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We consider the propagation of nonlinear plane waves
in porous media within the framework of the Biot–
Coussy biphasic mixture theory. The tortuosity effect
is included in the model, and both constituents are
assumed incompressible (Yeoh-type elastic skeleton,
and saturating fluid). In this case, the linear dispersive
waves governed by Biot’s theory are either of
compression or shear-wave type, and nonlinear waves
can be classified in a similar way. In the special case
of a neo-Hookean skeleton, we derive the explicit
expressions for the characteristic wave speeds, leading
to the hyperbolicity condition. The sound speeds for
a Yeoh skeleton are estimated using a perturbation
approach. Then we arrive at the evolution equation
for the amplitude of acceleration waves. In general, it
is governed by a Bernoulli equation. With the present
constitutive assumptions, we find that longitudinal
jump amplitudes follow a nonlinear evolution, while
transverse jump amplitudes evolve in an almost
linearly degenerate fashion.

1. Introduction
Originating in the field of geophysics, the theory of
porous media has a long history that goes back to the
eighteenth century (see the historical review by De Boer
[1]). Poroelasticity theories have also been employed
in various biomechanical applications involving the
deformation of hydrated porous biological tissues. As
noted by Ateshian [2], one early application to biological
tissues is the modelling of articular cartilage. More
recently, multi-phasic models have been used to model
the mechanical response of brain tissue, which is known
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to be very soft, heterogeneous, nonlinear and time-dependent (see the review by Budday et al. [3]).
Based on quasi-static mechanical loadings, recent laboratory studies show that the fluid-solid
coupling in brain tissue may be partly responsible for time-dependent effects [4–7]. Consequently,
biphasic theory is receiving increasing attention in brain mechanics, where it has also been used
for the modelling of drug delivery and surgical procedures [8,9].

Up to now, biphasic brain material models have mainly been used in quasi-static
configurations. Efforts to address dynamic problems are strongly motivated by the study of
traumatic events, in particular traumatic brain injury (TBI) [10]. To increase our understanding
of head trauma, a major challenge lies in the development and validation of computational
models, for which the determination of parameters is a key prerequisite [11]. Ranging from
mild injuries to severe concussions, head traumas involve a large range of wave amplitudes
and frequencies. Thus, neither linear material models (valid at small amplitudes) nor purely
elastic models (valid at low frequencies) are satisfactory. Instead, all-solid nonlinear viscoelasticity
models have been successfully used to simulate traumatic events [12,13]. Nevertheless, in some
cases, the cerebrospinal fluid that hydrates the brain has been shown to play a crucial mechanical
role, more precisely due to cavitation phenomena occurring at high-pressure levels [14]. Since
time-dependent effects such as fluid-solid couplings are decisive in dynamic configurations, it is
reasonable to consider that poroelasticity might play an important role in TBI as well.

Motivated by the above-mentioned observations, the present study aims at gaining insight
into the wave physics of nonlinear porous materials by estimating wave speeds and amplitudes
analytically. Such results are quite rare in the nonlinear mixture theory literature, where most
analytical results have been obtained in the linear limit [15–17]. In particular, the proposed
fully nonlinear analysis is of interest for the validation of computational methods [17–20].
A strongly related study is that by Ciarletta et al. [21], where the decay of nonlinear acceleration
waves is investigated. Arising in a very different context, less related works encompass also the
computation of nonlinear compaction waves in geophysical porous media [22].

As far as mechanical modelling is concerned, mainly two complementary approaches are
found in the literature. A first approach consists in extending the linear Biot theory [23,24] to
finite strain, by using the same quasi-variational formalism along with a hyperelastic strain
energy function. In particular, this ‘ad hoc’ approach has been used in relation with geophysical
wave motion [25,26]. The same strategy was also followed by Ciarletta et al. [21] in their study
of nonlinear acceleration waves. A second approach known as mixture theory derives from the
ground principles of continuum mechanics, namely, balance principles and thermodynamic
restrictions. This ‘rational’ approach has been used in various biomechanical applications [2],
among which some of the most recent quasi-static brain mechanics studies [4–6].

While the traditional mixture modelling approach is appealing, these theories are not
consistent with the linear Biot theory in the infinitesimal strain limit [27]. Known as the Biot–
Coussy theory, Coussy’s modified mixture theory [28] enables direct links with the linear Biot
theory. Based on these works, here we introduce a dynamic biphasic model with incompressible
constituents that includes Biot’s tortuosity effect. The skeleton is assumed nonlinear elastic
with Yeoh-type behaviour, and viscous effects are neglected in the fluid’s partial stress. Various
connections with existing models and anterior works are identified. However, it is not known yet
if the present theory is valid to model head trauma in its present form, due to the current lack
of experimental data in TBI-related settings. Here, the parameter values had to be inferred from
quasi-static experiments [6].

Despite this apparent practical limitation, the study uncovers several general analytical results
about the propagation of nonlinear waves in porous media. Starting with travelling plane
waves, the characteristic wave speeds and the decay of acceleration waves are then investigated.
The conditions of hyperbolicity follow from the requirement of real wave speeds. Under the
present constitutive assumptions, longitudinal jump amplitudes are shown to satisfy a nonlinear
evolution, while transverse jump amplitudes decay in a quasi linearly-degenerate fashion.

The paper is organized as follows. In §2, the main equations of biphasic mixture theory
are presented. In §3, the governing equations are linearized, and the dispersion properties of
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infinitesimal Biot waves are recalled. The main results are presented in §4, where nonlinear
plane wave motion is considered. Prospective future works are discussed in the conclusion
(§5).

2. Biphasic mixture theory
We consider an unbounded fluid-saturated porous material, to be described within the
framework of the theory of porous media (Biot–Coussy biphasic mixture theory). In what follows,
we introduce the main equations describing the motion and the deformation of such a fluid-
solid mixture. The solid skeleton is assumed elastic, and heat transfer is neglected. Here, several
shortcuts are taken for the sake of conciseness. For more details, the reader is referred to various
reference textbooks [27–31] and other related works [2,32].

(a) Kinematics
Consider the position x of a particle. Its components are expressed with respect to an orthonormal
basis (e1, e2, e3) of the Euclidean space, and a Cartesian coordinate system is chosen. The Eulerian
position vector x is the same for fluid particles and solid particles, but the reference position
vectors Xf, Xs for the fluid and solid phases are independent. Let nα denote the Eulerian volume
fraction of the phase α ∈ {s, f}, i.e. the volume fraction of the solid and fluid constituent in the
deformed configuration. The saturation condition requires

ns + nf = 1. (2.1)

The fluid volume fraction nf corresponds to the Eulerian porosity.
In the Eulerian description of motion, spatial differential operators computed with respect

to x are written div, grad, etc. In the skeleton-Lagrangian description of motion, the spatial
coordinate is the position Xs of a skeleton particle in its reference (undeformed) configuration.
Spatial differential operators computed with respect to Xs are written Div, Grad, etc.

