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Abstract: Hybrid materials constituted by peptides and synthetic polymers have nowadays 

a great interest since they can combine the properties and functions of each constitutive 

block, being also possible to modify the final characteristics by using different topologies.  

Poly(L-lactide-b-L-phenylalanine) copolymers with various block lengths were synthesized 

by sequential ring-opening polymerization of L-lactide and the N-carboxyanhydride of  

L-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, 

IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing  

the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously 

formed poly(L-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also 

suggested that the copolymers were phase-separated in domains containing either crystalline 

PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric 

analysis when polyphenylalanine blocks were incorporated into polylactide. 

Keywords: biodegradable polymers; block copolymers; self-assembly; polylactide; 

polyphenylalanine; ring-opening polymerization 

 

1. Introduction 

The incorporation of peptide blocks into a synthetic polymer has opened up new challenges in areas 

as diverse as nanotechnology (e.g., biosensors) and biotechnology (e.g., drug delivery systems, tissue 

engineering or implants) [1–5]. Peptide blocks can adopt preferred and stable molecular conformations 
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suitable to self-assemble into well-defined molecular arrangements. Specifically, depending on  

the amino acid side groups, peptides are able to adopt several secondary structures (usually helical  

or sheet-like morphologies) [6,7]. Feasible phase-separated morphologies depend on the block 

components, composition, and molecular weight. 

Poly(L-lactide) (PLLA) is a well-known polymer used in commodity (e.g., packaging materials and 

films) and specialized applications such as biomedical devices (e.g., implants and drug delivery 

systems) because of its degradability in living environments [8]. Furthermore, the monomer can be 

obtained from renewable resources like starch from either corn or sugar beets. The combination of 

PLLA with peptide blocks should modify its stability because enzymatic degradation is required to 

hydrolyze the peptide bonds. Furthermore, the semicrystalline character of PLLA enables the 

formation of crystallites and amorphous phases depending on the processing conditions, allowing 

modulation of the PLLA influence on the self-assembly properties of the derived block copolymer. 

Although many reports describe the preparation of hybrid copolymers, to the best of our 

knowledge, very little research activity has focused on block copolymers consisting of polypeptide and 

biodegradable polyesters [9–14]. As representative examples, we can mention the preparation of a 

hybrid diblock copolymer based on PLLA and poly(γ-benzyl-L-glutamate) (PBLG) [9], the triblock 

PEG-b-PLLA-b-PBLG derived from the incorporation of a hydrophilic additional block of 

polyethylene glycol (PEG) [10] and in general PLLA-b-peptide-b-PLLA triblocks, where peptides 

consisting of serine end groups and tryptophane spacer groups are relevant [11]. Block copolymers with 

peptide blocks having functional side groups also deserve special attention. This is the case of the triblock 

PLLA-b-PGlu-b-PLLA copolymer, where the pendant COOH groups of the polyglutamic acid (PGlu) 

middle block could be easily modified by grafting the RGD peptide (arginine-glycine-aspartic acid) for 

targeted drug delivery applications [12]. The synthesis of diblock systems like PLLA-b-poly(L-lysine) [13] 

and PLLA-b-poly(L-cysteine) [14] has also been reported. 

Although many α-aminoacids have found widespread use for hybrid copolymer preparation, little 

attention has been paid to L-phenylalanine. Thus, while a few works describe the preparation of  

PEG-b-PPhe [15] and PBLG-b-PPhe [16] copolymers, the synthesis of a hybrid copolymer with a 

biodegradable polyester block has never been reported. 

The stacking of aromatic ring plays a well-known role to facilitate self-assembling and formation  

of both chemical and biochemical supramolecular structures [17–19]. The restricted geometry and  

the attractive forces of the aromatic moieties provide order and directionality, as well as the energetic 

contribution needed for the formation of such well-ordered structures. In particular, Phe-Phe is a 

widely studied aromatic dipeptide that forms nanotubular structures, as reported by the groups of Gazit [19] 

and Song [20]. Recently, Tendler et al. have reported a new class of Phe-Phe dipeptides with well-defined 

dendritic structures fabricated on the surface of mica via spin coating [21]. 

We have recently performed ring-opening polymerization (ROP of lactide using L-phenylalanine  

(F) or L,L-diphenylalanine (FF) as initiators, which rendered the F-PLLA and FF-PLLA hybrid 

copolymers, respectively. The PLLA polymer fragment seemed to prefer random coil or helix/strand 

conformations while the peptide fragment tended to fold. Although the degree of interaction between 

the two fragments was found to be slightly higher than that reported for other peptide-polymer 

conjugates, it was small enough to suggest that FF-PLLA is a potential candidate to aggregate forming 

peptide-guided organization via self-assembly [22]. 
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Herein, we synthesized a new kind of diblock copolymer, poly(L-lactide)-b-poly(L-phenylalanine) 

(PLLA-b-PPhe), in order to evaluate its self-assembly properties. Influence of the ratio between the 

two segment lengths on properties was also evaluated. 

