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Abstract
PURPOSE: To build radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to
preoperatively predict malignant potential and mitotic count of gastrointestinal stromal tumors (GISTs). PATIENTS AND
METHODS: A total of 333 GISTs patients were retrospectively included in our study. Radiomic features were extracted
from the preoperative CE-CT images. According to postoperative pathology, patients were categorized by malignant
potential andmitotic count, respectively. Themost valuable radiomic features were chosen to build a logistic regression
model to predict the malignant potential and a random forest classifier model to predict the mitotic count. The
performance of radiomic models was assessed with the receiver operating characteristics curve. Our study further
developed a radiomic nomogram to preoperatively predict malignant potential in a personalized way for patients with
GISTs. RESULTS: The predictive model was built to discriminate high– from low–malignant potential GISTs with an area
under the curve (AUC) of 0.882 (95% CI 0.823-0.942) in the training set and 0.920 (95% CI 0.870-0.971) in the validation
set. Moreover, the other radiomic model was built to differentiate high– from low–mitotic count GISTs with an AUC of
0.820 (95% CI 0.753-0.887) in the training set and 0.769 (95% CI 0.654-0.883) in the validation set. CONCLUSION: The
radiomicmodels usingCE-CT showedagoodpredictive performance for preoperative risk stratification ofGISTs andhold
great potential for personalized clinical decision making.
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troduction
astrointestinal stromal tumors (GISTs) are themost common subgroup
gastrointestinal mesenchymal neoplasms with fusoid and epitheliod
lls or rarely with pleomorphic cells [1], and arise from Cajal interstitial
lls or their similar cells [2,3]. The diagnosis of GISTs is histopatho-
gical and implemented by the immunohistochemical marker CD117
r C-KIT) and DOG1 [3–5]. Nearly 50%-70% of GISTs originate
om the stomach and 30%-45% from the small bowel [6,7]. The
ological behavior of GISTs varies from benign to malignant, which is
fferent from other solid lesions of the gastrointestinal tract. Malignant
ISTs tend to recur and metastasize even after a complete surgical
section [8]. The National Institutes of Health (NIH) risk categories
iteria of proposed modification (Table S1) and the National
omprehensive Cancer Network (NCCN) prognosis prediction guide-
es (Table S2) are widely used in clinical practice due to their important
lue for assessment of prognosis after operation. GISTs are classified into
ur risk categories, ranging from very low risk to high risk, which are
termined by the tumor size, tumor location (gastric or nongastric), and
itotic count [3,9]. The recurrent rates vary from 2.4% to 69.8% in
fferent risk categories of GISTs [10]. In theNIH criteria (Table S1) and
CCN guidelines (Table S2), the morphological features of tumor size
d mitotic count gain the greatest acceptance as predictors of malignant
tcome. Nevertheless, these pathological evaluations of surgical
ecimens are only available postoperatively. It is relatively easy to
lculate the tumor size preoperatively using anatomic imaging
chniques, but it is difficult to calculate the mitotic count preoperatively.
hus, the determination of malignant potential of GISTs remains
fficult. However, it is of high clinical value to predict malignant
tential of GISTs preoperatively, which may offer guidelines for
termining the need for adjuvant chemotherapy, such as the use of
olecular targeted drugs for preventing metastasis and recurrence [11].
evious studies further confirmed that the prognosis of advanced
imaryGISTs patients could be improved by preoperative targeted drugs
eatment [12–14]. Therefore, preoperative prediction of malignant
tential can provide valuable clues for predicting disease prognosis and
termining the need for adjuvant therapy.
Radiomics can be used to quantify tumor phenotypic characteristics in
tail and comprehensively because of its high-throughput extraction of
diomic features quantifying tumor's shape, intensity, and texture from
edical images [15,16]. The radiomic approach has been widely used for
sion detection, preoperative diagnosis of disease status, preoperative
ognostic evaluation, prediction of treatment response, and prediction of
sease-free survival [17–21]. Contrast-enhanced computed tomography
E-CT) is a fundamental imaging tool for detecting the lesion and
aging and for the assessment of treatment response in clinical practice of
ISTs [3,22,23]. In this study, two radiomic models based on
eoperative CE-CT were built and validated to predict the malignant
tential and mitotic count of GISTs, respectively.