We introduce the deformation gradient tensor F = Grad x of the solid phase, as well as its
inverse A = F−1 given by A = grad Xs. By introducing the displacement field us = x − Xs of the
solid phase, the deformation gradient tensor and its inverse are rewritten

F = I + Grad us and A = I − grad us, (2.2)

where I = [δij] is the metric tensor, here represented by Kronecker delta components δij. In related
works, the tensor A is called the distorsion tensor [33,34]. Various strain tensors can be defined as
functions of F or A, such as the right Cauchy–Green deformation tensor C = FTF and the Green–
Lagrange strain tensor E = 1

2 (C − I).
To describe the mixture’s motion, we introduce the velocity fields vα = x′

α . The prime with
index α denotes the particle time derivative, which is computed while following the motion of
the solid (α = s) or of the fluid (α = f). Thus, for any scalar Eulerian field Γ (x, t), we have

Γ ′
α = ∂Γ

∂t
+ (grad Γ ) · vα for α ∈ {s, f}, (2.3)

and similar differentiation operators can be introduced for vectorial and tensorial fields. The
velocity fields may be rewritten as vα = (uα)′α , where uα = x − Xα denotes the displacement from
a particle of α from its reference position Xα to its current position x.

We also introduce the Eulerian velocity gradients Lα = grad vα and their symmetric part
Dα = 1

2 (Lα + LαT). In the solid phase, the velocity gradient Ls = F′
sF−1 depends on the deformation

gradient and its material derivative, and so does the symmetric part Ds = F−TE′
sF−1. Finally, to

describe fluid motion with respect to the skeleton, we introduce the seepage velocity w = vf − vs

such that Γ ′
f = Γ ′

s + (grad Γ ) · w.
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(b) Balance principles
Let us neglect mass transfer and external mass supply. We introduce the mass densities ρα =
nαραR, where ραR are the real mass densities. Also known as true, intrinsic or effective material
density, ραR represents the mass of a constituent per volume of that constituent.

In this study, we consider an incompressible skeleton saturated by an incompressible fluid.
By definition, the true density ραR of an incompressible constituent is invariant. Under this
assumption, the Eulerian mass continuity equation for each constituent α ∈ {s, f} reads

(nα)′α + nαdiv vα = 0, (2.4)

where the material derivative is defined in equation (2.3). By summation of both continuity
equations, the saturation constraint (2.1) yields the condition

div
(
nfvf + nsvs)= 0, (2.5)

which will be used to enforce saturation later on.
Introducing the volume dilatation J = det F of the solid phase, the relation J = ns

0/ns is obtained
by integration of the solid mass balance equation of equation (2.4), where ns

0 = 1 − nf
0 denotes the

volume fraction of the solid phase in the reference configuration. Therefore, porosity nf = 1 −
ns

0/J is a function of the deformation. Contrary to monophasic incompressible solids that support
only isochoric deformations (i.e. J ≡ 1 is prescribed), the volume dilatation of biphasic particles
increases with porosity, in a similar fashion to a squeezed sponge.

The balance of linear momentum equation for each constituent reads

ρα(vα)′α = div σα + ραbα + p̂α , (2.6)

where the vector bα denotes external body forces per unit mass. The reciprocity condition p̂s =
−p̂f follows from the balance of linear momentum applied to the mixture as a whole. Assuming
microscopically non-polar constituents, the symmetry of the partial Cauchy stresses σα = σαT is
deduced from the balance of moment of momentum, where no supply of momentum is included.

In the absence of heat flux (adiabatic case), energy transfer and external energy sources, the
local form of the balance of internal energy for each constituent reads

ρα(eα)′α = σα : Dα − p̂α · vα , (2.7)

where eα denotes the specific internal energy. The colon denotes the double contraction of second-
order tensors. Introducing the density of mechanical energy Eα = eα + 1

2 ‖vα‖2, one may express
the balance of mechanical energy as

ρα(Eα)′α = div(σαvα) + ραbα · vα , (2.8)

for each constituent. Here, σαvα represents the Poynting vector, and ραvα · bα is the work done
by the external body force.

For consistency with Biot’s linear theory of saturated porous media, some adjustments have to
be made [28]. Indeed, the local balance of energy (2.7) over the fluid phase α = f does not include
the ‘tortuosity’ effect of Biot’s theory, which cannot be captured by the macroscopic mixture
approach. Following estimations at the scale of a representative volume, Coussy [28] introduces
the tortuosity vector a = (a − 1) w′

f that modifies the balance of energy (2.7)–(2.8) for the fluid phase
as follows:

ρf(ef)′f = σ f : Df − p̂f · vf − ρfa · w

and ρf(E f)′f = div(σ fvf) + ρfbf · vf − ρfa · w.

⎫⎬
⎭ (2.9)

The tortuosity factor a ≥ 1 is defined as the ratio between the seepage energy averaged over
an elementary volume, and the corresponding macroscopic quantity ρf‖w‖2. It satisfies a → 1
in the single-constituent fluid limit, and a → +∞ in the single-constituent solid limit. As noted
by Wilmanski [35], objective relative accelerations may be introduced instead of the relative
acceleration w′

f to account for the tortuosity effect. We will see later on that the tortuosity vector
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of equation (2.9) adds −ρfa to the interaction force p̂f, leading to a Cattaneo-type effect on the
filtration law. The simple mixture model without tortuosity effect is recovered by setting a ≡ 1.

(c) Constitutive modelling
In contrast to the above balance principles that are written for each constituent, the postulate of
entropy increase is written for the mixture as a whole. In a standard way, we consider a single-
temperature mixture such that θ > 0 is the temperature field for all the constituents, and ηα are the
specific entropies. Thus, the second principle of thermodynamics is expressed by the Clausius–
Duhem inequality

D = ρsθ (ηs)′s + ρfθ (ηf)′f ≥ 0, (2.10)

where D is the dissipation in the mixture.
The thermodynamic procedure based on the temperature is well-described in the literature [27,

31]. To model nearly isentropic processes such as acoustic perturbations [36], one may assume that
the biphasic mixture is described by the state variables {ηs, ηf, E}, where E is the Green–Lagrange
strain tensor. Moreover, because we are considering a constrained mixture with incompressible
constituents, various simplifications can be performed [31]. Here, phase separation is assumed,
which amounts to stipulating that es is a function of {ηs, E}, and that ef is a function of ηf only.
Thus, according to the Gibbs identity, the total material derivatives of the functions of state eα

satisfy

ρs(es)′s − ρs ∂es

∂ηs (ηs)′s − ρs ∂es

∂E
: E′

s = 0

and ρf(ef)′f − ρf ∂ef

∂ηf
(ηf)′f = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

The intrinsic incompressibility of the constituents is introduced using the method of Lagrange
multipliers. For this purpose, the differential form (2.5) of the saturation constraint is expanded
as follows using vector calculus identities:

p
(

nsdiv vs + nfdiv vf + (grad nf) · w
)

= 0, (2.12)

where the corresponding Lagrange multiplier p has been introduced.
Using the conservation of energy (2.7), summation of the above equations (2.10)–(2.12) yields

the final expression of the dissipation. Due to the tortuosity effect of equation (2.9), the dissipation
becomes

D =
(

σ s + nspI − 1
J

F
∂W
∂E

FT
)

: Ds + (σ f + nfpI) : Df − (p̂f + ρfa − p grad nf) · w, (2.13)

where θ = ∂ eα/∂ηα is required to ensure the positivity of the dissipation for arbitrary
transformations. Here, we have used the reciprocity condition p̂s = −p̂f, and we have introduced
the strain energy density function W = ρs

0es of the skeleton, with ρs
0 = ns

0ρ
sR. Following standard

arguments, the dissipation inequality (2.10) is satisfied for arbitrary processes if

σ s = −nspI + 1
J

F
∂W
∂E

FT, σ f = −nfpI,

p̂f = −ρfa + p grad nf + p̂f
e D = −p̂f

e · w ≥ 0.