The diblock copolymers were prepared using a common strategy based on the preparation  

of homopolypeptide blocks by ring-opening polymerization (ROP) of protected α-amino  

acid-N-carboxyanhydrides (α-NCAs). To this end, a primary amino end-functionalized polymer was 

used as initiator [23–25]. Specifically, the PLLA-NH2 prepolymer obtained by ROP of L-lactide in  

the presence of stannous octanoate as transesterification catalyst and NH2-protected aminopropanol as 

initiator was considered. 

2. Results and Discussion 

2.1. Synthesis of Hybrid Copolymers 

The synthesis of poly(L-lactide-b-phenylalanine) was based on a method first reported by Höcker et al. 

in 1995 [24]. The main point was the preparation of a polylactide end-functionalized with a primary 

amine group. It is well known that primary amines are good initiators for polymerization of  

N-carboxyanhydrides (NCAs) by ring-opening polymerization (ROP) [23–25]. Thus, sequential 

polymerization of a second block, in our case a peptide sequence of L-phenylalanine, can be easily 

performed (Scheme 1). 

Scheme 1. Synthesis for PLLA-b-PPhe diblock copolymers. 

 

Protected amino end-functionalized poly(L-lactide) (PLLA-NHBoc) was prepared by ring-opening 

polymerization of L-lactide using tert-butyl-N-(3-hydroxypropyl) carbamate as initiator and stannous 

octanoate as catalyst. The reaction was carried out at 130 °C under anhydrous conditions and nitrogen 

atmosphere for 6 h to avoid any initiation by water molecules, which should lead to undesirable 

carboxylic acid terminated PLLA. During the reaction, the bulk solution turned into a solid, indicating 

the polymerization of L-lactide. Once the reaction had been completed, the product was dissolved in 

CH2Cl2 and then precipitated by adding cold MeOH. Yields of recovered polymers ranged between 75% 

and 95%. This could be explained by the formation of low molecular weight oligomers, which were 

soluble in methanol, and the presence of cyclic oligomers due to backbiting reactions [26,27]. The 

latter case was confirmed by MALDI-TOF-MS of the methanol soluble fraction. By changing the  

feed molar ratio of L-lactide to tert-butyl-N-(3-hydroxypropyl), the degree of polymerization of  

PLLA-NHBoc (Table 1) could be effectively controlled. 
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Table 1. Molecular weight characterization and degree of functionalization of  

PLLA-NHBoc homopolylactides. 

Sample Mn a Mn b MW b PDI b Mn c f d 

PLLA10 1440 1120 3200 2.62 1285 87 
PLLA25 3600 3562 6105 1.71 3107 86 
PLLA50 7200 6978 14,958 2.14 3406 82 
PLLA100 14,400 13,235 17,217 1.30 8858 73 

a Theoretical number average molecular weight determined from the monomer/initiator ratio as:  

[M]0/[I]0 × 144; b Determined from GPC; c Calculated from the ratio between the areas (A) of signals g and e 

(see NMR Figure 1) as: (144 × Ag/Ae) + 247. 144 is the repeat unit molecular weight, whereas 247 is the 

weight associated to the two terminal fragments; d Functionalization degree percentage calculated from the ratio 

between the areas (A) of signals h and c or e (see NMR Figure 1) as: f = 100 × (Ac/2)/(Ah) = 100 × (Ae/2)/(Ah). 

The degree of functionalization (f) of the polymer was determined by 1H-NMR using characteristic 

signals of the protected amino end group and the lactide terminal group (Figure 1, Table 1). Although 

functionalization was high in all cases, a significant amount of polymer was not capped with the 

protected amino terminal group. Some water molecules seemed to remain in the reaction medium—despite 

the anhydrous conditions used—and were able to act also as initiators of the polymerization, giving 

rise to carboxylic acid terminated PLLA. Logically, molecular weights were slightly inaccurate when 

calculated from NMR spectra, assuming complete functionalization. Molecular weights determined 

from GPC (Table 1) were in full agreement with theoretical values, although the inaccuracies caused 

by the use of PMMA standards are worth noting. 

Removal of the Boc group of PLLA was carried out by anhydrous trifluoroacetic acid (TFA) 

treatment (Scheme 1) using a TFA:CH2Cl2 ratio of 1:2. Although the deprotection proved to be quite 

efficient, this treatment was left long enough (1 h) to ensure complete removal of Boc groups. Despite 

this caution, a mixture of PLLA-NHBoc and PLLA-NH2 species was obtained, as observed by 

MALDI-TOF-MS (Figure 2). The value of the mass difference between the two polymers was 100 g/mol, 

which corresponds to the mass of the protective Boc group. The molecular weights obtained for 

deprotected samples (PLLA-NH2) by MALDI-TOF-MS were always lower than those measured by  
1H-NMR spectroscopy and GPC (e.g., Mn ≈ 2800 g/mol was found for the deprotected PLLA25 sample, 

a value that contrasts with those reported in Table 1). This feature is likely due to the overestimation of 

low-mass poly(L-lactide) chains because of their higher ionization probability [28]. 