aterials and Methods

atients

The present study was approved by the Institutional Review Boards of
e Second Affiliated Hospital of Zhejiang University School of
edicine. We searched our retrospectively maintained database for
nsecutive patients who underwent preoperative CE-CT between June
09 and March 2018. The inclusion criteria included 1) histological
agnosis of GISTs; 2) availability of preoperative CE-CT; and 3)
stological analysis of the surgical specimen reporting the lesion size,
cation of origin, and the mitotic index. The exclusion criteria included
patients who received preoperative chemotherapy, such as the use of
rgeted drugs, and 2) tumor ruptured during the surgery. The final
mber of patients who matched the above criteria and were enrolled in
e study was 333 (172 men and 161 women; mean age, 58.8 ±
.8 years).

athology
Postoperative specimens were fixed with formalin and then stained
ith hematoxylin and eosin. Immunohistochemical staining of
mors for c-kit and CD34 or both was diagnosed as GISTs. Mitotic
unt was calculated on 50 high-power fields (HPFs). Neoplasm size
as measured on formalin-fixed sample. According to the NIH
iteria (Table S1), GISTs were classified into four risk grades,
nging from very low risk to high risk. According to risk categories,
e patients in this study were categorized as the low– (very low to
termediate risk) and the high–malignant potential group (high
sk). In addition, according to mitotic count, the patients with
itotic count ≤5/50 HPF were categorized as the low–mitotic count
oup, and the patients with mitotic count N5/50 HPF were
tegorized as the high–mitotic count group.

T Protocol
All patients underwent abdominal CE-CT. Details of the
quisition parameters and CT image retrieval procedures were
ovided in Supplementary S1.

adiomic Feature Extraction
CE-CT images in the portal venous phase were used for tumor
gmentation since the portal venous phase had a better performance in
entifying the lesion from the surrounding normal tissue. The tumor
tline at the largest cross-sectional area was drawn as the region of
terest (ROI) by an experienced radiologist who had no knowledge of the
mors other than their locations by using a free open-source software
ckage (ITK-SNAP, version 3.6.0; http://itksnap.org) to provide the
OI for computer-based image analysis (Figure 1).
Radiomic feature extraction procedures were provided in Supplemen-
ry S2. A total of 385 quantitative parameters from feature sets of
istogram, Form Factor, Haralick [24], Gray-Level Co-occurrence
atrix [24], and Run-Length Matrix [25,26] were used in our image
ature extraction.
To evaluate inter- and intraobserver reproducibility, 30 cases were
osen at random for ROI delineation and ROI-based feature
traction by two experienced radiologists (radiologist 1 and
diologist 2). To find out robust radiomic features, we used inter-
d intraclass correlation coefficient (ICC) to evaluate the stability
d reproducibility in radiomic feature extraction. The intraobserver
C was calculated based on the twice feature extractions by
diologist 1. The interobserver ICC was calculated based on the first-
tracted features by radiologist 1 and those by radiologist 2. In
neral, ICC N 0.75 was deemed to have a good reliability or
producibility [27].

tatistical Analysis

linicopathologic Characteristics

The groups’ differences in gender, age, tumor location, malignant
tential, and mitotic count were compared using two-sample t or χ2

st in SPSS 20.0 software (IBM).
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Figure 1. (A, C) The tumor outline at the largest cross-sectional area wasmanually drawn as the ROI (red circle). (A, B) A gastric lesion with
a low mitotic rate (≤5/HPFs). A 67-year-old female patient with a gastric lesion, 6.2 cm in size, 0 mitosis/50 HPFs, belonging to the
moderate-risk class. (C, D) A gastric lesion with a highmitotic rate (N5/HPFs). A 61-year-old male patient with a gastric exophytic lesion, 6.9
cm in size, 31 mitoses/50 HPFs (arrows), belonging to the high-risk class.

Ta le 1. Characteristics of Patients in the Training and Validation Sets

Ch racteristic Training Set Validation Set P

G der .693
ale 122 50
male 111 50

Ag (mean ± SD) (y) 57.8 ± 12.1 60.9 ± 11.0 .03
Tu or location .124

omach 149 55
all intestine 84 45

M gnant potential .096
w malignant potential 166 62
igh malignant potential 84 38

M tic count .995
/50 HPF 184 79
5/50 HPF 49 21

In pendent-samples t test was applied in continuous variables. χ2 test was applied in categorical
va bles. The number in the table is the number of the patients except the age.