⎫⎪⎬
⎪⎭ (2.14)

Known as the effective drag force, the quantity p̂f
e entails no dissipation if orthogonal to w.

Using the saturation condition (2.1), Terzaghi’s effective Cauchy stress reads

σ e = σ i + pI = 1
J

F
∂W
∂E

FT, (2.15)

where σ i = σ s + σ f denotes the inner part of the mixture stress. As explained by Carcione [24],
‘the effective-stress concept means that the response of the saturated porous medium is described
by the response of the dry porous medium with the applied stress replaced by the effective stress’.
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The remaining dissipation D in equation (2.14) is ensured positive by setting

p̂f
e = − (nf)2

kf
w, (2.16)

which models the internal friction between solid and fluid. The parameter kf ≥ 0 is the
permeability of the fluid, i.e. the ratio of the skeleton’s intrinsic permeability and the fluid’s
dynamic viscosity. It satisfies kf → +∞ in the single-constituent fluid limit, and kf → 0 in the
single-constituent solid limit. Injecting the expression of p̂f

e in the conservation of momentum
equation (2.6) for the fluid constituent, one eventually obtains Darcy’s filtration law,

nfw = −kf
[
grad p − ρfR(bf − (vf)′f − a

)]
. (2.17)

More general forms of Darcy’s law may include a permeability tensor instead of the scalar kf.

Remark. In the case of fluid flow through a rigid porous skeleton, the porosity nf is constant.
The interaction force of equations (2.14)–(2.16) becomes

p̂f = −ρfa + p̂f
e = − (nf)2

kf

(
τaw′

f + w
)

, (2.18)

where we have used the definition a = (a − 1) w′
f, and τa = (a − 1)kfρfR/nf is a characteristic time.

Thus, we note that the tortuosity effect of equation (2.9) yields a Cattaneo-type relaxation in the
filtration law. Again, one may have replaced the present relative acceleration w′

f by an objective
derivative [35], e.g. in a similar fashion to the so-called Darcy–Jordan–Cattaneo model [37].

We assume that the skeleton’s effective mechanical response (2.15) follows from the two-term
Yeoh strain energy function

W = 1
2
μ

(
(I1 − 3) + 1

2
β(I1 − 3)2 − 2 ln J

)
+ 1

2
λ(ln J)2, (2.19)

where I1 = tr B is the first principal invariant of the left Cauchy–Green tensor B = FFT. The
corresponding constitutive relation reads

Jσ e = μ
(
B + β(I1 − 3)B − I

)+ λ(ln J)I, (2.20)

where the positive constants λ, μ are the Lamé parameters of linear elasticity. The Yeoh parameter
β ≥ 0 has been introduced for the sake of generality, in view of discussing the influence of the
constitutive assumptions. With this choice, the neo-Hookean model β → 0 used by Diebels &
Ehlers [18] is recovered as a special case. While the analysis introduced hereinafter is quite
general, most of the exact analytical formulae are obtained in the neo-Hookean limit. The more
general case β > 0 is addressed in a quasi-analytical fashion.

Moreover, we assume that the fluid’s permeability kf follows from the formula [38]

kf = kf
0

(
nf

nf
0

1 − nf
0

1 − nf

)κ

, (2.21)

which is an alternative to the Kozeny–Carman formula of [28,32]. Here, kf
0 represents the fluid’s

permeability when the porosity nf equals its initial value nf
0, and κ is a dimensionless parameter.

Lastly, we assume that the tortuosity coefficient a satisfies Berryman’s formula [24,28,35]

a = 1
2

(
1 + 1

nf

)
, (2.22)

but more general expressions could be used [38].
For the purpose of illustration, typical values of the material parameters for a soft biological

tissue saturated by an incompressible liquid are specified in table 1. The elastic parameters λ, μ

are deduced from Comellas et al. [6],1 and the parameter β has been chosen in such a way that

1The numerical value of the Ogden parameter μ2 in [6] has a typo, see Franceschini et al. [39].
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Table 1. Physical parameters of water-saturated brain tissue inferred from [6], where the mass density of water at room
temperature is assumed for both constituents α ∈ {s, f}. The potential mismatch between isothermal and isentropic
measurements is neglected in the present study.

λ [kPa] μ [kPa] β ραR [kg m−3] nf0 kf0 [m
2/(Pa · s)] κ

334 6.82 2.2 997 0.20 8.9 × 10−14 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear stresses are consistent with [6] over a large range of deformations (simple shear strains
ranging from −0.7 to 0.7). The tortuosity coefficient (2.22) deduced from the reference value of the
porosity nf

0 is a = 3.0.

(d) Eulerian equations of motion
In the Eulerian specification of motion,2 spatial differential operators are computed with
respect to x. We consider a fluid-saturated poroelastic material with incompressible constituents
governed by equations (2.4)–(2.6). In addition, a kinematic relationship between the distorsion
tensor A defined in equation (2.2) and the velocity vs of the solid phase is introduced in the first
line of equation (2.23) below. The latter can be retrieved by using the equality of mixed partials
in equation (8.3) of Godunov & Romenskii [34]. Thus, the equations of motion read as a system
of balance laws constrained by the saturation condition of equation (2.1). This system is closed
by the constitutive equations for the partial stresses σα and the interaction forces p̂f = −p̂s in
equations (2.14)–(2.16). We therefore end up with a system of 18 scalar equations, which involves
the 18 components of {A, nα , vα , p} for α ∈ {s, f}.

Keeping equations (2.4)–(2.6) for the fluid phase and adding the latter to the equations for the
solid phase, we may rewrite the above system as

∂tA + grad(Avs) = 0,

∂tnf + div
(
nf(w + vs)

)= 0,

div
(
nfw + vs)= 0,

ρf [∂tv
s + (grad vs)(w + vs)

]+ aρf [∂tw + (grad w)(w + vs)
]

= −nfgrad p − (nf)2

kf
w + ρfbf

and ρs [∂tv
s + (grad vs)vs]+ ρf [∂t(w + vs) + grad(w + vs)(w + vs)

]
= div σ i + ρb,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)

which introduces the mixture’s inner stress σ i = σ e − pI, see equation (2.15), effective body force
ρb = ρsbs + ρfbf, and effective density ρ = ρs + ρf. We thus end up with a system of 17th scalar
equations, which involves the 17 components of {A, nf, vs, w, p}, where w = vf − vs is the seepage
velocity. For sake of exhaustiveness, let us mention that appropriate boundary conditions should
be provided [28]. Here, plane waves propagating in unbounded domain are considered.