The increase of TFA:CH2Cl2 ratio to 1:1 was an effective treatment at the indicated conditions since 

all primary amine functions at the end of the polymer were deprotected with a slight decrease of 

molecular weight, as confirmed by 1H-NMR (Figure 3). Note the complete disappearance of the 

methyl peak at 1.44 ppm corresponding to the terminal Boc group, whereas the ratio between the areas 

corresponding to the amine end groups (e.g., peak e) and lactide units (e.g., peak g) was comparable 

before and after deprotection. 
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Figure 1. 1H-NMR spectrum of the PLLA100 sample bearing—NHBoc end groups with 

labeling of observed signals (solvent: CDCl3). 

 

Figure 2. MALDI-TOF-MS spectrum of a mixture of PLLA25-NHBoc and PLLA25-NH2. 
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Figure 3. 1H-NMR spectrum of PLLA25 bearing—NH2 end groups (solvent: CDCl3). 

 

The amine end group of PLLA was used as a macroinitiator for ring-opening polymerization of  

L-Phe-NCA (Scheme 1). Gelation of the macroinitiator/monomer solution during the reaction was 

indicative of the polymerization process of L-Phe-NCA. Several copolymers were prepared varying the 

composition and chain length of lactide and L-Phe units (Table 2). Deviations of the measured chain 

lengths from targeted values were due to side reactions (e.g., chain termination or chain transfer), 

which are inherent to this kind of polymerization. Moreover, it is well known that NCAs are very 

sensitive monomers [23–25]. Thus, this kind of polymerization could proceed via multiple competitive 

chain growth pathways (different initiating sites and termination reactions), which restrict control over 

reactivity during polymerization. The 1H-NMR results indicate that the length of the peptide block 

depends linearly on the monomer/initiator ratio. This is a typical feature of primary amine-initiated 

polymerizations of α-aminoacid N-carboxyanhydrides, which are not “living” but facilitate some 

control of chain length. 

Molecular weights and polydispersity indices of block copolymers could not be determined by GPC 

due to their low solubility in 1,1,1,6,6,6,-hexafluoroisopropanol (HFIP) and the possible self-assembly 

of the diblock copolymer [9]. It is interesting to point out that GPC traces of the most soluble samples 

showed a small peak at very low retention times (Figure 4) that corresponds to Mn values greater than 

106 g/mol. This peak could only be explained as a consequence of the aggregation (self-assembly) of 

the theoretically low molecular weight block copolymers. GPC traces were characterized by a 

dominant peak indicative of PLLA rich molecules since it appeared at practically the same position as 

the macroinitiator used in the synthesis. In any case, the ratio between the two indicated peaks is not 

useful because the chromatogram only corresponds to the soluble fraction, which is less than 20% of 

the sample, and therefore molecules having larger L-Phe blocks are not considered. 
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Table 2. Molecular weight characterization of block PLLA-b-PPhe copolymers. 

Sample a LLA:L-Phe b LLA:L-Phe c 
Mn of the PPhe Block 

Mn d Mn c 

PLLA50-b-PPhe10 83:17 83:17 1470 1506 
PLLA50-b-PPhe40 55:45 65:35 5880 3675 
PLLA25-b-PPhe5 83:17 89:11 735 458 
PLLA25-b-PPhe13 65:35 79:21 1911 958 
PLLA10-b-PPhe25 28:72 24:76 3675 4617 
PLLA10-b-PPhe40 20:80 15:85 5880 8207 

a Polymerizations were performed in closed vessels (10 mL) using 0.04 mmol of PLLA-NH2 in 2.5 mL of an 

anhydrous mixture of CH2Cl2/DMF (60:40) when PLLA block was large (i.e., PLLA50 and PLLA25), whereas 

0.06 mmol of PLLA-NH2 in 2.5 mL of an anhydrous mixture of CH2CL2/DMF (40:60) was used for 

preparing PLLA10-b-PPhe25 and PLLA10-b-PPhe40 samples; b Molar ratio between lactide and L-Phe units in 

the feed reaction medium; c Calculated from the ratio between signals a and c (Figure 6a) and Equation (1) 

that is later explained; d Theoretical value determined from the used monomer/macroinitiator ratio. 

Figure 4. GPC trace of the soluble fraction of the PLLA25-b-PPhe13 sample. 

