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Objective: Development and progression of immune-mediated inflammatory diseases
(IMIDs) involve intricate dysregulation of the disease-associated genes (DAGs) and their
expressing immune cells. Identifying the crucial disease-associated cells (DACs) in IMIDs
has been challenging due to the underlying complex molecular mechanism.

Methods: Using transcriptome profiles of 40 different immune cells, unsupervised
machine learning, and disease-gene networks, we constructed the Disease-gene
IMmune cell Expression (DIME) network and identified top DACs and DAGs of 12
phenotypically different IMIDs. We compared the DIME networks of IMIDs to identify
common pathways between them. We used the common pathways and publicly available
drug-gene network to identify promising drug repurposing targets.

Results: We found CD4+Treg, CD4+Th1, and NK cells as top DACs in inflammatory
arthritis such as ankylosing spondylitis (AS), psoriatic arthritis, and rheumatoid arthritis
(RA); neutrophils, granulocytes, and BDCA1+CD14+ cells in systemic lupus
erythematosus and systemic scleroderma; ILC2, CD4+Th1, CD4+Treg, and NK cells in
the inflammatory bowel diseases (IBDs). We identified lymphoid cells (CD4+Th1,
CD4+Treg, and NK) and their associated pathways to be important in HLA-B27 type
diseases (psoriasis, AS, and IBDs) and in primary-joint-inflammation-based inflammatory
arthritis (AS and RA). Based on the common cellular mechanisms, we identified lifitegrast
as a potential drug repurposing candidate for Crohn’s disease and other IMIDs.

Conclusions: Existing methods are inadequate in capturing the intricate involvement of
the crucial genes and cell types essential to IMIDs. Our approach identified the key DACs,
DAGs, common mechanisms between IMIDs, and proposed potential drug repurposing
targets using the DIME network. To extend our method to other diseases, we built the
DIME tool (https://bitbucket.org/systemsimmunology/dime/) to help scientists uncover
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the etiology of complex and rare diseases to further drug development by better-
determining drug targets, thereby mitigating the risk of failure in late clinical development.
Keywords: IMID (immune-mediated inflammatory diseases), disease-associated cells, disease-associated genes,
drug repurposing, machine learning, immunome
INTRODUCTION

Genetic and epigenetic heterogeneity plays a significant role in
the development and progression of complex diseases. The past
two decades have seen a major surge in studies that characterize
genes and loci associated with diseases (1). The use of high-
throughput omics technology and functional screenings have
boosted our knowledge about genetic, epigenetic, and metabolic
factors underlying complex diseases (1). As a result of these
genetic and epigenetic screenings, we now know that most
complex diseases and genes/loci have a many-to-many
relationship. Meaning that complex diseases are linked to
many different genes, and a gene/loci might be associated with
several diseases (2). Thus, it is essential to identify and
characterize these disease-associated genes (DAGs) to
understand diseases better and develop therapy accordingly.

Extensive high-throughput screening studies and multi-omics
have helped in the identification of DAGs. However, in most
studies, DAGs were identified using bulk tissue or whole blood, a
caveat since each gene’s expression is known to vary between
tissues and cell types (3, 4). Thus, bulk tissue- or blood-based
studies on DAGs do not consider the role of different cells and
tissues in disease biology. To improve the understanding and
molecular basis of complex diseases, a large number of research
groups and consortiums have started to functionally identify
disease-associated cells (DACs) or tissue types (3–7). The
Genotype-Tissue Expression (GTEx) is one such valuable
project, which maps gene expression profiles of 54 different
human tissue types and the corresponding expression
quantitative trait loci (eQTLs) (5–7). Furthermore, the growth
of single-cell technologies propelled our understanding of
diseases and helped in identifying DACs for complex
conditions, including cancer (8), Alzheimer’s (9), rheumatoid
arthritis (10), among others. Among these studies, the role of
immune cel ls has been central to disease etiology
and progression.

The immune system plays a vital role in developing and
progressing immune-mediated and non-immune mediated
chronic diseases. Many association and functional studies have
shown that immune cells express multiple DAGs, and perturbing
these DAGs can modulate immune cell functions (11). However,
very few studies have explored the impact of DAGs on specific
cell types and even fewer on immune cells, many of which focus
on a limited number of cell subsets (12–16). Recently, Schmiedel
et al. studied the effect of genetic variants on gene expression in
13 different immune cell types (17). However, this study
primarily focused on analyzing genetic variants and their
impact on a total of 13 immune cell types: monocytes (classical
and non-classical), NK cells, naïve B-cells, and nine sub-
org 2
populations of T-cells. The study identified several genetic
variants to have a role in specific immune cell subsets in
autoimmune disorders. For example, the modulatory effects of
the variant rs12936231 in asthma and other autoimmune
diseases are seen in lymphoid rather than myeloid subsets as
previously described (17). Such new insights into specific
immune cells’ role led us to believe that specific immune cells
and their DAGs remain poorly understood even in
immune disorders.

The immune-mediated inflammatory diseases (IMIDs) are
complex among the immune disorders, involving several
immune cells. For example, in rheumatoid arthritis, the
immune cells such as B-cells, T-cells, macrophages, mast
cells, dendritic cells, and NK cells play a significant role (18).
However, the exact mechanism of these cell types remains
unknown. Insights on the precise mechanism of action are
crucial for developing successful therapies, which becomes
particularly challenging for IMIDs due to several cell types
involved. The massive undertaking of GWAS has enabled the
mapping of some of the molecular mechanisms of the IMIDs
(19–22). However, further research is required to understand
the etiology of IMIDs taking into account the several different
immune cells at play and the contributing DAGs for each
immune cell type. By identifying the critical immune cells
and their mechanism, we would set a robust rationale for
identifying any mechanistic overlap between diseases and
exploiting them to develop therapeutic strategies.

This study mapped the largest available and expert-curated
disease-gene network (from the DisGeNet curated from 16
different databases) (23) on the most extensive immunome
data comprising gene expression profiles of 40 different
immune cell types, curated by us. We then used an
unsupervised machine learning algorithm, the disease-gene
network, and the immunome to create the Disease-gene
IMmune cell Expression (DIME) network. Using this
approach, we built a tool called DIME. Using DIME, we
quantified the effects of 3957 DAGs on the immunome to
identify DACs for 12 phenotypically different IMIDs. We used
the DIME to (1) study the underlying cel l-specific
mechanisms (2); identify common DACs and their top-
weighted DAGs between disease pairs (referred to as the
common cel l-gene network); and (3) identify drug
repurposing targets using the common cell-gene network.
The DIME is available as a user-friendly R tool (https://
bitbucket.org/systemsimmunology/dime), to determine the
top genes and cells associated with the disease of interest for
(1): diseases from the DisGeNet (2), diseases from the EBI
genome-wide association study (GWAS) catalog, or (3)
custom set of genes defined by the user.
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METHODS

Transcriptome Data - Immunome
The transcriptome data consists of RNA-sequencing datasets of 40
different immune cell types curated using 316 samples from a total
of 27 publicly available datasets (see Supplementary Table S1 for
list of GEO datasets and samples used). The 40 different immune
cells cover the entire hematopoietic stem cell differentiation tree
comprising nine progenitors, 19 lymphoid, and 12 myeloid cell
types. The samples used here were manually curated considering
only the unstimulated (except for monocyte-derived macrophages)
immune cells that were sorted using Fluorescence-activated cell
sorting (FACS) and were isolated from either blood, bone marrow,
or cord blood from healthy donors.