Note that standard vector calculus identities can be used to derive alternative forms. In
particular, the second line of equation (2.23) might be removed, since the porosity nf is a function
of A (consequence of equation (2.4)). Moreover, the last line of equation (2.23) may be rewritten in
more compact form by introducing the mixture velocity and the mixture stress tensor, see [2,30].
Contrary to the case a ≡ 1 of simple mixtures, no fully conservative first-order formulation of
the equations of motion is known due to the dependency of the tortuosity coefficient (2.22) with
porosity. When a is uniformly equal to unity, the above system is analogous to the equations in

2The skeleton-Lagrangian form of the equations of motion is described in Li et al. [40], see also Wilmanski [35].
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[18,19]. Note that equation (2.23) is not straightforwardly linked to the nonlinear Biot theory by
Grinfeld & Norris [25], where different inertial terms are proposed.

3. Biot’s theory

(a) A linearization
Let us assume that the effective stress in the solid phase satisfies Hooke’s Law of linear elasticity
σ e = λ tr(ε)I + 2με, where ε = 1

2 (grad us + gradTus) is the infinitesimal strain tensor, and λ, μ are
the Lamé constants. When we linearize the equations of motion (2.23) about an undeformed static
state by neglecting convection terms, we have

∂tε − 1
2

(
grad vs + gradTvs)= 0,

div
(
nfw + vs)= 0,

ρf∂tv
s + aρf∂tw = −nfgrad p − (nf)2

kf
w + ρfbf

and ρ∂tv
s + ρf∂tw = div σ e − grad p + ρb,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where the porosity nf = nf
0, fluid permeability kf = kf

0 and tortuosity a are constant parameters
deduced from the values in table 1. Equation (3.1) corresponds exactly to the low-frequency Biot
equations with incompressible constituents [23], for which Biot’s effective-stress coefficient β (or α

[24]) equals unity and the other Biot parameter M becomes infinite. A more general linearization
about arbitrary pre-deformations in a small-on-large fashion would lead to the acousto-elastic
equations, see for instance Grinfeld & Norris [25].

(b) Harmonic plane waves
We recall the main dispersion characteristics of this theory hereinafter. To do so, harmonic plane-
wave motion is assumed by setting the space–time dependence of the unknowns to ei(ωt−kωx),
where ω is the angular frequency, kω is the wavenumber and i = √−1 is the imaginary unit.

In the absence of body forces bα = 0, non-trivial solutions to equation (3.1) are obtained
provided that one of the following dispersion relationships is satisfied:

(λ + 2μ)
k2
ω

ω2 = ρs + ϑρf − i
ωkf

or μ
k2
ω

ω2 = ρs + θρf + ρf

a
ω2

c − iωcω

ω2
c + ω2

, (3.2)

with the coefficients

ϑ = (1 − nf)2 + a − 1
(nf)2

, θ = a − 1
a

and ωc = nf

akfρfR
. (3.3)

Note that for the simple mixture model a ≡ 1, the above result is the same as that given by De
Boer & Liu [15] if fluid compressibility is neglected therein.

In equation (3.2), the first family of linear waves with elastic modulus λ + 2μ corresponds
to longitudinal compression waves (P) resulting from the interaction of both phases, while
the second family with elastic modulus μ corresponds to transverse shear waves (S) mostly
supported by the solid skeleton. Recall that although each phase is incompressible, the volume of
a particle of mixture can change if the relative quantity of its constituents is modified, i.e. if the
porosity is not kept constant (see the comments following equation (2.5)).

Figure 1 represents the frequency evolution of the phase velocity vω = ω/Re kω and of the
attenuation coefficient αω = −Im kω, for waves propagating towards increasing x. The horizontal
dotted lines mark the respective high-frequency (or inviscid-fluid) phase velocity limits. As noted
by Coussy [28], ‘the undrained situation is recovered (. . . in) the low-frequency range’, where only
S-waves propagate.
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Figure 1. Biot’s theory: dispersion curves (a) and attenuation curves (b) for longitudinal compression waves (P) and transverse
shearwaves (S) deduced from the linearized equations ofmotion, with the parameter values of a soft biological tissue saturated
by an incompressible liquid in table 1. The vertical line marks the characteristic frequency fc = ωc/(2π ) of equation (3.3), and
the horizontal dotted lines are asymptotes. (Online version in colour.)

In the high-frequency range, the analysis reveals that compression and shear waves propagate
with strong attenuation resulting from the interaction between the phases. However, this
frequency range is not well-described by the present theory, as viscous dissipation inside the
fluid phase becomes preponderant [23]; for complements and extensions, see the literature on
homogenization theory [41] and enriched continuum models [42]. Thus, this model is valid
in the low-frequency range ω 
 ωc, where fc = ωc/(2π ) is a characteristic frequency given in
equation (3.3). In practice, the parameter values of table 1 yield fc ≈ 120 MHz (vertical line in
figure 1), which means that the present set of parameters provides a valid model up to ultrasonic
frequencies.

Of course, the value of the critical circular frequency ωc plays a crucial role (note in passing
that its order of magnitude is related to the characteristic time τa of the Cattaneo-type filtration
law (2.18)). If we use the parameter values of the study by Hosseini-Farid et al. [5] instead (see also
Forte et al. [4]), i.e. nf

0 = 0.17 and kf
0 = 1.61 × 10−12 m2/(Pa · s), then we find fc ≈ 4.7 MHz, which

has similar orders of magnitude to the value obtained previously.
Since the propagation characteristics of both waves depend on the linear Biot parameters,

acoustic experimental measurements within an adequate frequency range could provide dynamic
estimations of those parameters. Ideally, the frequency range of interest should be chosen high
enough for the slow P-wave to propagate, but low enough to limit attenuation [23].

4. Nonlinear plane waves
Now we analyse the characteristics of various types of nonlinear wave solutions to equation (2.23)
where body forces bα are neglected. We restrict the study to a one-dimensional configuration,
assuming invariance along the y- and z-directions.

Because the motion does not depend on y and z, the deformation gradient and distortion
tensors of equation (2.2) are of the form

F =

⎡
⎢⎣ J 0 0

−JA21 1 0
−JA31 0 1

⎤
⎥⎦=

⎡
⎢⎣J−1 0 0

A21 1 0
A31 0 1

⎤
⎥⎦

−1

= A−1, (4.1)



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210086

...........................................................

where J = det F denotes the volume dilatation given by J = F11 = (A11)−1. Therefore, the motion
includes possibly a volume-changing compressive deformation (11-component) and a volume-
preserving shear deformation (21- and 31-component).

With the above invariances in mind, the system (2.23) can be rewritten as a first-order quasi-
linear system of partial differential equations,

Mt(q) ∂tq + Mx(q) ∂xq = R(q), (4.2)

for the vector q = [A11, A21, A31, nf, vs
1, vs

2, vs
3, w1, w2, w3, p]T, where the coefficients of Mν for ν ∈

{t, x} and R are specified in appendix A. Note in passing that these arrays do not depend on vs
2, vs

3
and p. Moreover, they are not symmetric, and the matrix Mt is not invertible.