 

The IR spectra of PLLA-NHBoc, PLLA-NH2 and PLLA-b-PPhe are illustrated in Figure 5. 
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Figure 5. IR spectra of PLLA25-NHBoc (a); PLLA25-NH2 (b); and PLLA25-b-PPhe13 (c). 

 

The 1H- and 13C-NMR spectra of all samples were in full agreement with the chemical structure of 

the synthesized polymers, with no unexpected signals being detected. Spectra clearly indicated the 

successful incorporation of the peptide block, as shown in Figure 6 for a representative sample. 

Besides the signals of PLLA, new peaks associated with the L-Phe residues appeared in the 1H-NMR 

(Figure 6a). Specifically, those observed at 7.2 and 6.9 ppm were attributed to the aromatic protons, 

whereas those at 7.8, 4.6, and 2.9 ppm were assigned to NH, CH and CH2 protons, respectively. The 

two types of carbonylic carbons are also well differentiated in the 13C-NMR spectrum (Figure 6b), 

where peaks at 171.7 (L-Phe unit) and 170.9 ppm (LLA unit) are detected. 
1H-NMR spectra allowed determining the composition of copolymers from the areas of CH protons 

of LLA and L-Phe units that appeared at 5.23 and 4.75–4.58 ppm, respectively. Experimental 

compositions summarized in Table 2 were in reasonable agreement with the monomer feed ratio, 

although the fit seemed to worsen for a given PLLA-NH2 macroinitiator when the PPhe content increased. 

From the integral ratio of peaks representative of LLA and L-Phe units (i.e., CH protons at 5.23  

and 4.75–4.58 ppm), the number average molecular weight of the polypeptide block (Mn(PPhe)) was 

evaluated according to Equation (1), which also takes into account the previously deduced degree of 

polymerization of the PLLA block (DPPLLA) and the weight of the L-Phe unit (i.e., 147 g/mol): 

Mn(PPhe) = 147 × DPPLLA × 2 × A4.75-4.58/A5.23 (1)

Deduced molecular weights deviated slightly from those expected from the monomer/macroinitiator 

ratio, as summarized in Table 2, and logically reflect the deviation of copolymer composition with 

respect to the feed ratio. The molecular weight of the peptide block was generally lower than expected 

for samples from high molecular weight macroinitiators (e.g., PLLA50 and PLLA25), which suggests 

their lower capability to initiate polymerization of L-Phe-NCA rings. 

Block copolymers were also characterized by MALDI-TOF-MS (Figure 7). The obtained mass 

spectra revealed well-resolved signals with a mass difference between signals of 147 g/mol. This  
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polymerization of L-Phe-NCA rings. Two mass peaks observed in the spectra indicated the masses of 

copolymers charged with a proton or a potassium cation. 

Figure 6. 1H-NMR (a) and 13C-NMR (b) spectra of PLLA50-b-PPhe40 (solvent: CDCl3/TFA). 

 

Figure 7. MALDI-TOF-MS spectra of PLLA25-b-PPhe13. The inset shows a partial enlargement. 
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2.2. Physical Properties of Hybrid Copolymers 

Powder X-ray diffractograms of the synthesized hybrid copolymers showed characteristic peaks 

associated with the crystallization of each constituting block, as depicted in Figure 9 for some 

representative samples. Thus, typical Bragg reflections associated with the α-form of polylactide  

(107 helical conformation) could always be observed. Unit cell parameters of this form have been 

reported by different authors [29–32] and correspond to an orthorhombic lattice with dimensions in the 

intervals a = 1.078–1.075, b = 0.645–0.604 and c (chain axis) = 2.78–2.88 nm. Thus, the most intense 

reflections observed at 0.547, 0.470, and 0.403 nm could be well indexed as the (200) + (110), (203) 

and (015) reflections of this polymorphic form. PLLA can also crystallize in a second structure 

constituted by 31 helices named β-form and defined by a trigonal unit cell with a = b = 1.052 nm and  

c = 0.88 nm [33,34]. This form is usually produced under stress [30] and can be clearly discarded  

from the experimental X-ray profiles of the studied powder samples since its strong (110) reflection 

(i.e., that corresponding to 0.526 nm) was not envisaged. 

Patterns of hybrid copolymers show an additional reflection at 1.186 nm with variable relative intensity 

compared to the characteristic PLLA peak at 0.547 nm that increased with the ratio between the lengths 

associated with PPhe and PLLA blocks. The indicated spacing is larger than expected for the chain axis 

period of a polypeptide in the typical 21 helical conformation of a β-sheet form (i.e., 0.70 nm) [35], and is 

probably linked to the intersheet spacing that should accommodate the voluminous aromatic groups. 