All the selected datasets (Supplementary Table S1) were
downloaded as FASTQ files using the fastq-dump tool from
sratoolkit. The “split-files” option was given if the library type was
paired-end sequencing. FASTQ files were then aligned to the
reference genome (GRCH.Hg38.79) using the STAR aligner (24).
The result is a SAM file, which was then converted into a sorted
BAM file using the samtools program (25). These were then used to
calculate the count of aligned reads using the HTSeq program (26)
with the “intersection non-empty” option. HTSeq was run for all
possible stranded mode options, the count file with the maximum
counts was chosen as the respective count file for the sample.

The data was then filtered by removing all genes that had less
than 20 read counts in 95 percent of the samples using R
programming. The filtered data was then lane normalized
using the “betweenLaneNormalization” function from the
RUVSeq package (27). The RUVr method from RUVSeq was
used to identify residual factors contributing to the batch effect.
The resulting filtered, batch corrected, and normalized data had
expression for 34,906 genes that were void of any observable
batch effect. We calculated counts per million (CPM) for the
filtered genes and used log2(CPM +1) as the gene expression
measure. We then used the median gene expression for each cell
type for the rest of the analysis. This processed, batch corrected,
and normalized data of the 40 immune cells is referred to here as
the immunome.

Disease-Gene Network From DisGeNet
The disease-gene network from DisGeNet (23) was downloaded
from the DisGeNet database (www.disgenet.org/downloads). All
HLA associated genes were removed from the network; this was
done to ensure that bias towards myeloid cells and B cells are
removed since the HLA genes are primarily expressed by these
cells. The resulting network was further filtered to include only
those genes that were present in the immunome.

IMID Disease-Gene Network
To study and identify the DACs of the IMIDs, we extracted the
DAGs of 12 IMIDs extracted from the above DisGeNet. The
IMID gene network for the 12 diseases comprised of 3579 DAGs.
The 12 diseases that broadly represent the IMIDs in this study
include: ankylosing spondylitis (CUI: C0038013), arthritis (CUI:
C0003864), Crohn’s disease (CUI: C0010346), diabetes mellitus -
Frontiers in Immunology | www.frontiersin.org 3
non-insulin-dependent (CUI: C0011860), systemic lupus
erythematosus (CUI: C0024141), multiple sclerosis (CUI:
C0026769), psoriasis (CUI: C0033860), psoriatic arthritis (CUI:
C0003872), rheumatoid arthritis (CUI: C0003873), Sjogren’s
syndrome (CUI: C1527336), systemic scleroderma (CUI:
C0036421), and ulcerative colitis (CUI: C0009324). CUI, used
in DisGeNet, is the concept-unique-identifier for the disease
term defined by the unified medical language system (28). The
disease term arthritis (CUI: C0003864) comprises DAGs that
pan over several arthropathies such as spondyloarthropathy,
osteoarthritis, gout, allergic arthritis, etc., that fall under the
broad arthritis MeSH term.

Identification of Top DAC and DAG Using
Machine Learning
Briefly, we used an unsupervised machine learning algorithm
called non-negative matrix factorization (NMF) to map the
disease-gene network to the immunome and identify the top
DACs and DAGs of the 12 IMIDs. The NMF algorithm clusters
the input gene expression data into ‘k’ clusters, such that the
DAGs of a cluster are expressed by the DACs of the same cluster,
thus forming DAC-DAG pairs in each cluster (29). We used the
coefficients and weights identified by the NMF algorithm as the
DAC and DAG scores, respectively. The scores were scaled
between 0 and 1, with 1 being the highest score. Those in the
top 25 percentile of the scores were regarded as the top DACs
and DAGs, respectively. We calculated the Frobenius norm for
each cluster to weigh and rank the clusters; the rank 1 cluster is
the top cluster having the highest Frobenius norm value. The top
cluster comprises the DAC-DAG pair that maximally captures/
represents the input gene expression matrix. Using the top DAC-
DAG pairs of all clusters, we constructed the Disease-gene
IMmune cell Expression (DIME) network for the 12 IMIDs.
Detailed description of the DIME method is as follows.

Mapping Disease-Gene Network to Immunome Data
For a given disease D and its DAG, we first extracted the
corresponding immunome expression matrix (XD). XD

comprised the gene expression of the DAG across the 40 cell
types. XD was used as an input matrix for the NMF algorithm.

Using NMF to Cluster XD Into k Classes
We used the NMF package (30) in R and applied Brunet’s NMF
algorithm (29) on XD to factor it into two matrices, namely WD

and HD such that.

XD ≈ WDHD (1)

WDHD =

j j j j
w1
D w2

D … wk
D

j j j j

2
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Where WD and HD are the basis and coefficient matrices
computed by NMF. Here, k is the number of classes/clusters that
splits the data such that it satisfies the above NMF equations. The
WD matrix comprises the weights of the DAGs across the k
clusters (in each column), and the HD matrix comprises the
weights of the cells in the corresponding k clusters (in each row).
We used Brunet’s method to identify the ideal k value using the
cophenetic correlation coefficient (29).

Identifying the Top DAG and DAC From WD and HD

The NMF algorithm clusters the data into k clusters (as shown in
Equations 2 and 3) such that, in each cluster ‘i’, where i ∈ (1,…,
k), the genes that have high values in wi

D are constitutively
expressed by the cells that have high values in hiD. Where, wi

D is
the ith column of WD and hiD is the ith row of HD. We used the
scaled (between 0 and 1) values of hiD and wi

D as the DAC and
DAG scores, respectively. For each cluster i, we chose the DACs
and DAGs that were in the top 25th percentile range of their DAC
and DAG scores, respectively. These filtered DACs and DAGs
are regarded as the top DACs and DAGs, respectively. The top
DACs and DAGs were extracted for all clusters of i ∈ (1, …, k).
The DIME network was constructed using the top DAC-DAG
pairs from all clusters.

Identifying the Top Cluster
We then identified the largest weighted cluster (referred to as the
top cluster) among the k clusters identified by the NMF. That is,
the subset of DACs and DAGs of XD that can capture most of its
expression pattern. We did this by calculating the Frobenius
norm of each wi

Dh
i
D for all values of i ∈ (1, …, k) from Equation

3. We then identified the top cluster for which jjwi
Dh

i
DjjF is the

maximum. This can be represented as:

top   cluster   = argmax jjwi
Dh

i
DjjF

� �
;   i ∈ 1,…kf g (4)

Where the top cluster represents that which maximally
captures/represents the expression matrix XD. Thus, the top
cluster is the rank 1 cluster of DIME. Subsequent ranks are the
next highest weighted clusters.