(a) Smooth travelling waves
We consider plane wave solutions propagating with constant speed c, such that the field variables
are smooth functions of ξ = x − ct only. Hereinafter, primes ′ denote differentiation with respect
to ξ , so that ∂x = (·)′ and ∂t = −c (·)′ according to the chain rule. Hence, our system (4.2) reduces
to the ordinary differential system

M(q) q′ = R(q), (4.3)

with the matrix-valued function M = Mx − c Mt of the vector q.
Bounded solutions of equation (4.3) that connect two equilibrium states are called travelling

waves. One may be able to derive such solutions in the case where M is invertible, by rewriting
equation (4.3) as an autonomous dynamical system. However, this is not as straightforward in
practice. In fact, the bad conditioning of the matrix M makes the classical analysis difficult.
Attempts to exhibit such solutions numerically have been unsuccessful up to now, suggesting
that travelling waves may not propagate in such a material. Viscous dissipation, compressibility
or compaction might be needed for this peculiar nonlinear phenomenon to emerge [22,37,43].

(b) Characteristic wave speeds
Let us consider particular wave solutions for which the matrix M(q) is singular. To do so,
let us focus on the homogeneous system M(q) q′ = 0 by setting R equal to zero. According to
equation (A 1) of the appendix, this amounts to assuming inviscid flow for which kf → +∞. Non-
trivial solutions for q can be obtained if det M(q) vanishes, restricting the value of the wave speed
c to one of the generalized eigenvalues of Mx and Mt.

In general, it is a difficult task to compute these characteristic wave velocities analytically. If
the material has a neo-Hookean behaviour (β = 0), then we find that the wave speed c equals one
of the following values:

c±
P = vs

1 +
(1/2)(2ϑ − ϑ∗)ρfw1 ±

√
(ρs + ϑρf)A11Q11 + ((1/2)ϑ∗ρfw1)2 + (ϑ∗ − ϑ)ρsρfw2

1

ρs + ϑρf

and c±
S = vs

1 +
(1/2)θρfw1 ±

√(
ρs + θρf

)
Q22 + ((1/2)θρfw1)2

ρs + θρf
, cf = vf

1, cs = vs
1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)
where ϑ∗ = (a − 1)/nf ≥ 0 and the coefficients ϑ , θ ≥ 0 defined in equation (3.3) are functions
of the porosity nf, itself a function of the compression strain A11 according to the continuity
equation (2.4). The coefficients Qij = −∂σ e

i1/∂Aj1 specified in appendix A are functions of the
skeleton’s deformation. Since the material’s behaviour is assumed neo-Hookean (β = 0), these
coefficients satisfy Q22 = Q33, and the four coefficients Q12, Q13, Q23, Q32 are equal to zero. Note
in passing that the speed of P-waves has a nonlinear expression with respect to the compression
strain A11, while the speed of S-waves is independent on the shear strains A21, A31.
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Figure 2. Evolution of the characteristic speeds c+P , c
+
S of equation (4.4) in terms of the porosity in a static undeformed

configuration. Porosity-dependent tortuosity (a ≡ 1, solid lines) is compared with the case of a simple mixture (a≡ 1, dashed
lines) using the parameters of table 1. (Online version in colour.)

Acoustic waves propagate, i.e. hyperbolicity is ensured, if the sound speeds in equation (4.4)
are real. For this purpose, the radical’s argument in the expression of c±

P and c±
S must be non-

negative. In both cases, one notes that this quantity is of the form a + bw2
1. The propagation

condition a + bw2
1 ≥ 0 can be simplified if the coefficient b is non-negative, in which case imposing

a ≥ 0 will be sufficient to ensure hyperbolicity.
While the analysis of hyperbolicity is straightforward for shear waves with speed c±

S , in which
case b is non-negative, the analysis is less obvious for compression waves with speed c±

P . In the
case of simple mixtures (a ≡ 1), the coefficient b in the expression of c±

P has the same sign as
(nf − 1); hence, it is always negative. If Berryman’s formula (2.22) is used instead (a ≡ 1), this
coefficient has the same sign as (nf − 1)(nf + 1

2 ) + ε, where the constant ε = 1
16 ρfR/ρsR depends on

the ratio of the reference densities. In the present low-porosity material with ρfR � ρsR (see the
values in table 1), the coefficient b in the expression of c±

P is negative. Thus, the propagation of
compression waves requires that the seepage velocity has a moderate amplitude |w1| along the
direction of propagation.

Condition 4.1 (Hyperbolicity). From the expression of the characteristic wave speeds in
equation (4.4), a sufficient condition of hyperbolicity reads

A11Q11 = −A11
∂σ e

11
∂A11

≥ −bw2
1, Q22 = − ∂σ e

21
∂A21

≥ 0 (4.5)

with b deduced from the expression of c±
P . Under this condition, any plane wave propagates with

finite speed within the biphasic neo-Hookean model (4.1)–(4.2) where β = 0.

Figure 2 displays the evolution of the above characteristic wave speeds (4.4) with porosity,
at zero velocity and no strain; in other words, a static undeformed state of the form q =
[1, 0, 0, nf, 0, 0, 0, 0, 0, 0, p]T is considered. Therefore, the speeds of sound become

c±
P = ±

√
λ + 2μ

ρs + ϑρf
, c±

S = ±
√

μ

ρs + θρf
, cf = 0, cs = 0, (4.6)

with the coefficients of equation (3.3). These wave speeds are the same as the phase velocities
deduced from Biot’s theory (3.1) in the inviscid fluid limit kf → +∞, or equivalently in the high-
frequency limit (horizontal dotted lines in figure 1). In the variable tortuosity case (2.22), the
porosity nf

0 = 0.2 of table 1 yields the values 4.99 m s−1 and 2.71 m s−1 for c+
P and c+

S (vertical
dotted line in figure 2).

Using Berryman’s formula (2.22), the coefficients in equation (4.6) satisfy ϑ → +∞ and θ →
1 at zero porosity. At unit porosity, they satisfy ϑ , θ → 0. Thus, as shown in the figure (solid
lines), compression waves do not propagate at zero porosity, and both waves do not propagate
at unit porosity. The first remark relates to the fact that the monophasic solid limit nf → 0 is an
incompressible solid in which shear waves propagate, but not poroelastic compression waves.
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The second remark expresses the fact that the monophasic fluid limit nf → 1 does not support
shear stresses or poroelastic compression.

Figure 2 compares the evolution obtained for variable tortuosity (2.22) with that of the simple
mixture model where the tortuosity coefficient a ≡ 1 is not porosity-dependent. One notes that
the tortuosity effect has a significant influence on the P-wave velocity at low porosities, while the
shear-wave velocity does not seem to be significantly affected by this feature, see also Wilmanski
[35] where comparisons between Biot’s theory and the simple mixture model are proposed. In a
different context, the fact that the tortuosity factor has a major influence on the speed of the slow
P-wave is a well-known feature [44].