This signal is relevant for the PLLA25-b-PPhe30 copolymer, which in addition shows a shift of the 

PLLA peak corresponding to the (203) reflection towards a value close to 0.477 nm. It is significant 

that the intensity of this peak became close to and even higher than that corresponding to the most 

intense reflection of PLLA (see ellipse in Figure 8), suggesting the additional contribution of a 

reflection corresponding to the PPhe structure (e.g., that associated with the typical spacing between 

hydrogen bonded chains, see arrow in Figure 9). 

X-ray diffraction profiles also revealed the presence of amorphous halos with an intensity that 

changes with block length and composition. Thus, the amorphous contribution is clearly higher for the 

PLLA50-b-PPhe40 copolymer than for the PLLA25-b-PPhe13 sample. Note in the second case that the 

PLLA block can easily crystallize due to its relatively low size and that its PPhe content is low, and 

consequently may have a minor disturbing effect during the crystallization process. 

Effective polymerization of L-Phe-NCA by using PLLA-NH2 macroinitiators was also confirmed 

by UV-Vis spectroscopy. The spectra were characterized by the presence of absorption maxima at 

wavelengths close to 246, 251, 257, 263 and 268 nm (Figure 9), which could be attributed to the  

π-system of the aromatics groups of L-Phe units. The intensity of these peaks decreased with the length 

of the peptide block, probably because of increasing insolubility. Therefore, only a small fraction of 

polymer was solubilized in the solvent used (i.e., 1,1,1,3,3,3-hexafluoroisopropanol) when the hybrid 

copolymer had long peptide blocks. Nevertheless, it is meaningful that the indicated peaks were clearly 

detected in the more soluble PLLA25-b-PPhe5 sample and appeared at practically the same position as 

the L-Phe monomer used as a reference. The influence of the PLLA block on the conformation of the 

peptide fragment of the conjugate seems relatively small since PLLA tends to organize independently, 

which is a prerequirement for the formation of peptide-guided assemblies. However, the high 
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crystallinity of PLLA can interfere with the peptide assembly because it is well known that 

simultaneous polymer crystallization and peptide organization become less likely [4]. 

Thermal degradation behavior of hybrid copolymers is singular, as shown in the TGA traces 

depicted in Figure 10. In general, two degradation processes can be clearly observed and well 

correlated with composition. Thus, the first process corresponds to the degradation of PLLA blocks 

and becomes less important as the PPhe content increases. 

Figure 8. UV-vis spectra of L-Phe and representative hybrid copolymers with different 

PLLA and PPhe block lengths obtained from 1,1,1,3,3,3,-hexafluoroisopropanol solutions.  

 

Figure 9. Powder X-Ray diffraction profiles of representative hybrid copolymers having 

blocks with different lengths. 
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Figure 10. Thermogravimetric and representative derivative thermogravimetric curves of 

PLLA25-NH2 and copolymers having different PPhe block lengths. 
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phase. No transition was detected for PPhe blocks, suggesting that they formed crystalline aggregates. 

Although an increase in the glass transition temperature may also be justified by the molecular weight 

increase caused by the incorporation of peptide blocks, the effect does not seem highly relevant when 

Tgs of PLLA50-b-PPhe25 and PLLA25-b-PPhe13 samples are compared (i.e., 55.9 versus 55.3 °C). 

(d) PLLA melting enthalpy logically decreased when the PPhe content in the sample increased. This 

reduction is higher than expected according to the copolymer composition (e.g., the melting enthalpy 

changed from 43.4–3.4 J/g when a block of 30 L-Phe units was incorporated in the PLLA25 block, 

while this enthalpy should be close to 20 J/g according to the real weight of PLLA in the copolymer). 

Therefore, the presence of peptide blocks hindered crystal growth of PLLA and the sample became 

more amorphous, as previously deduced from X-ray diffraction data. 

(e) PPhe blocks may act as effective nucleation agents since the cold crystallization peak observed 

for hybrid copolymers was shifted towards lower temperatures compared to that of the PLLA 

homopolymer. It is also significant that the difference between melting enthalpy and crystallization 

enthalpy of copolymers was higher than that found for PLLA homopolymers. This suggests an 

enhanced crystallization during the previous fast cooling run performed from temperatures higher than 

the PLLA melting temperature. Note that the crystalline PPhe domains were not melted to prevent 

degradation, and were therefore ideal nucleating agents. 

(f) Crystallinity slightly decreased with the molecular weight of the sample for a given composition 

(e.g., clear differences are found between DSC traces of PLLA50-b-PPhe25 and PLLA25-b-PPhe13 

samples in Figure 11). 

Table 3. Calorimetric data (20 °C/min) of hybrid copolymers obtained in the heating run of 

a previously quenched sample. 