Evaluating the Consistency of Top DACs and
DAGs Identified by DIME
To check the consistency of the results from DIME, we
performed 1000 jackknife simulations for each of the 12
IMIDs. For each simulation of each disease, we ran DIME
with 70% random subsampling of either the DACs or the
DAGs. And in each simulation, we identified the top cluster
and the top DACs when DAGs were subsampled and vice versa.
We compared the cons i s t ency o f the top DACs
(Supplementary Figure S2) and the top 10 DAGs
(Supplementary Figure S3) identified by the original DIME
run (100% of the sample) against the 1000 simulations. We
computed the Pearson correlation coefficient between the
DAC/DAG score of the top cluster of the original run to the
number of times the DAC/DAG was found as the top DAC/
DAG in the top cluster of the 1000 simulations. We used the p-
value from the Pearson correlation test to state the significance
Frontiers in Immunology | www.frontiersin.org 4
of correlation and thus the statistical significance of the top
DAC/DAG of the top cluster.

The Common Cell-Gene Network Between
Diseases
To identify the common cell-gene network between two diseases,
we looked at their overlapping DAC-DAG pairs in their
corresponding DIME networks. We refer to the overlapping
DAC-DAG pairs as the common cell-gene network between the
two diseases. We then used the Jaccard index (JI) to measure the
overlap between the two diseases and Fisher’s exact test (FET) to
obtain a confidence p-value for the given overlap.

Integrating Drug-Gene Network
We extracted the drug-gene target network from (1) DGIdb with
the filter set to contain CHEMBL interactions of the drugs
approved by the food and drug administration (FDA) of USA
(31) (2); all drug-gene of CLUE database (32) and (3); all drug-
gene of hPDI (33). The genes with drugs associated with them
are labeled in the common cell-gene networks to highlight
drugability (Figures 6C–E).

Statistical Analysis
We performed 1000 jackknife simulations to assess the consistency
of the results from the DIME (Supplementary Methods and
Supplementary Figures S2–S4). We used the Pearson correlation
coefficient to measure the significance of the jackknife simulations
compared to the original run (Supplementary Figure S4).
RESULTS

The Disease-Gene Network of the 12
IMIDs Reveal Several Common DAGs
In this study, we analyzed the DAGs of 12 different types
of IMIDs that broadly include inflammatory arthropathies,
spondyloarthropathies, rheumatic diseases, systemic IMIDs, and
inflammatory bowel diseases (IBDs). And specifically, the 12
different IMIDs studied here are ankylosing spondylitis (298
DAGs), arthritis (567 DAGs), Crohn’s disease (786 DAGs),
diabetes mellitus - non-insulin-dependent (1415 DAGs), systemic
lupus erythematosus (963 DAGs), multiple sclerosis (961 DAGs),
psoriasis (689 DAGs), psoriatic arthritis (177 DAGs), rheumatoid
arthritis (1612 DAGs), Sjogren’s syndrome (229 DAGs), systemic
scleroderma (494DAGs), and ulcerative colitis (796DAGs) (Figures
1A,B).The12 IMIDshada total of 3957DAGs.Amongthese, several
genes were linked to several IMIDs; for example, 74 DAGs were
linked to only Crohn’s disease (CD) and ulcerative colitis (UC), both
IBDs. Calculating the Jaccard index and Fisher’s exact test (FET) on
all the overlapping DAGs between all IMIDs revealed that CD and
UC had the highest significant overlap (Figure 1C). Interestingly,
genes associated with CD had significant overlap (FET p-value ≤
0.05) with all diseases except psoriatic arthritis and non-insulin-
dependent diabetes mellitus. Rheumatoid arthritis (RA) had a
significant overlap of DAGs with all IMIDs except non-insulin-
dependent diabetes mellitus. However, non-insulin-dependent
May 2021 | Volume 12 | Article 669400
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A

B

D E
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FIGURE 1 | DAGs of IMIDs: (A) intersection of DAGs for all comparisons of IMIDs. Comparisons are shown only for those diseases that have at least one
intersecting DAG between them. (B) Barplot represents the number of DAGs in each IMID. (C) Heatmap depicting Jaccard index and Fisher exact test (FET) p-value
calculated for each IMID comparison. Fisher exact test (FET) p-value denoted by * (***≤ 0.001, **≤ 0.01 and *≤ 0.05). (D) Gene expression of TNFAIP3. (E) Heatmap
depicting gene expression of the 12 genes common to all 12 IMIDs. Gene expression values in log2(CPM+1). CPM denotes counts per million.
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diabetes mellitus did not have a significant overlap of DAGs with
any of the IMIDs. Arthritis, psoriasis, CD, and RA had a significant
overlap ofDAGs between each other.We found 12DAGs that were
associatedwith all the 12 IMIDs (Figures 1A, E). TheseDAGswere
related to processes typically associated with inflammation, such as
cytokine signaling (GO:0001817; GO:0019221), regulation of
inflammatory response (GO:0050727), and regulation of
interleukin-6 (GO:0032675; GO:0032635). We further explored
these DAGs in the immunome and found the expression of
TNFAIP3 to be the highest in CD8+ T-cells, ILC3 and CD4+ T-
cells (Figures 1D, E). Likewise, IL1Bwas expressed bymyeloid and
progenitor cells; TNFwas expressed by lymphoid andmyeloid cells.
Overall, specific myeloid and lymphoid cells specifically expressed
some of the 12 genes linked to all the 12 IMIDs. Such cell-specific
expression of the DAGs led us to question the immune cell types
and genes essential for the 12 IMIDs. Hence, we used the DIME on
the 12 IMIDs to identify their top DACs and DAGs. Briefly, DIME
uses the immunome, input disease-gene network, and an
unsupervised machine learning algorithm (NMF) to determine
the clusters of top DACs and DAGs.

Inflammatory Arthritis Is Driven by CD4+

Treg, CD4+ Th1, and NK Cells
Inflammatory arthritis is an autoimmune disorder characterized by
joint inflammation. And joint inflammation is the primary clinical
feature observed in inflammatory arthritis types such as ankylosing
spondylitis (AS) and RA. However, in other inflammatory arthritis
types, such as psoriatic arthritis, inflammation is present in both the
skin and joints. Interestingly, AS and psoriatic arthritis are both
seronegative spondyloarthropathies (negative for rheumatoid factor
and auto nuclear antibodies) characterized by enthesitis and
predominant HLA-B27 genotype (34, 35). Such shared clinical
features led us to question if the inflammatory arthritis types
shared molecular mechanisms. So, we performed DIME on the
different types of inflammatory arthritis to identify the critical DACs
and DAGs and compare the molecular mechanism shared between
them. As a reference, we used the broader arthritis disease term that
encompassed several different kinds of arthropathies (including
inflammatory arthritis).

