in
endometrial carcinoma. However, considering that the mean number of somatic mutations in UCEC
patients was about 850, an unusually high number of somatic mutations (from 5000 to 15,000) were
identified in patients carrying mutations in INTS7 and INTS8. Hypermutation is a frequent event in
cancer, and recent whole-exome sequencing analyses have revealed that the “ultramutated” phenotype
associates with somatic mutations in POLE1, even in endometrial carcinoma [38].

It is worth noting that the patients harboring mutations in INTS7 and INTS8 also have somatic
mutations in POLE1. Endometrial cancers fall into four categories: POLE ultramutated, microsatellite
instability hypermutated, copy number low, and copy number high [38]. According to TCGA
classification, we cannot exclude the patients carrying INTS7 and INTS8 mutations from the POLE
ultramutated subgroup. However, these patients are characterized by an increased C→A transversion
frequency and improved progression-free survival. Noteworthy, in a very recent computational study,
a multiscale mutation clustering algorithm was applied to identify variable length pan-cancer mutation
clusters in cancer genes starting from an initial list of genes containing the highest ranked genes from
MutSig; this analysis found multiscale clusters in 393 genes including, among others, INTS7 [39].

Although our findings cannot definitely establish that these two genes are cancer drivers, it would
be interesting to deepen these data in further analyses. The concept of a “driver” gene is gradually
evolving and accordingly, new algorithms are being developed. Indeed, a recent comparative analysis
of the currently available driver gene prediction methods has evaluated their performance, pointing out
the strengths and weaknesses of each computational strategy and the lack of a gold standard [40].
Moreover, recent studies have highlighted the existence of genes, termed “mini-drivers”, with relatively
weak tumor-promoting effects [41]. Multiple mutations in mini-driver genes might substitute for
a major change in a known driver gene, especially in the presence of genomic instability or high
mutagen exposure. Such a view is in line with a polygenic model of tumorigenesis. Another
category has been also proposed: the so-called “latent drivers”, whose mutations behave as passengers.
Usually, mutations in these genes do not confer a cancer phenotype, but when they occur with other
mutations, they can drive cancer development and drug resistance [42]. The presence of “mini” and
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“latent” driver genes may be added to the list of explanations (technical issues, statistical power,
exclusion of the non-coding regions, etc.) that account for the smaller than expected number of driver
mutations observed in solid tumors. In this scenario, we cannot exclude the INTS genes from these
alternative categories of driver genes. The development of new tailored computational methods
will be used to definitely include (or exclude) the mutations in these genes from the growing list of
cancer-driving events. It should be noted that known cancer driver genes are mainly involved in three
core cellular processes: cell fate, cell survival, and genome maintenance. Interestingly, the Integrator
complex has a relevant role in all of them. Specifically, IntS7 participates with other INT subunits and
NABPs in the formation of protein complexes involved in the DNA damage response and in genome
maintenance [2,13–16,43]. Indeed, its siRNA-mediated depletion determines cell cycle arrest bypass
and mitomycin C sensitivity [2,43]. Additionally, pan-cancer studies are gradually highlighting that
individual mutations (even at a low frequency) tend to converge—in a particular type of cancer—into
specific cellular pathways, rather than into specific genes. This hypothesis has encouraged the
development of novel computational approaches for evaluating cancer somatic mutation data that are
based on pathways or protein complexes network analyses [44,45], rather than on the sole mutation
frequency of a specific gene.

Remarkably, despite not being able to definitely establish INTS7 and INTS8 as cancer driver genes,
the transcriptome analysis of RNA-Seq paired samples revealed that these two genes, together with
INTS13, are the most deregulated across cancers. These data suggest that they may act as Epi-driver
genes, rather than as Mut-drivers. Of note, we experimentally validated their transcriptional alteration
in primary breast and colon tumor samples (Figure 6), confirming TCGA data re-analysis. Interestingly,
microarray- and exome sequencing-based studies proposed a role of INTS8 in gastric cancer and
peripheral T-cell lymphoma [26,27]. Unfortunately, freely available data from TCGA (tier 1) did
not include RNA-Seq data from paired stomach adenocarcinoma (STAD) samples and datasets of
peripheral T-cell lymphoma (see Table 1).

Interestingly, we found that INTS6, also known as DICE1 (deleted in cancer 1), was downregulated
in several cancer types, thus corroborating previous literature data and supporting its role as a tumor
suppressor gene [17–23].

Our results can be useful to restrict the attention to a subset of relevant INT subunits deserving
further targeted investigations. Indeed, some of the genes described in this work as frequently
mutated and/or transcriptionally deregulated might have a potential impact on tumor initiation
and progression. We are aware that functional studies on specific INT gene mutations should be
performed to definitely prove their potential oncogenic role. It would also be desirable to investigate
whether these mutations contribute to cancer progression and survival, other than their relation with
drug-response and -resistance, through follow-up studies examining the mutational status of INT
subunits in lymph node and distant metastases tissues. Moreover, molecular studies addressing the
(epi)genetic changes underlying the altered gene expression observed in tumor samples are needed.
Finally, the effect of protein interactions between INT subunits and other partners involved in the
genome maintenance pathways needs to be investigated. Indeed, recent studies revealed that other
subunits (such as NABPs) belong to this complex [2], and it would be relevant to investigate whether
mutations in the genes encoding these proteins or their deregulation can also contribute to cancer.