Sample Tg (°C) Tc (°C) ∆Hc (J/g) Tm (°C)a ∆Hm (J/g) 

PLLA25-NH2 49.1 92.7 43.2 141.7, 151.5 43.4 
PLLA25-b-PPhe5 55.0 84.6 29.6 148.7, 152.3 37.3 
PLLA25-b-PPhe13 55.3 85.5 20.6 148.0 25.9 
PLLA25-b-PPhe30 56.7 87.6 2.2 148.2 3.4 
PLLA50-b-PPhe10

 59.6 86.3 21.2 153.9 26.4 
PLLA50-b-PPhe25 55.9 85.8 13.2 149.3, 152.4 20.6 
PLLA50-b-PPhe40 54.1 86.3 4.1 152.8 5.7 

a When multiple peaks are observed, the most intense ones are indicated by bold numbers. 

Polarizing optical micrographs (Figure 12) also demonstrated the capability of hybrid copolymers 

to crystallize from temperatures above the PLLA melting temperature. Spherulitic morphologies  

were always observed, with texture and optical properties being dependent on the crystallization 

temperature. Thus, at low degrees of supercooling, spherulites did not have a well-defined birefringence 

and great domains, probably constituted by flat-on lamellae, were observed (Figure 12b). In addition, 

phase separation and aggregates could be envisaged in areas where crystallization was not yet completed 

(see white circle and arrows). Spherulites had a typical fibrillar texture and negative birefringence 

when crystallization was performed at lower temperatures (Figure 12a). Nevertheless, birefringence 

was still unclear because an incipient banding as well as aggregates associated with peptide rich 
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fractions were detected (see white circle and arrows). These aggregates could act as nucleating agents and 

should be occluded inside the spherulites due to covalent bonds between PPhe and PLLA blocks. 

Figure 11. Calorimetric curves of the third heating run (20 °C/min) of PLLA25-NH2 (a) and 

block copolymers with different chain length units, PLLA25-b-PPhe5 (b); PLLA25-b-PPhe13 (c); 

PLLA50-b-PPhe25 (d) and PLLA25-b-PPhe30 (e). Insets show a magnification of the low 

temperature region for PLLA25-b-PPhe30 and the DSC trace recorded in the 160–245 °C 

range for the PLLA50-b-PPhe25 sample. 

 

Figure 12. Polarizing optical micrographs showing spherulitic morphologies of the 

representative PLLA25-b-PPhe13 sample obtained during isothermal crystallization at  

132 °C (a) and 135 °C (b). Circles point out domains where aggregates (white arrows) 

could be well observed. 
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3. Experimental 

3.1. Materials 

L-lactide (LLA) was purchased from Aldrich and recrystallized three times from ethyl acetate 

before being stored under nitrogen atmosphere. Anhydrous trifluoroacetic acid (TFA) was purchased 

from Scharlau and used as received. Sn(Oct), tert-butyl-N-(3-hydroxypropyl) carbamate and 

triphosgene were provided by Sigma and used as received. Triphosgene was stored at 5 °C.  

L-phenylalanine was purchased from Bachem and used as received. L-Phe-NCA was prepared from  

the corresponding α-amino acid and triphosgene in THF at 40 °C under nitrogen atmosphere by  

a previously described method [10,11]. 

3.2. Polymerization of L-Lactide 

All experiments were carried out under nitrogen atmosphere in a flame-dried round-bottom flask 

charged with a magnetic stir bar. PLLA was obtained by ring-opening polymerization of L-lactide 

initiated by tert-butyl-N-(3-hydroxypropyl) carbamate (3-(Boc-amino)-1-propanol) and catalyzed  

by Sn(Oct)2. Reactions were performed using a relative low lactide/initiator ratio that was varied from 

10–100 in order to obtain PLLA samples with theoretically low molecular weights between 1440 and 

14,400 g/mol. Polymers are named by indicating the used monomer/initiator ratio as subscript  

(e.g., PLLA10, PLLA25, PLLA50, PLLA100), which should correspond to the number of lactide units 

incorporated into the homopolymer chain (i.e., degree of polymerization, DG, of PLLA). 

Synthesis of PLLA100 is given as an example of the procedure. Specifically, 10 g of L-lactide  

(69.4 mmol), 475 µL of tert-butyl-N-(3-hydroxypropyl) carbamate (2.8 mmol) and 40 µL of Sn(Oct)2 

(0.01 mmol) were introduced to the flask. After being vacuumed and purged with nitrogen three times, 

the flask was sealed and immersed in a silicone bath at 130 °C for 6 h. The obtained white solid was 

purified by precipitation from a CH2Cl2 solution by addition of MeOH. 