In the DIME analysis, the clusters of the DIME network (Figures
2–5) are ordered based on the Frobenius norm. Cluster with the
highest Frobenius norm represents the most crucial cluster and is
designated as the top cluster comprising the most crucial DACs and
DAGs. In each cluster, the DACs and DAGs are ordered based on
the DIME score, high scoring nodes signify higher importance. The
DIME analysis of AS revealed lymphoid cells such as NK cells, ILC3,
CD4+ T-cells (Th1, Treg, TEMRA) as the top DACs in the top
cluster (Figure 2A). The top cluster’s top DAGs comprised ETS1,
HSPA5, TNFAIP3, IL2RG, WNK1, etc. that were associated with
pathways such as interleukin signaling, antigen presentation,
regulation of RUNX3, and BCR signaling (Figure 2C). We find
RUNX3 expression highest in the NK cells, followed by CD8+ T-
cells and Th1 cells (Supplementary Figure S1A). The exact role of
RUNX3 in AS is unclear and possibly involves regulation,
differentiation, and activation of Th1 and T-bet cells (36). Further
research is required to establish the exact role of RUNX3 in AS and
Frontiers in Immunology | www.frontiersin.org 6
the above-identified lymphoid cell subsets. In the second cluster, the
top DACs included myeloid cells, and the top DAGs were
associated with pathways such as interleukin (IL-4, IL-10, IL-13)
signaling, MAPK3 activation, and MyD88 (Figures 2A, C). Thus,
the key DACs of AS are diverse, as reported in the literature (37).
However, according to DIME, the top DACs were NK cells, ILC3,
CD4+ T-cells (Th1, Treg, TEMRA).

The DIME analysis of psoriatic arthritis revealed lymphoid
cells such as NK cells, ILC3, T-cells (CD8+, TEMRA, Th1), ILC2
and myeloid cells like the macrophages and BDCA1+ DC as the
top DACs in the top cluster (Figure 2B). Likewise, T-cells, NK
cells, and antigen-presenting cells have played a crucial role in
psoriatic arthritis pathology (38). The top cluster’s top DAGs
were associated with interleukin (IL-4, IL-10, IL-13) signaling,
PI3K, and NF-KB activation. (Figure 2D). Furthermore, the
downstream genes of TNF-alpha such as TNFAIP3, TRAF5,
NFKB1, and ICAM1 were top DAGs in the top cluster.
Interestingly, TNF-alpha is a therapeutic target for psoriatic
arthritis (39, 40), perhaps the downstream genes identified by
DIME could also be explored as a therapeutic target for psoriatic
arthritis. S100 calcium-binding proteins like S100A8 and S100A9
play a role in regulating inflammation in psoriatic arthritis (41).
In the second cluster, we found the top DAGs included the S100
calcium-binding proteins, such as S100A9 and S100A8, which
were highly expressed by neutrophils, granulocytes, monocytes,
and dendritic cells (Figure 2B and Supplementary Figure S1B).

The crucial immune cells involved in RA are T-cells, B-cells,
and APCs (42). While activation of CD4+ Th1 and impairment
of CD4+ Tregs are essential for the pathology of rheumatoid
arthritis (43), the DIME analysis of RA revealed several
lymphoid cells such as CD4+ Tregs, CD4+ Th1, NK cells, etc.,
as the top DACs in the top cluster (Figure 3A). The top cluster’s
top DAGs were associated with pathways such as interleukin,
TCR, FCERI, and BCR signaling (Figure 3C). In the second
cluster, the top DACs included myeloid cells, and the top DAGs
were associated with pathways such as interleukin (IL-10, IL-13)
signaling, neutrophil degranulation, and ECM organization
(Figures 3A, C). Activation, recruitment, and apoptosis of
neutrophils are altered in RA, and under chronic inflammatory
conditions, they release protease-rich granules (44).

The DIME analysis of the broader arthritis disease term
revealed macrophages as the top DAC in the top cluster
(Figure 3B). Macrophages play a central role in arthropathies,
where they release cytokines and activate several immune cells
such as T-cells, monocytes, neutrophils, and synovial fibroblasts.
Besides, they are also the most abundant cells at the site of
inflammation (45). The top DAGs of the top cluster were
associated with pathways such as interleukin (IL-4, IL-13)
signaling, extracellular matrix (ECM) related pathways,
neutrophil degranulation, and toll-like receptor (TLR) cascades
(Figure 3D). In the second cluster, the top DACs comprise
neutrophils, granulocytes, and the top DAGs associated with
pathways s imi lar to the top cluster and included
inflammasomes-related pathways (Figures 3B, D).

In conclusion, using DIME, we found that in addition to the
shared clinical features, the three inflammatory arthritis types
May 2021 | Volume 12 | Article 669400
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also had a similar DAC profile comprising CD4+ Treg, CD4+

Th1, and NK cells as the top DACs, distinguishing them from the
broader arthritis disease that showed macrophages as its top
DAC. Perhaps these lymphoid cells contribute to inflammation
in these arthropathies, and targeting them to reduce
inflammation could be explored as a therapeutic strategy (46).

Myeloid Cells Are Essential to Systemic
IMIDs
We performed the DIME analysis on the systemic IMIDs such as
systemic lupus erythematosus (SLE) and systemic scleroderma
Frontiers in Immunology | www.frontiersin.org 7
(SSc) (Figure 4). SLE and SSc are type I interferon-mediated
systemic autoimmune diseases, that unlike RA, primarily affect
not just the joints but also the skin, kidney, heart, and other
organs (47). In SLE, the continuous IFN production by pDC and
neutrophils leads to activation of monocytes, T-cells, and B-cells
(48). The DIME analysis of SLE revealed the myeloid cells
(granulocytes, macrophages, BDCA1+ CD14+, monocytes) as
the top DACs in the top cluster (Figure 4A). The top DAGs in
the top cluster were associated with interleukin signaling
pathways (IL-4, IL-13), neutrophil degranulation, cell-surface
interactions at the vascular wall, and the TLR cascades
A

B

DC

FIGURE 2 | Top DACs and DAGs of inflammatory arthritis: DIME network of (A) ankylosing spondylitis and (B) psoriatic arthritis. The DIME network shows top 25
percentile DACs and DAGs. Square nodes represent genes and circular nodes represent cell types, the color scheme signify the DIME score (higher score signify
importance of the node in the cluster) and the node size represent the median gene expression of the gene in the given cluster. Edges in each cluster signify the
relationship between the cell types and genes as identified by DIME, where the cell types in the cluster express the genes of the same cluster. To aid visualization,
the DAGs in the network is pruned based on the DIME score (top 50 DAGs if present) and gene expression (> 5 median gene expression in the corresponding
cluster’s cell types). Pathway enrichment analysis of the top 25 percentile DAGs of (C) ankylosing spondylitis and (D) psoriatic arthritis.
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(Figure 4C). Incidentally, the neutrophils in SLE undergo
spontaneous NETosis (a form of suicidal cell death), and this
process is dependent on TLR signaling (48). Additionally, T-cells
in SLE have altered cytokine production with higher IL6, IL7,
and IL10 secretions (48). In the second cluster, we found the top
DACs included CD4+ T-cells (TEMRA, TEM, TCM), and the top
DACs were associated with pathways such as immunoregulatory
interactions, Nef-associated factors (TNIP1, TNFAIP3), ZAP-70,
VAV1 pathway (Figures 4A, C). Nef-associated factors (TNIP1,
Frontiers in Immunology | www.frontiersin.org 8
TNFAIP3) have played a role in T-cell activation via TCR
signaling in SLE (49).