The availability of data produced from TCGA and other large consortia is offering the unique
opportunity to easily access large catalogues of single omic datasets to investigate distinct molecular
aspects of many cancer types. However, despite having provided the possibility to formulate new
biological hypotheses (that need experimental validation), it has posed new challenges. Indeed,
the impact of such data cannot be fully exploited without the development of multi-omic data
integration tools and methods [46]. In this regard, we envisage that our analysis of INT gene expression
could be further integrated by a systematic pan-cancer study of the epigenetic marks in these genes.
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4. Materials and Methods

4.1. TCGA Data Source Selection and Processing for Mutation Analysis

All the data used in this work (exome- and RNA-Seq data) were downloaded from The Cancer
Genome Atlas, [47]. In order to analyze the Exome-Seq data, all files containing somatic mutations
in a .maf (Mutation Annotation File) format were downloaded for every human primary cancer.
Since such data were analyzed from several consortia, all files retrieved for each cancer type were
merged. The number of samples for each cancer type is illustrated in Table 1.

The selection and nomenclature of INT genes were based on the HUGO Gene Nomenclature
Committee [48]. Analyses of the mutational landscape of INT subunit genes (i.e., evaluation of
mutated patients for each subunit, Mann–Whitney test, and identification of frequently mutated
sites) were performed building a customized computational pipeline in R programming language.
Only non-synonymous mutations were considered for further analyses.

To estimate the positive selection and the accumulated functional impact (FI) bias for the
somatic mutations falling within the coding region of INT genes, we used OncodriveFML [32,49].
OncodriveFML was run using default parameters and the statistical significance values were set as
reported in Mularoni et al., 2016. OncodriveFML used precomputed Combined Annotation-Dependent
Depletion (CADD) scores for functional impact bias (obtained via OncodriveFML) and a file reporting
the genomic coordinates of the coding sequences (CDS) from the OncodriveFML website

4.2. TCGA Data Source Selection and Processing for Expression Analysis

The analysis of gene expression and the identification of differentially expressed genes were
performed comparing the expression profiles of cancer vs. normal samples within the same patient in
a paired analysis. Therefore, expression data taken from human primary cancers for which healthy
samples were not available were discarded. According to this criterion, 22 tumor entities were
analyzed. In order to have a more robust differential expression analysis in paired samples, we applied
generalized linear models (GLM) implemented in the EdgeR Bioconductor package version 3.17.10.
Multiple correction was performed through the application of the false discovery rate (FDR) method.
We considered differentially expressed genes with a logFC ≤ −1 and logFC ≥ 1, and an FDR ≤ 0.01.

4.3. Real-Time RT-PCR Analysis

Quantitative Real-Time PCR (qRT-PCR) experiments were carried out on TissueScan Cancer
Survey Panels (OriGene, Rockville, MD). TissueScan Cancer Survey Panels were purchased in a
96-well format with lyophilized cDNA samples from various normal and tumor tissues covering eight
different cancers (breast, colon, kidney, liver, lung, ovary, prostate, and thyroid).

To quantitatively determine the relative amount of INTS7, INTS8, and INTS13 RNAs, qRT-PCR
was performed using a Bio-Rad iQ iCycler Detection System (Bio-Rad Laboratories, Ltd. Hercules,
California 94547, USA) with SYBR green fluorophore. The amplification reaction mix contained 2X
SSoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories), 10 pmol/uL of each primer.
The conditions used were: First denaturation at 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C
for 5 s and 60 ◦C for 30 s. Primers were designed using Primer3Plus [50]. The specificity of each
oligonucleotide pair used was verified with the BLAST program and through in-silico PCR analysis by
UCSC-Genome Browser [51].

The selected sequences of oligonucleotides were: INTS7 forward 5′-AAG TCA AAA CCG AAG
AAA TGC-3′; INTS7 reverse 5′-CCC TGG CAT TTT CAT AGA CA-3′; INTS8 forward 5′-AAG TCA
AAA CCG AAG AAA TGC-3′; INTS8 reverse 5′-CCC TGG CAT TTT CAT AGA CA-3′; INST13 forward
5′-GAC AAG TCA GAG AAA GCA GT-3′; and INST13 reverse 5′-GGG GAA TCA GGC GAA TCT TT-3′.

The amplification conditions for each primer pair were experimentally determined.
The amplification products were also analyzed by agarose gel electrophoresis [52]. Data were
normalized with β-actin (ACTB gene) that was provided with TissueScan Cancer Survey Panels.
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Melting curves were generated after amplification; the relative gene expression was calculated using
the 2−∆∆Ct method [53]. The results are expressed as the mean ± ES. The statistical significance of
differences between experimental groups was calculated using the unpaired two-tailed Student’s t-test.
Results with a p-value < 0.05 were considered significant.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/5/936/s1.
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