(c) Perturbation approach
Let us investigate the influence of the Yeoh parameter β on the characteristic speeds by using
a perturbation method [45]. For this purpose, we introduce pairs of left and right generalized
eigenvectors l, r deduced from the condition M(q) q′ = 0. The vectors r form a basis of the right
null space of M, while the vectors l form a basis of the left null space of M, i.e. they belong to the
right null space of MT.

As shown in the matrices’ expression (appendix A), the matrix Mx is linear in β, but Mt does
not depend on β. This can be rewritten as a perturbation of the form Mx = Mx0 + βMx1, where the
zeroth-order matrix Mx0 corresponds to the neo-Hookean case discussed in the previous section.
Thus, we seek generalized eigenvalues and eigenvectors as power series of β:

c = c0 + βc1 + · · · , l = l0 + βl1 + · · · , r = r0 + βr1 + · · · , (4.7)

where the zeroth-order quantities c0, l0, r0 correspond to the case of neo-Hookean behaviour
(β = 0). Injecting this Ansatz in the generalized eigenvalue problems Mr = 0 and lTM = 0 leads to
the conditions

order 0: M0r0 = 0, l0TM0 = 0,

order 1: M1r0 + M0r1 = 0, l0TM1 + l1TM0 = 0,

⎫⎬
⎭ (4.8)

with Mp = Mxp − cpMt and p ∈ {0, 1}, at zeroth order and first order in β.
Now, we left-multiply the vector M1r0 + M0r1 by the vector l0T. Thus, the zeroth-order identity

l0TM0 = 0 leads to the following approximate expression of the Yeoh characteristic speeds

c � c0 + l0T(βMx1)r0

l0TMtr0 (4.9)

at first order in β. One observes that the increment of the speed of sound is linear with respect to
the (presumably small) perturbation βMx1 of the matrix Mx. In practice, the pairs of vectors l0, r0

deduced from the previous section are normalized in such a way that l0TMtr0 = 1, which greatly
simplifies equation (4.9).

Compression waves. Let us go back to the zeroth-order neo-Hookean case. Using a computer
algebra system, one pair of vectors l0, r0 is deduced from M(q) by solving the generalized
eigenvalue problem corresponding to the characteristic speed c0

P = c+
P of equation (4.4). The

components of these vectors lead to the perturbation (4.9)

c+
P � c0

P + 1
2
√

λ + 2μ

Q1
11√

ρs + ϑρf
, Q1

11 = μβ
3 − A2

11 + 3A2
21 + 3A2

31

A4
11

(4.10)

of the speed of compression waves. The quantity Q1
11 denotes the first-order increment of the

coefficient Q11 given in appendix A. Note that the speed of sound is no longer exclusively a
function of volume-changing strain A11, and that the above perturbation has a non-zero value in
the undeformed state.
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Figure 3. Perturbation approach. Evolution of the Yeoh characteristic speeds (4.9) with respect to the strain components using
the reference parameter values of table 1; (a) P-wave velocity under purely volume-changing deformations, (b) S-wave velocity
under purely isochoric simple shear deformations. The black lines mark the neo-Hookean case (4.4). (Online version in colour.)

Shear waves. Solving the generalized eigenvalue problem corresponding to the characteristic
speed c0

S = c+
S of equation (4.4) leads to the perturbation (4.9)

c+
S � c0

S + 1
2
√

μ

Q1
22√

ρs + θρf
, Q1

22 = μβ
1 − A2

11 + 3A2
21 + A2

31

A3
11

(4.11)

of the shear wave speed with polarization along y, where the coefficient Q1
22 is deduced from the

appendix A. One notes that the speed of sound is no longer independent of the shear deformation
A21, A31 and that this dependency is quadratic, which is coherent with related studies [13].
Here, the sound speed in an undeformed state (4.6) is unchanged. An expression similar to
equation (4.11) is found for shear waves polarized along z, where the increment Q1

22 needs to be
replaced by a coefficient Q1

33 obtained in a similar fashion from the expressions in the appendix.
Figure 3 illustrates the validity of the above perturbations. Figure 3a compares the perturbation

(4.10) of the Yeoh P-wave speed (blue dashed line) with the same value obtained by numerical
resolution of the generalized eigenvalue problem of Mx and Mt (blue solid line). The value of the
perturbation parameter β = 2.2 is taken from table 1, as well as the values of other parameters.
Here, a static state under pure dilatation is considered, i.e. the shear strain components A21,
A31 are set to zero while A11 is varied. Thus, the porosity nf = 1 − 0.8 A11 is not constant. The
agreement between both curves is very good in the vicinity of the static undeformed state A11 � 1.
Similarly, figure 3b illustrates the effect of the perturbation (4.11) on the shear wave speed. Here,
a static state under simple shear is considered, i.e. A11 = 1 and A31 = 0 are imposed while A21 is
varied, and the porosity nf = 0.2 is constant.

In both figures, the black solid line corresponds to the neo-Hookean case (4.4) where β = 0, and
the vertical dotted line marks the undeformed state. In figure 3b, one observes that the situation
is almost symmetric with respect to the undeformed state, and that the neo-Hookean case yields
a strain-independent shear wave speed. The picture is different in figure 3a, where the curves are
not symmetric with respect to the undeformed state, and where the neo-Hookean model yields
already strain-dependent sound velocities. These observations suggest that the nonlinearity of
poroelastic P-wave propagation is of a very different nature to that of shear wave propagation.

(d) Acceleration waves
Similarly to [16,21,35], let us analyse the speed and evolution of acceleration waves. For such wave
solutions, the primary field q is continuous across the surface ξ (x, t) = 0 with ξ = x − s(t), but
its normal derivative ∂ξ q may be discontinuous. Typically, such solutions represent situations in
which the field variables experience a brutal change of slope; for instance, an initial-value problem
with piecewise linear initial data.
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As proposed by Müller & Ruggeri [46], we assume that the wave propagates into a domain
where the primary field q is a constant equilibrium state q̄ of equation (4.2), for which the seepage
velocity w̄ equals zero; more general cases are discussed in the literature [46]. The jumps [[ · ]] of
the partial derivatives across the moving surface are related to those of the normal derivative ∂ξ q
according to [[∂tq]] = −c [[∂ξ q]] and [[∂xq]] = [[∂ξ q]], where the speed satisfies c = ∂ts. Therefore, by
computing the jump of equation (4.2) and using the continuity requirement [[q]] = 0, we find

M(q̄) [[∂ξ q]] = 0 (4.12)

along the wavefront. Non-trivial solutions to equation (4.12) are found if M(q̄) is singular, i.e. if c
equals one of the characteristic velocities of equation (4.4) evaluated at q̄. Then, the jump vector
[[∂ξ q]] belongs to the kernel of M, or equivalently, to the corresponding generalized eigenspace
of Mx and Mt. In other words, we may write that [[∂ξ q]] = Π r is proportional to a basis vector r
of the right null space of M(q̄). If r is scaled in such a way that it has the same dimension as q
componentwise, then the wave amplitude Π is expressed in m−1.