The DIME analysis of SSc revealed myeloid cells (neutrophils,
granulocytes, BDCA1+ CD14+ cells) and lymphoid cells (NK
cells, CD4+ Treg, ILC2, and ILC3) as the top DACs in the top
cluster (Figure 4B). The top DAGs in the top cluster were
associated with interleukin signaling pathways (IL-4, IL-13),
TGF beta signaling, NLR signaling, etc. (Figure 4D). In the
second cluster, the top DACs included macrophages and the top
A

B

DC

FIGURE 3 | Top DACs and DAGs of inflammatory arthritis: DIME network of (A) rheumatoid arthritis and (B) arthritis. Pathway enrichment analysis of the top 25
percentile DAGs of (C) rheumatoid arthritis and (D) arthritis. See Figure 2 legend for network description.
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DAGs were associated with pathways that included IL-10
signaling and degradation of ECM (Figures 4B, D). As
described in the review by Caam et al., several studies have
shown neutrophils, macrophages, NK cells, and Tregs to play a
role in the profibrotic events in SSc by the production of
profibrotic cytokines such as TGF beta, IL-4, IL-10, IL-13, etc.,
thus corroborating our findings (50).

Thus, the top DACs of the systemic IMIDs comprised
myeloid cells such as neutrophils, granulocytes, BDCA1+

CD14+ cells, CD11c+ myeloid cells, and BDCA1+ DC.
Frontiers in Immunology | www.frontiersin.org 9
Exploring the role of these cells, their corresponding DAGs
and pathways in the systemic IMIDs may be useful for gaining
mechanistic insights into disease and for successful therapeutic
strategy. Exploring the role of neutrophils and their
degranulation genes may serve as stronger targets in SLE, as
neutrophil degranulation precedes type 1 interferon signature
(often observed in SLE patients) (51–54). While the DACs of the
SSc are diverse populations of myeloid and lymphoid cells,
neutrophils are still an interesting candidate and exploring the
role of TGF beta may shed light on the profibrotic events in SSc.
A

B

DC

FIGURE 4 | Top DACs and DAGs of systemic diseases: DIME network of (A) SLE and (B) arthritis. Pathway enrichment analysis of the top 25 percentile DAGs of
(C) SLE and (D) SSc. See Figure 2 legend for network description.
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Thus, based on the DIME analysis, attenuation of neutrophilic
inflammation may be the key therapeutic strategy for the
systemic IMIDs.

IBDs Are Primarily Lymphoid Driven
We then looked at IMIDs that involve chronic inflammation of
the digestive system, categorized as IBDs. The two primary
forms of IBDs are CD and UC. CD is known to be driven by
CD4+ Th1 cells, with a dominant Th1 cytokine profile leading
Frontiers in Immunology | www.frontiersin.org 10
to a pro-inflammatory effect (55). The DIME analysis of CD
revealed lymphoid cells (CD4+ Treg, ILC2, CD4+ TEMRA,
CD4+ Th1) as the top DACs in the top cluster (Figure 5A).
The top DAGs of the top cluster were associated with pathways
such as interleukin (IL-4, IL-10, IL-13) signaling, TLR (TLR-5,
TLR-10) signaling, MyD88, and neutrophil degranulation
(Figure 5C). In the second cluster, the top DACs included
granulocytes, neutrophils, monocytes, macrophages, etc., and
the top DAGs were associated with pathways such as
A

B

C D

FIGURE 5 | Top DACs and DAGs of IBDs: DIME network of (A) Crohn’s disease and (B) ulcerative colitis. Pathway enrichment analysis of the top 25 percentile
DAGs of (C) Crohn’s disease and (D) ulcerative colitis. See Figure 2 legend for network description.
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interleukin signaling, neutrophil degranulation, and TLR
cascades (Figures 5A, C).

The T-cell profile of UC has been difficult to categorize due to
discrepancies in its response among patients. However, there is
evidence of Th2 cells, NK cells, macrophages, and neutrophils
involved in the pathogenesis of UC (55). The DIME analysis of
UC revealed lymphoid cells (ILC2, NK, ILC3, CD4+ Th1, etc.) as
the DACs in the top cluster (Figure 5B). The top DAGs of the
top cluster were associated with pathways such as interleukin
(IL-4, IL-13) signaling, TLR cascades, NLR signaling, neutrophil
degranulation, etc. (Figure 5D). In the second cluster, the top
DACs included granulocytes, BDCA1+ CD14+ cells, etc. The top
DAGs were associated with interleukin signaling pathways (IL-4,
IL-10, IL-13), neutrophil degranulation, and TLR cascades
(Figures 5B, D). The DIME analysis of UC comprised 5
clusters in total, with myeloid cells in the third cluster,
thrombocytes and TEMRA in the fourth cluster, and bone
marrow plasma cells in the fifth cluster. This shows that the
disease-gene network of UC involves genes that participate in
many different cell types and are more complex to uncover their
etiology. However, the highest weighted cluster signifies that the
lymphoid cel ls may be the primary candidates for
further analysis.

Thus, the top DACs of the IBDs include the ILC2, CD4+ Th1,
CD4+ Treg, and the NK cells. The T-cells, innate lymphoid cells,
and NK cells play an important role in the pathogenesis of IBDs
(56–58), thus corroborating our findings. We hypothesize that
Crohn’s disease is driven primarily by lymphoid inflammatory
response and downregulating TLR signaling pathways could be a
potential therapeutic strategy. The DAC profile of ulcerative
colitis was found to be diverse, and would require a deeper
analysis into the participation of the different cell types involved
in their etiology.

Statistically Significance of DIME Results
To evaluate DIME’s consistency, we performed 1000 Jackknife
simulations with random subsampling of DAC/DAG. We re-
identified the top DAC/DAG for all IMIDs (see Supplementary
Methods). The jackknife simulations revealed that the top DACs
identified across all clusters in the simulations (Supplementary
Figure S2A) showed a similar pattern compared to top DACs
identified in the original run (Supplementary Figure S2C). For
the top DACs of the top cluster, the pattern from the simulations
(Supplementary Figure S2B) was comparable to the original
run’s DAC score (Supplementary Figure S2D). We used
Pearson correlation to compare the pattern observed between
the simulations and the original run. The Pearson correlation
between the pattern observed in the simulated run
(Supplementary Figure S2B) and the DAC scores of the
original run for the top cluster revealed that the top DACs in
the top cluster were significantly correlated (p-value ≤ 0.05) for
all the IMIDs except ulcerative colitis (Supplementary Figure
S4). This correlation shows that the top DACs of the top cluster
identified by DIME is statistically significant for all IMIDs,
except UC.