Yield: 9.56 g (96%). 1H-NMR (300 MHz, CDCl3): δ = 5.15 (q, J = 7.0 Hz, 89H, -CHCH3), 4.73 (s, 1H, 

-NH), 4.34 (q, J = 7.0 Hz, 1H, -CHCH3), 4.24–4.16 (m, 2H, O-CH2CH2CH2-N), 3.37–3.10 (m, 2H,  

O-CH2CH2CH2-N), 1.87–1.81 (m, 2H, O-CH2CH2CH2-N), 1.57 (d, J = 7.1 Hz, 267H, -CHCH3), 1.48 

(d, J = 7.1 Hz, 3H, -CHCH3), 1.42 (s, 9H, -C(CH3)3). IR (ATR) (ν, cm−1): 2998 (CH3 st), 2949 (CH3 st), 

1756 (C=O st), 1455 (CH3 δ), 1360 (CH3 δ), 1183 (C-O st), 1089 (C-C vibration), 1044 (C-C vibration). 

3.3. N-Boc Deprotection of Polylactide 

The methodology for the deprotection of PLLA25 is described as an example of the procedure. 
Polylactide (2.5 g) was placed in a dried flask and the system vacuumed and purged with nitrogen 

three times; methylene chloride (30 mL) was used as solvent. After complete dissolution, a large 

excess of anhydrous trifluoroacetic acid (30 mL) was added. The solution was stirred at room 

temperature for 1 h, after which time all solvents were rotavaporated. The polymer was redissolved  

in CH2Cl2 and the solution was washed with aqueous NaHCO3 (5%) and water. After drying over 

anhydrous Na2SO4, the solvent was evaporated under vacuum to give a white solid. The product was 

purified by precipitation from a CH2Cl2 solution by addition of MeOH. 



Int. J. Mol. Sci. 2014, 15 13262 

 

 

Yield: 2.03 g (83%). 1H-NMR (300 MHz, CDCl3): δ = 5.18 (q, J = 7.1 Hz, 24H, -CHCH3), 4.36 (q, 

J = 6.9 Hz, 1H, -CHCH3), 4.26–4.13 (m, 2H, O-CH2CH2CH2-N), 3.45–3.18 (m, 2H, O-CH2CH2CH2-N), 

2.01–1.82 (m, 2H, O-CH2CH2CH2-N), 1.59 (d, J = 7.1 Hz, 72H, -CHCH3), 1.49 (d, J = 7.1 Hz, 3H,  

-CHCH3). IR (ATR) (ν, cm−1): 2998 (CH3 st), 2947 (CH3 st), 1756 (C=O st), 1455 (CH3 δ), 1360 (CH3 δ), 

1183 (C-O st), 1089 (C-C vibration), 1043 (C-C vibration). 

3.4. Polimerization of L-Phe-NCA 

Copolymers having different PLLA and PPhe block lengths were synthesized using different ratios 

between deprotected PLLA and the L-Phe-NCA monomer. In the abbreviated form, copolymers are 

named by indicating the number of lactide and L-Phe units incorporated in the polymer chain with 

subscripts. Synthesis of PLLA25-b-PPhe13 is reported as an example of the methodology. 

Amino-functionalized polylactide initiator (305 mg, 0.085 mmol) was weighed in a sealable tube. The 

system was pumped-filled and charged with nitrogen. An anhydrous mixture of CH2Cl2-DMF (60:40, 

1.25 mL) was then added under inert atmosphere. A solution of L-Phe-NCA (212 mg, 1.108 mmol) in 

anhydrous CH2Cl2/DMF (60:40, 1.25 mL), previously pumped-filled and charged with nitrogen, was 

finally added to the initiator solution. The reaction was left stirring at 40 °C for 24 h. The viscous gel 

obtained was poured into a large quantity of chilled diethyl ether and the solution was centrifuged 

three times at 10 °C, 12,000 rpm (15 min each time) to recover the polymer. 

Yield: 416 mg (80%). 1H-NMR (300 MHz, CDCl3 + TFA): δ = 7.85 (s, 14H, -NH-), 7.34–7.15 (m, 

43H, ArH), 7.12–6.85 (m, 22H, ArH), 5.23 (q, J = 7.1 Hz, 24H, -CHCH3), 4.75–4.58 (m, 13H, 

COCHNH), 2.97–2.78 (m, 26H, -CH2Ph), 1.60 (d, J = 7.1 Hz, 72H, -CHCH3). 
13C-NMR (300 MHz, 

CDCl3 + TFA): δ = 171.7 (C=O, peptide block), 170.9 (C=O, polylactide block), 134.3, 129.3, 129.1, 

127.9 (phenyl group), 70.1 (-CH-CH3), 55.3 (-CH-CH2-), 38.6 (-CH-CH2-), 16.4 (-CH-CH3). IR (ATR) 

(ν, cm−1): 3284 (NH st), 2997 (CH3 st), 2944 (CH3 st), 1753 (C=O st), 1631 (CO st, amide I), 1522 

(CO-NH st, amide II), 1454 (CH3 δ), 1359 (CH3 δ), 1181 (C-O st), 1085 (C-C vibration), 1043 (C-C 

vibration), 740 (Ar C-H δ), 696 (Ar C-Hδ). 