Now we derive Bernoulli’s evolution equation satisfied by the wave amplitude following §8.4
of [46]; a similar result was obtained by Ciarletta et al. [21] for general Biot-like models. For this
purpose, we consider a vector l belonging to the left null space of M(q̄), and such that lTMt r = 1.
As shown in the literature [46], a Bernoulli differential equation is obtained

d
dt

Π + Ω1Π + Ω2Π
2 = 0, (4.13)

where d/dt denotes the directional derivative ∂t + c ∂x along the curve that follows the position
of the surface. A well-known analytical solution to equation (4.13) yields the time-evolution,

Π (t) = Π (0) e−Ω1t

1 + Π (0) Ω2
Ω1

(1 − e−Ω1t)
, (4.14)

of the jump amplitude as the wave propagates, in terms of the coefficients

Ω1 = −lT
∂R
∂q

r, Ω2 =
(

∂c
∂q

)T
r, (4.15)

evaluated at the constant equilibrium state q̄.
Assuming positive coefficients Ω1, Ω2 in the expression (4.14) of the wave amplitude, we

observe that the denominator vanishes at some finite time,

ts = − 1
Ω1

ln
(

1 + 1
Π (0)

Ω1

Ω2

)
> 0, (4.16)

if the initial jump Π (0) is smaller than −Ω1/Ω2. Conversely, such acceleration wave solutions are
stable for positive times under the condition Π (0) > −Ω1/Ω2.

Note that Ω1 vanishes in the case of inviscid flow kf → +∞. Since Ω1 depends on R, it accounts
for attenuation. As can be seen from equation (4.14), the constant Ω1 is responsible for the decay
of the jump amplitude, and therefore provides a smoothing effect on wave solutions. The constant
Ω2 vanishes when the characteristic speed c corresponds to a linearly degenerate eigenspace [47].
Thus, this constant expresses the nonlinearity of wave propagation, and therefore may yield a
competing wavefront steepening effect.

Compression waves. Assume that q̄ = [1, 0, 0, nf
0, 0, 0, 0, 0, 0, 0, p̄]T corresponds to a motionless

undeformed equilibrium state, and that the material’s behaviour is neo-Hookean (β = 0). Using a
computer algebra system, one pair of vectors l, r is deduced from M(q̄) by solving the generalized
eigenvalue problem corresponding to the characteristic speed c = c+

P ≈ 4.99 m s−1, which is the
value displayed in figure 2 at the vertical dotted line. The components of r lead to the particular
relationship

[[∂ξ v
s
1]] + nf [[∂ξ w1]] = 0, (4.17)

between the acceleration jumps, showing that acceleration P-waves propagate both in the fluid
and the solid phase. This relationship is the same as that found by De Boer & Liu [16] in the case of
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Figure 4. Evolution of the amplitude of nonlinear accelerationwaves deduced from equation (4.14) for initial amplitudesΠ (0)
ranging from−1.5 to 1.5 × 107 m−1. (a) Longitudinal waves and (b) transverse waves. (Online version in colour.)

linearly elastic simple mixtures. The jump amplitude is governed by the Bernoulli equation (4.13)
with the coefficients (4.15)

Ω1 = (nf)2/kf

2(nf)2(ρs + ϑρf)

and Ω2 =

(
(μ + 3λ/2)(nf)3 − (4μ + 3λ)(nf)2 + μnf + λ + 2μ

)
(ρf/(nf)4)

+(μ + 3λ/2)(ρs/(nf − 1))√
λ + 2μ (ρs + ϑρf)3/2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

evaluated at q̄. While the coefficient Ω1 depends on tortuosity through ϑ , the explicit dependence
of Ω2 on tortuosity is no longer apparent in equation (4.18) where Berryman’s formula (2.22) was
used. The values of table 1 yield the characteristic distance of decay c+

P /Ω1 ≈ 12.4 nm, as well as
the critical wave amplitude −Ω1/Ω2 ≈ −1.02 × 107 m−1. The expression of Ω1 in equation (4.18)
is the same as that proposed by De Boer & Liu [17] for the linearized simple mixture. While
longitudinal acceleration waves decay exponentially in the linear case Ω2 = 0, this property is no
longer true at large amplitudes in the present nonlinear case.

Shear waves. Again, q̄ = [1, 0, 0, nf
0, 0, 0, 0, 0, 0, 0, p̄]T corresponds to a motionless undeformed

equilibrium state, and the material’s behaviour is assumed neo-Hookean (β = 0). For the
characteristic speed c = c+

S ≈ 2.71 m s−1, two distinct pairs of vectors l, r are found, corresponding
to shear waves polarized along y or z. For both polarizations (i ∈ {2, 3}), we find that the
acceleration jumps are linked through

[[∂ξ v
s
i ]] + a [[∂ξ wi]] = 0, (4.19)

where the tortuosity coefficient a is deduced from the porosity in the state q̄. This relationship
suggests that acceleration S-waves propagate both in the fluid and the solid phase if a = 1. If
a = 1, these waves propagate only in the solid phase, as shown by De Boer & Liu [16] for linearly
elastic simple mixtures. The jump amplitude is governed by Bernoulli’s equation (4.13) with the
coefficients (4.15)

Ω1 = (nf)2/kf

2a2(ρs + θρf)
, Ω2 = 0 (4.20)

evaluated at q̄. Therefore, transverse acceleration waves decay exponentially, consistent with the
study by De Boer & Liu [17] where a ≡ 1. The characteristic distance of decay deduced from table 1
is c+

S /Ω1 ≈ 101 nm. Note that the order of magnitude of this characteristic distance relates to that
of the high-frequency attenuation distance α−1

ω deduced from the dispersion analysis (figure 1).
Figure 4 displays the time evolution of the amplitude Π deduced from equation (4.14), for

nonlinear poroelastic acceleration P-waves and S-waves propagating in a neo-Hookean material
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(β = 0). While shear wave amplitudes decay exponentially (smoothing effect), compression waves
are subject to a critical amplitude −Ω1/Ω2 deduced from equation (4.18) (horizontal dashed line
in figure 4a), below which the solution becomes infinite in finite time. As stated in Müller &
Ruggeri [46, p. 183], ‘if the initial discontinuity in the derivatives is too strong, it cannot be
damped; instead it grows to infinity and thus the acceleration wave develops into a shock
wave’. Beyond the critical amplitude, nonlinearity overpowers attenuation effects, leading to the
formation of shock waves.

Of course, the addition of Yeoh behaviour with β > 0 modifies the picture slightly (see figure 3,
and the modified sound velocities in equation (4.9)), since the shear sound velocities are no longer
independent on the shear deformation. Therefore, the linear degeneracy property for shear waves
will potentially be lost. Nevertheless, since the shear wave speed is quadratic in the shear strains,
the values found for Ω1, Ω2 should not be greatly affected by this modification, at least about an
undeformed state where the sound velocity is nearly constant. In a small deformation range, the
significant difference of magnitude for the coefficients Ω1, Ω2 in compression and shear waves
will remain a predominant feature of the material. Therefore, shock waves will still develop more
easily in compression than in shear, while poroelastic P-waves are subject to faster smoothing
than S-waves due to stronger attenuation.