Likewise, we evaluated the consistency of the top DAGs. In all
simulations, the top 10 DAGs of the original run’s top cluster
Frontiers in Immunology | www.frontiersin.org 11
were present as the top DAG in any of the simulated run clusters
(Supplementary Figure S3). The Pearson correlation between
the pattern observed in the simulated run and the DAG scores of
the original run for the top cluster was significantly correlated for
all the IMIDs (Supplementary Figure S4B). Thus, the top DAGs
of the top cluster identified by DIME is statistically significant for
all IMIDs.

Why Are the top DACs of UC Insignificant?
In the case of UC, the top DACs were statistically insignificant
from our 1000 jackknife simulations; the top DAGs, however,
were significant (Supplementary Figures S2–S4). We found
from 1000 simulations that the lymphoid cells identified by the
original run (Figure 5B) were indeed present in the simulations.
The myeloid cells were also part of the top DACs of the top
cluster in the simulations (Supplementary Figure S2B).
Furthermore, we found that the top cluster’s top DAGs
included genes associated with neutrophil degranulation
pathways and other myeloid cell-related pathways (Figures 5B, D).
Thus, owing to the non-convergence of NMF in accurately
predicting the top DACs of the top cluster in UC. The top DACs
of the top cluster of UC were ambiguous, as reported in the literature
(55). From our simulations, we propose the inclusion of the
myeloid cells in the top DACs of the top cluster in addition to the
lymphoid cells previously identified (Figure 5B).
Common Cell-Gene Networks Reveal
Common Mechanisms Between
IMIDs and Potential Drug Targets
The DIME analysis revealed that several top DAGs and their
corresponding DACs were present in many IMIDs. For example,
in many IMIDs, the gene FOS was present as top DAG in the
cluster typically containing myeloid cells (granulocytes,
neutrophils, and dendritic cells) as the top DACs. We found
several genes, like FOS, that were present as the top DAG in the
same top DAC cluster between different pairs of diseases. We
refer to these top DACs and DAGs present between the two
diseases as the common cell-gene network (represented
schematically in Figure 6A). Using the common cell-gene
network, we suggest that these diseases may have a similar
mechanism of action. We could exploit such common
mechanisms to gain mechanistic insights between diseases and
identify drug repurposing targets. Hence, we integrated the
publicly available drug-gene networks to identify and reinforce
drug repurposing targets based on the common mechanisms
(cell-gene networks) determined from the DIME analysis
(Figure 6A).

To identify the common mechanisms across the 12 IMIDs, we
identified the common cell-gene networks between all disease
comparisons (Figure 6B). We then used the Jaccard index and
FET to measure the extent and significance of the overlap in the
common cell-gene networks between the disease pairs.
Compared to the analysis that looked at all DAGs, which
showed several diseases to be statistically significant in the
overlap, the common cell-gene network overlap was restricted
to fewer diseases (Figure 1C and Figure 6B).
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The comparative analysis revealed that CD had statistically
significant common cell-gene networks with several diseases
such as, psoriasis, RA, and UC (Figure 6B). CD and UC’s
common cell-gene network had the highest Jaccard index
among all the IMIDs, both being IBDs with an aggressive T-
cell response (55). CD and UC’s common cell-gene network
revealed that the top DACs included the lymphoid cells such
as CD4+ T-cell, CD4+ Th1, CD4+ Treg, ILC1, ILC2, ILC3, and
NK cells in one cluster (Figure 6C). CD4+ Th1 and NK cells
are known to be implicated in both CD and UC (55). The top
DAGs (represented by green border) such as CD44, CXCR4,
SELL, HSP90AA1 etc., were highly expressed by cells of the
Frontiers in Immunology | www.frontiersin.org 12
lymphoid cluster and were also drug targets (genes that are
druggable or have drug targeting them in our drug-gene
network). Thus, making them potential drug repurposing
candidates for CD and UC. Other potentially interesting
DAGs (that were not drug targets) included PTPRC, ETS1,
IL7R, TNFAIP3, etc. Collectively, the DAGs in the lymphoid
cluster were enriched in interleukin signaling pathways (IL-4
and IL-13), NLR signaling, etc. (Supplementary Figure S5A).
The other clusters consisted of myeloid cells such as the
granulocytes, dendritic cells, monocytes, and macrophages,
among which dendritic cells have been crucial for regulating
the T-cell responses in IBDs. The top DAGs, such as SH2B3,
A

B

D E

C

FIGURE 6 | Common mechanisms between IMIDs. (A) Steps involved in DIME based drug repurposing using the common cell-gene network. (B) Jaccard index
and FET calculated for the common cell-gene between two diseases for all disease comparisons. Fisher exact test (FET) p-value denoted by *(***≤ 0.001 and
*≤ 0.05). The common cell-gene network of (C) Crohn’s disease and ulcerative colitis, (D) Crohn’s disease and rheumatoid arthritis, and (E) ankylosing spondylitis
and rheumatoid arthritis. The DAG’s color is based on the median gene expression of the DAG in the corresponding DACs. DAGs that are drug targets have a green
border, and the cells are shown in blue color.
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JAK2, CD86, MMP9, CXCL8, PTGS2, TREM1, LRRK2, TYK2,
etc., were highly expressed by the myeloid cluster cells and
were potential drug repurposing candidates. These DAGs were
enriched in interleukin signaling pathways (IL-10), TLR
signal ing , ECM degradat ion , e tc . (Supplementary
Figure S5A).

We next explored the common cell-gene network of the two
distinct IMIDs that belonged to different pathophysiology,
namely CD and RA. The common cell-gene network of CD
and RA revealed that the top DACs comprised of the lymphoid
cells that included all CD4+ T-cells and NK cells in one cluster
(Figure 6D). The top DAGs such as CXCR4, CD44, SELL,
RAC2, ANXA1, etc., were highly expressed by this cluster’s cells
and were potential drug repurposing candidates. These DAGs
were enriched for pathways associated with interleukin, TLR,
MyD88 signaling, etc. (Supplementary Figure S5B). The other
cluster comprised myeloid cells such as granulocytes, dendritic
cells, monocytes, and macrophages. The top DAGs such as
CTSS, ITGB2, MCL1, LYZ, SH2B3, etc., were highly expressed
by this cluster’s cells and were potential drug repurposing
candidates. These DAGs were enriched for pathways
associated with interleukin (IL-4, IL-13) signaling, neutrophil
degranulation, etc. (Supplementary Figure S5B).