3.5. Characterization 

1H- and 13C-NMR spectra were recorded on a Bruker AMX-300 spectrometer at 300 and 75 MHz, 

respectively. Chemical shifts are given in ppm relative to TMS for proton and carbon spectra. 

Deuterated chloroform (CDCl3) was used as the solvent at room temperature for amino-terminated 

polylactide samples. For block copolymers, small amounts of TFA were required to be added in order 

to solubilize the sample.  

Infrared absorption spectra were recorded with a Jasco FTIR 4100 Fourier Transform spectrometer. 

An MKII Golden Gate attenuated total reflection (ATR) accessory from Specac was used. 

MALDI-TOF-MS was performed on a 4800 Plus MALDI TOF/TOF analyzer (ABSciex, 2010) 

operating in reflection mode. A MALDI solid state laser (Nd:YAG) (355 nm, 200 Hz, 3–7 ns pulse) 

was used as ionization source. The spectra were obtained in the positive ion mode. The samples were 

prepared by the dried droplet technique as follows: 2 mg of copolymer was dissolved in 50 µL of 

concentrated TFA. A mixture of 10 µL of dithranol (27 mg/mL THF) and 1 µL of potassium 

trifluoroacetate (salt additive) (5 mg/mL THF) was used as a matrix. One µL of the mixture of polymer 
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solution/matrix solution 1/1 (v/v) was spotted on the MALDI sample plate and allowed to dry at 

ambient temperature before analysis. 

Molecular weight was estimated by gel permeation chromatography (GPC) using a liquid 

chromatograph (Shimadzu, model LC-20AD) equipped with LC solution GPC software (Shimadzu). A PL 

HFIP gel 9 µm column (Polymer Lab 300 × 7.5 mm) at 40 °C and a refractive index detector (Shimadzu 

RID-10A) were employed. The polymer was dissolved and eluted in 1,1,1,3,3,3-hexafluoroisopropanol 

containing CF3COONa (0.05 M) at a flow rate of 1 mL/min (injected volume 20 μL, sample 

concentration 2–6 mg/mL). The number and weight average molecular weights and molar-mass 

dispersities were calculated using poly(methyl methacrylate) standards. 

X-Ray powder diffraction patterns were obtained with a PANalytical X’Pert PRO MPD θ/θ  

powder diffractometer with Cu Kα radiation (λ = 1.5418 Å) and a silicium monocrystal sample holder. 

Operating voltage and current were 40 KV and 50 mA, respectively. Thin samples sandwiched 

between low absorbing films were used. 

UV-vis spectra were recorded with a UV-visible spectrometer (Shimadzu 3600) in the 200–400 nm 

range from polymer solutions diluted in 1,1,1,3,3,3-hexafluoroisopropanol. 

Differential scanning calorimetry analyses (DSC) were carried out using a TA Instruments Q100 

series at a rate of 20 °C/min under nitrogen. DSC calibration was performed with indium. Thermal 

degradation was studied at a heating rate of 10 °C/min with around 5 mg samples using a Q50 

thermogravimetric analyzer of TA Instruments and under a flow of dry nitrogen. Test temperatures 

ranged from 30–600 °C. 

4. Conclusions 

Amino-functionalized polylactide macroinitiators were effective to obtain hybrid copolymers 

constituted by polyphenylalanine blocks. Solubility characteristics allowed verifying the covalent 

linkage between highly soluble polyester blocks and poorly soluble peptide blocks. Analysis of NMR 

spectra was useful to estimate the length and molecular weight of the peptide blocks incorporated into 

the hybrid copolymer. Peptide blocks increased the thermal stability of amino-terminated PLLA samples, 

whereas their decomposition was enhanced with increasing the lactide content in the hybrid copolymer. 

GPC chromatograms of the most soluble fractions clearly indicate that copolymers were able to 

form high molecular weight aggregates in 1,1,1,6,6,6-hexafluoroisopropanol solutions. 

X-ray diffraction data indicate that polyester blocks were easily crystallized according to the α-form 

of PLLA where segments adopted a 107 helical conformation. Diffraction profiles also show a 

crystalline arrangement of PPhe blocks, which could not be detected in DSC heating traces because 

thermal degradation took place before their fusion. Peptide aggregates were effective nucleating agents 

that influenced the cold crystallization process of PLLA blocks and the spherulitic morphologies 

obtained from melt crystallization. Experimental data indicate that polyester and peptide blocks tended 

to organize independently, thus preserving their inner physical properties. UV measurements performed 

in HFIP solution also showed that the peptide fragment retained the conformational preferences of  

L-phenylalanine since no differences were detected in the corresponding absorption peak wavelengths. 

The studied systems may be interesting for further investigations involving peptide-guided assemblies. 
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