5. Conclusion
A mixture-theoretic Biot model for large deformations in incompressible media has been
presented, in view of future biomechanical applications. Here, saturated Yeoh-type porous solids
were considered. The main features are the existence of shear waves and slow compression waves,
which linear dispersive properties follow from the Biot theory. The computation of plane-wave
solutions with discontinuous gradients shows that shear jumps decay exponentially (in a similar
fashion to the linear theory), while the compression jumps are governed by a nonlinear Bernoulli
equation. Thus, in the neo-Hookean limit, large compressive jumps can lead to the formation of
shocks, which is not the case for shear jumps.

These results can be used for the validation of numerical methods [18,20]. Moreover,
the modelling framework and the methodology are applicable to other fields, for instance
where wave propagation problems in compressible or triphasic mixtures arise. As discussed
above, shock waves may emerge. In this regard, a first difficulty lies in the quasi-linear
(non-conservative) form of the equations of motion, for which the definition of shock wave
solutions is not straightforward [46]. While this problem can be circumvented in the case of
simple mixtures a ≡ 1, the derivation of a conservative form is less obvious in the case of
porosity-dependent tortuosity coefficients a ≡ 1. Nevertheless, shock wave solutions can still be
investigated numerically. A possible strategy would be to rely on shock-capturing finite volume
methods [47], e.g. based on an ‘artificial compressibility’ approach to account for the saturation
constraint.

As far as the present problem is concerned, several improvements need to be mentioned.
First, one should be aware that the generality of the results is limited by the constitutive
assumptions, but that the same approach could be used for variations of this model. Second, the
use of poroelasticity in applications requires the experimental determination of relevant model
parameters (table 1). In practice, the brain mechanics literature suffers from a lack of experimental
data in dynamic configurations, which would be representative of head trauma configurations.
Lastly, several modelling refinements could be introduced in potential fine-tuning steps, such
as viscoelastic behaviour [5,6], non-Darcy flow [38] or objective derivatives [35], to name a
few. A conclusive experimental or computational assessment of multi-phasic effects in TBI is
still needed.

Data accessibility. This work does not have any external supporting data.
Competing interests. The author declares that he has no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210086

...........................................................

Funding. This work was supported by the Irish Research Council (project ID GOIPD/2019/328).
Acknowledgements. The author is grateful to Michel Destrade (NUI Galway) for fruitful discussions, careful
reading and support.

Appendix A. Systemmatrices
Using the invariance assumption along y, z, the deformation gradient and distorsion tensors can
be simplified, see equation (4.1). Moreover, the system (2.23) becomes

∂tAi1 + ∂x(Aikv
s
k) = 0,

∂tnf + ∂x
(
nf(w1 + vs

1)
)= 0,

∂x
(
nfw1 + vs

1
)= 0,

ρf(∂tv
s
i + vf

1∂xv
s
i ) + aρf(∂twi + vf

1∂xwi) + δi1nf∂xp = − (nf)2

kf
wi

and ρ (∂tv
s
i + v1∂xv

s
i ) + ρf(∂twi + vf

1∂xwi) − ∂xσ
e
i1 + δi1∂xp = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

for indices i ranging from one to three, where Einstein’s notation for repeated indices was used.
Here, we have used the notation ρv = ρsvs + ρfvf for the mixture momentum, where ρ = ρs + ρf

denotes the mixture density.
Let us rewrite this system in quasi-linear form (A 1). To do so, we expand the spatial

derivatives by using the product rule. By virtue of the chain rule, the spatial derivatives
of the stress components σ e become ∂xσ

e
i1 = −Qij∂xAj1 with the coefficients Qij = −∂σ e

i1/∂Aj1.
Considering the unidimensional deformation defined in equation (4.1), the constitutive law (2.19)
for the solid skeleton gives

σ e = μ

A11

⎡
⎢⎢⎣

1 − A2
11(1 + γ ln A11) −A21 −A31

−A21 A2
21 − γ A2

11 ln A11 A21A31

−A31 A21A31 A2
31 − γ A2

11 ln A11

⎤
⎥⎥⎦

+ μβ
1 + A2

21 + A2
31 − A2

11

A3
11

⎡
⎢⎢⎣

1 −A21 −A31

−A21 A2
11 + A2

21 A21A31

−A31 A21A31 A2
11 + A2

31

⎤
⎥⎥⎦ (A 2)

with γ = λ/μ. The coefficients Qij = −∂σ e
i1/∂Aj1 are therefore given by

[Qij] = μ

A11

⎡
⎢⎢⎣

A−1
11 + (1 + γ + γ ln A11)A11 0 0

−A21/A11 1 0

−A31/A11 0 1

⎤
⎥⎥⎦

+ μβ

A4
11

⎡
⎢⎢⎣

3 − A2
11 + 3A2

21 + 3A2
31 −2A11A21 −2A11A31

(A2
11 − 3A2

21 − 3A2
31 − 3)A21 (1 − A2

11 + 3A2
21 + A2

31)A11 2A11A21A31

(A2
11 − 3A2

21 − 3A2
31 − 3)A31 2A11A21A31 (1 − A2

11 + A2
21 + 3A2

31)A11

⎤
⎥⎥⎦ ,

which may be viewed as deformation-dependent elastic moduli. In fact, in the limit of Hookean
linear elasticity (or equivalently, in a static undeformed state), the only non-zero coefficients Qij
are Q11 � λ + 2μ and Q22 = Q33 � μ, where λ, μ are the Lamé parameters. Finally, we end up with
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the quasi-linear first-order system (4.2), with the 11 × 11 matrices Mν and the vector R specified
below.

Mt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 ρf 0 0 aρf 0 0 0

0 0 0 0 0 ρf 0 0 aρf 0 0

0 0 0 0 0 0 ρf 0 0 aρf 0

0 0 0 0 ρ 0 0 ρf 0 0 0

0 0 0 0 0 ρ 0 0 ρf 0 0

0 0 0 0 0 0 ρ 0 0 ρf 0

0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Mx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vs
1 0 0 0 A11 0 0 0 0 0 0

0 vs
1 0 0 A21 1 0 0 0 0 0

0 0 vs
1 0 A31 0 1 0 0 0 0

0 0 0 vf
1 nf 0 0 nf 0 0 0

0 0 0 0 ρfvf
1 0 0 aρfvf

1 0 0 nf

0 0 0 0 0 ρfvf
1 0 0 aρfvf

1 0 0

0 0 0 0 0 0 ρfvf
1 0 0 aρfvf

1 0

Q11 Q12 Q13 0 ρv1 0 0 ρfvf
1 0 0 1

Q21 Q22 Q23 0 0 ρv1 0 0 ρfvf
1 0 0

Q31 Q32 Q33 0 0 0 ρv1 0 0 ρfvf
1 0

0 0 0 w1 1 0 0 nf 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R = − (nf)2

kf

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

w1
w2
w3
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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