In addition to CD’s common cell-gene networks, we found a
statistically significant common cell-gene network between the
two inflammatory arthropathies that have joint pain as the
primary feature, namely AS and RA. The common cell-gene
network of AS and RA revealed that the top DACs comprised of
the lymphoid cells that included all the T-cells and NK cells in
one cluster (Figure 6E). The top DAGs such as IL2RG, ITGAL,
IL2Rb, PTGER4, PRKCQ, etc., were highly expressed by this
cluster’s cells and were potential drug repurposing candidates.
These DAGs were enriched for interleukin (IL-1) signaling
pathways, FCERI mediated NF−kB activation, TCR signaling,
etc. The other clusters comprised myeloid cells such as
granulocytes, dendritic cells, monocytes, and macrophages. The
top DAGs, such as SH2B3, TYK2, TLR2, TLR4, IL6R, were
highly expressed by this cluster’s cells and were potential drug
repurposing candidates. These DAGs were enriched for
interleukin signaling pathways (IL-4, IL-10, IL-13)
(Supplementary Figure S5C).

Thus, using the common cell-gene networks, we could
uncover the common mechanisms between the IMID pairs
(Figure 6 and Supplementary Figure S5) and use them to
identify potential drug targets. This novel method of
computational drug repurposing is a combination of target-
based and mechanism-based drug repurposing strategies (59).
We found several DAGs such as IL1B, IL6R, ITGAL, PTGS2,
TYK2, NFKB1, NLRP3, PRKCQ, PTGER4, PTPN2, RELA,
SH2B3, SMAD3, TLR2, TLR4, and TREM1, that were drug
targets and present in all the common cell-gene networks
(Figures 6C, E). Among these DAGs, ITGAL was the only
DAG that was a drug target and present as the top DAG of the
top cluster (lymphoid cell cluster) in the DIME networks of
CD, UC, AS, and RA. This is interesting as the lymphoid cells
were identified as the top DAC of the top cluster for all of the
Frontiers in Immunology | www.frontiersin.org 13
above diseases. Using the drugs associated with these drug
targets specifically for these diseases (CD, UC, AS, and RA) in
therapy would require extensive experimental validation and
clinical trials. Therefore, we explored (in the next section) the
possibility of using some of these drug targets for repurposing
based on existing studies and drugs that are already approved
by the FDA. Thus, reinforcing and strengthening these targets
and also the validity of our approach in identifying them.
Common Cell-Gene Networks Reveal
Drug Repurposing Targets
To explore and validate the drug targets for repurposing, we
focused on the top DAGs of the statistically significant (FET p-
value ≤ 0.05) common cell-gene networks of all IMIDs (Figure
6B). To identify drug targets that were targets of FDA-approved
drugs, we used the drug-gene network of CHEMBL. We found
several drug targets such as IL1B, IL6R, ITGAL, and TYK2 to be
present in all the statistically significant common cell-gene
networks (Table 1). Here, we explore the possibility of using
these drug targets for repurposing based on their current use as a
therapeutic target in certain IMIDs and suggest where they can
be repurposed based on their presence in the common cell-gene
networks of those IMIDs and others.

Drug targets identified by us that are already in use for the
different IMIDs include drugs that target IL1B, IL6, TYK2, and
JAK2.IL1B was present in the common cell-gene network of AS,
CD, psoriasis, RA, and UC, indicating a similar mechanism
between these diseases (Table 1). Anti-IL1 therapy is used for
psoriasis and RA (60–62), suggesting that it could be potentially
used in IMIDs like AS, CD, and UC. Incidentally, preliminary
studies indicate that anti-IL1 treatment has shown promising
clinical response for treating AS, CD, and UC (63, 64). Anti-IL6
therapy (tocilizumab) showed a positive clinical response in a
small group of patients in AS, CD, and RA, suggesting its
application in other IMIDs like psoriasis and UC (65–67).
However, anti-IL6 therapy had side effects in smaller studies
on psoriasis and UC and must be explored carefully (68, 69).
Tofacitinib, a TYK2 and JAK2 inhibitor developed for RA, is now
making way to treatment options in other diseases such as, CD,
UC, and psoriasis (70–73). Plerixafor (drug target: CXCR4) is a
drug now used in cancer (lymphoma and multiple myeloma)
after stem cell transplantation to initiate migration of stem cells
in the bloodstream (74). This drug is now in clinical trials
(NCT01413100) to be evaluated for use after autologous
transplant in patients with SSc. We suggest extending such
trials based on exploiting the CXCR4 mediated dysregulation
of the immune system to other IMIDs like psoriasis, CD, RA,
and UC.

Integrin based therapies (such as natalizumab and
vedolizumab that targets ITGB2) are already used for CD (75).
Exploring other integrin based therapies (such as Lifitegrast that
targets ITGAL and ITGB2) for CD may be beneficial since
ITGAL and ITGB2 are top DAGs in the DIME network and
are also implicated in CD (76, 77). Lifitegrast could be a
promising drug repurposing candidate for CD and perhaps for
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TABLE 1 | The top DAGs and their FDA approved drug candidates identified from the DIME-based common cell-gene networks of the different IMIDs.

DAG/
Drug
target

Diseases Drugs

IL1B AS, CD,
Psoriasis,
RA, UC

canakinumab, rilonacept, anakinra

IL6R AS, CD,
Psoriasis,
RA, UC

tocilizumab

ITGAL AS, CD,
Psoriasis,
RA, UC

lifitegrast

TYK2 AS, CD,
Psoriasis,
RA, UC

tofacitinib citrate

PSMB9 AS, CD,
Psoriasis,
RA

bortezomib, carfilzomib, ixazomib citrate

DNMT3A AS, CD,
Psoriasis,
UC

azacitidine, decitabine

HDAC7 AS, CD,
Psoriasis,
UC

belinostat, panobinostat lactate, romidepsin

JAK2 AS, CD,
Psoriasis,
UC

baricitinib, ruxolitinib phosphate, tofacitinib citrate

PTGS2 AS, CD,
RA, UC

acetaminophen, aminosalicylate potassium, aminosalicylate sodium, aspirin, balsalazide disodium, bismuth subsalicylate, bromfenac sodium,
carprofen, diclofenac, diclofenac epolamine, diclofenac potassium, diclofenac sodium, diflunisal, etodolac, etoricoxib, fenoprofen calcium,
flurbiprofen, flurbiprofen sodium, ibuprofen, ibuprofen lysine, ibuprofen sodium, indomethacin, indomethacin sodium, ketoprofen, ketorolac
tromethamine, meclofenamate sodium, meloxicam, mesalamine, nabumetone, naproxen, naproxen etemesil, naproxen sodium, nepafenac,
olsalazine sodium, oxaprozin, oxaprozin potassium, piroxicam, sulfasalazine, sulindac, tolmetin sodium

BCL2 CD,
Psoriasis,
RA, UC

venetoclax

CXCR4 CD,
Psoriasis,
RA, UC

plerixafor

IL4R CD,
Psoriasis,
RA, UC

dupilumab

IL17RA CD,
Psoriasis,
RA

brodalumab

ITGB2 CD,
Psoriasis,
RA

lifitegrast

PSMD7 CD,
Psoriasis,
RA

bortezomib, carfilzomib, ixazomib citrate

CD86 CD, RA,
UC

abatacept, belatacept

CSF2RA CD, RA,
UC

sargramostim

NR3C1 CD, RA,
UC

alclometasone dipropionate, amcinonide, beclomethasone dipropionate, betamethasone, betamethasone acetate, betamethasone benzoate,
betamethasone dipropionate, betamethasone sodium phosphate, betamethasone valerate, budesonide, ciclesonide, clobetasol propionate,
clocortolone pivalate, cortisone acetate, deflazacort, desonide, desoximetasone, dexamethasone, dexamethasone acetate, dexamethasone
sodium phosphate, diflorasone diacetate, difluprednate, flumethasone pivalate, flunisolide, fluocinonide, fluorometholone, fluorometholone
acetate, fluprednisolone, flurandrenolide, fluticasone furoate, fluticasone propionate, halcinonide, hydrocortamate hydrochloride, hydrocortisone,
hydrocortisone acetate, hydrocortisone butyrate, hydrocortisone cypionate, hydrocortisone probutate, hydrocortisone sodium phosphate,
hydrocortisone sodium succinate, hydrocortisone valerate, loteprednol etabonate, medrysone, meprednisone, methylprednisolone,
methylprednisolone acetate, methylprednisolone sodium succinate, mifepristone, mometasone furoate, paramethasone acetate, prednicarbate,
prednisolone, prednisolone acetate, prednisolone sodium phosphate, prednisolone tebutate, prednisone, rimexolone, triamcinolone,
triamcinolone acetonide, triamcinolone diacetate, triamcinolone hexacetonide

(Continued)
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UC, AS, and RA. Since its target gene ITGAL, was the only top
DAG of the top cluster (lymphoid cell cluster) that was also a
drug target in the DIME networks of these diseases (Figures 2, 3,
6C–E). Thus, we propose lifitegrast as a novel drug repurposing
candidate to be tested for CD, UC, AS, and RA.
DISCUSSION

Despite decades of experimental data, the knowledge of
important cell types involved in the disease’s pathogenesis
remains limited. To address this gap, we used the immunome
comprising 40 immune cells, the disease-gene network, and
computational methods to identify the important DACs and
DAGs of the disease. The integration of these parts resulted in
the novel mechanisms being captured by our method, using
which we built a tool called the DIME. Here, we highlight the
important DACs, DAGs, and common mechanisms captured
using DIME for 12 phenotypically different IMIDs. Using DIME,
the top DACs were found to be CD4+ Treg, CD4+ Th1, and NK
cells in inflammatory arthritis (AS, PsA, and RA); neutrophils,
granulocytes, and BDCA1+ CD14+ cells in SLE and SSc; ILC2,
NK, CD4+ Th1, and CD4+ Treg in the IBDs.

Lymphoid cells such as CD4+ Th1, CD4+ Treg, and NK cells
were the key players in inflammatory arthritis (AS, PsA, and RA)
and IBD (CD and UC). These diseases have been reported to
have an intricate cross-play of the above lymphoid cells, where
the NK cells influence the differentiation of CD4+ Th cells into
CD4+ Th1 and CD4+ Tregs; CD4+ Th1 plays a crucial role in the
initiation of inflammation by cytokine production; the CD4+

Tregs are crucial for immune response modulation (78).
Interestingly, the top DAGs of these diseases show pathways
associated with the signaling of IL-4 and IL-13 that are crucial in
this cross-play, thus corroborating DIME results.

Although we excluded HLA genes to prevent myeloid and B
cell bias, the IMIDs associated with the HLA-B27, such as
psoriasis, AS, and IBDs were found to have statistically
significant common-cell gene networks. However, PsA (also
associated with HLA-B27) is omitted here since it did not have
a statistically significant common-cell gene network with any
IMIDs (Figure 6B). Additionally, AS and RA, the two
inflammatory arthritis with joint inflammation as the primary
feature, also had a statistically significant common-cell gene
network. Thus, the diseases with these shared clinical features
also had common mechanisms as identified by DIME. The
Frontiers in Immunology | www.frontiersin.org 15
common mechanisms from these networks revealed several
lymphoid and myeloid cells and their expressing DAGs. The
lymphoid cells such as CD4+ Th1, CD4+ Treg, and NK were
predominant in all the statistically significant common-cell gene
networks, showing that these diseases were indeed mainly driven
by the aggressive T-cell response (36–38, 55). Pathways such as
interleukin (IL-4 and IL-13), TLR, TCR signaling, etc., was found
to be enriched in the top DAGs of the common cell-gene networks
of these IMIDs. Thus, the common cell-gene network revealed
several common mechanisms between the diseases in accordance
with the top DACs, DAGs, and their associated pathways.

We used the common mechanism from the common cell-
gene network and the drug-gene networks to propose
potential drug targets for repurposing. This novel
computational drug repurposing strategy, a combination of
target-based (literature drug-gene network) and mechanism-
based (inferred from DIME), revealed several potential drug
targets such as IL1B, IL6R, ITGAL, PTGS2, TYK2, NFKB1,
NLRP3, PRKCQ, PTGER4, PTPN2, RELA, SH2B3, SMAD3,
TLR2, TLR4, and TREM1. Further, we used these mechanism-
based drug targets from DIME, and the FDA approved drug-
gene network to propose several drug targets and their
drugs that could expedite the drug repurposing process
(Table 1). Thus, we were able to capture drug targets and
their drugs currently being targeted or being explored for use
in therapy for the IMIDs. We also found a few novel targets,
such as the drug lifitegrast (used for dry eyes) for CD, UC, AS,
and RA as an alternative to other integrin-based therapies
already in use for CD. Lifitegrast is particularly interesting
because it targets ITGAL, which was found to be important in
the lymphoid cell cluster of CD, UC, AS, and RA. Thus,
effectively targeting the exact mechanism. Perhaps the effect
of lifitegrast could be used for down-regulating lymphoid cell-
mediated inflammation in these diseases (79). Although
Lifitegrast is currently available as an eye drop application
and used to treat eye complications only, different
formulations of this drug can be explored to treat CD, UC,
AS, and RA. To the best of our knowledge, lifitegrast in
the axis of ITGAL has not been investigated to treat CD,
UC, AS, and RA. Thus, using DIME, we were able to propose a
novel drug repurposing strategy from the analysis of the
12 IMIDs.

In conclusion, DIME helped identify (1) top DACs, DAGs
of the IMIDs (2), Common mechanisms between the IMIDs,
and (3) drug targets for repurposing. To enable DIME analysis
TABLE 1 | Continued

DAG/
Drug
target

Diseases Drugs

P4HB CD, RA,
UC

lomitapide mesylate

IL2RB,
IL2RG

AS, RA basiliximab, daclizumab

PSMB8 AS, RA bortezomib, carfilzomib, ixazomib citrate
ALOX5 CD, RA balsalazide disodium, meclofenamate sodium, mesalamine, olsalazine sodium, sulfasalazine, zileuton
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for other diseases from the DisGeNet, the GWAS network, or a
user-defined set of genes, we built the DIME tool as a user-
friendly shinyapp. We believe that this tool will help scientists
uncover the etiology of complex and rare diseases and
facilitate drug development by better-determining drug
targets, thereby mitigating the risk of failure in late
clinical development.
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