value b.05.
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adiomic Feature Selection and Radiomic Model Building
As tumor location is a main component of the modified NIH criteria
] (Table S1), we further combined tumor location and the radiomic
atures into a feature set. Data preprocessing was performed on this
ature set in the following three steps. First, abnormal values were
placed with median. Second, data were partitioned at random: the
aining set accounted for 0.7, and the validation set accounted for 0.3.
hird, standardization was done before analysis (Supplementary S3).
Feature selection was performed in the following three steps to
duce redundancy. Firstly, the difference of every radiomic feature
tween the high– and low–malignant potential groups was
mpared using χ2 test and Mann-Whitney U test (MW). Secondly,
minimum redundancy maximum relevance (mRMR) feature
nking was calculated, and one-third of features were retained,
hich reduced the redundancy between features in the feature
bset. The mRMR feature ranking takes into account not only the
rrelation between features and labels but also the redundancy
tween features [28]. Thirdly, the least absolute shrinkage and
lection operator method (LASSO) was performed to select the most
luable predictive features, and backward stepwise was used to select
gh-risk related optimum feature subset. As a widely used machine
arning method in the field of radiomics, the LASSOmethod selects
suitable number of non–zero-weighted features according to the
inimum or 1-standard error 1-SE criteria, which can prevent
erfitting in the model construction. Finally, the remaining features
ere selected to build a radiomic model to predict the malignant
tential using a logistic regression classifier. In addition, in
e process of selecting related optimum features subset for the
gh–/low–mitotic count groups, the feature selection was also
rformed in three steps to reduce redundancy (Supplementary S4).

redictive Performance of Radiomic Model
The radiomic model performance was evaluated by receiver
erating characteristic (ROC) curves. To quantify the discrimina-
ry power of the radiomic model, the parameters including the area
der the curve (AUC), sensitivity, specificity, and accuracy were
ovided. Then, the same parameters on the validation set were
tained from the training set to test the prediction performance of
is model. R software (version 3.5.0; http://www.R-project.org) was
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plied in the above statistical analysis. All of the statistical tests in this
udy were two-tailed, and the R packages used in this study were
own in Supplementary S5.

esults

atient Characteristics

Three hundred and thirty-three patients were comprised of men
72 cases) and women (161cases), stomach (204 cases) and small
testine (129 cases), the low malignant potential (228 cases) and the
gh malignant potential (105 cases), and the low mitotic count (263
ses) and the high mitotic count (70 cases). The training set
nsisted of 122 men and 111 women (57.8 ± 12.1 years, range 16-
years). The validation set consisted of 50 men and 50 women

0.9 ± 11.0 years, range 21-86 years). A statistical difference in age
tween the two sets (P = .03) was found, but no statistical
fferences were found in gender (P = .693), tumor location (P =
24), malignant potential (P = .096), and mitotic count (P = .995)
tween the two sets. The clinicopathologic characteristics of gender,
e, tumor location, malignant potential, and mitotic count of the
o sets were summarized in Table 1. Demographic characteristics of
gh–/low–malignant potential groups and high–/low–mitotic count
oups in the two sets were summarized in Supplementary S6 and
ables S3 and S4.

eproducibility of Radiomic Feature Extraction
A total of 385 radiomic features were extracted from patients with
ISTs. The feature with ICC N 0.75 was deemed to have a good
liability or reproducibility in both inter- and intraobserver analyses.
s a result, a total of 378 features were robust and then applied for
bsequent feature selection.

eature Selection and Radiomic Model Building
The High– and Low–Malignant Potential Groups. First, χ2 test
d MW were performed to compare the feature differences between
ure 2. Feature selection in the malignant potential groups with the
sidues, with the sum of the absolute values of the selected features co
rameter (λ) selection using LASSO penalized logistic regression with
SSO coefficient profiles of the radiomic features. A coefficient profile
e coefficient of each feature. Vertical line was drawn at the selected
e high–/low–malignant potential groups, and 265 features
mained. Second, an mRMR feature ranking was calculated, and
features remained. Last, a LASSO method (Figure 2) with cross-
lidation was performed, and five features remained. Finally, the
ree features including tumor location, maximum diameter, and a
xture feature were selected after backward stepwise, and then the
maining three features were chosen to build a radiomic model by a
gistic regression model. The three selected features were provided in
able 2.
The High– and Low–Mitotic Count Groups. First, one-way
alysis of variance and MW were used to compare the difference in
ch radiomic feature between the low– and the high–mitotic count
oups, and 239 features remained. Second, a correlation analysis
pearman's correlation test) between each two different features was
rformed, and 61 features remained. Lastly, a LASSO method with
oss-validation was performed, and 14 features remained. Finally, the
maining 14 features were chosen to build a radiomic model using a
ndom forest classifier. The 14 selected features were provided in
able 3.

redictive Performance of Radiomic Model
The High– and Low–Malignant Potential Groups. In the training
t, the radiomic model had an excellent discrimination capacity
UC =0.882, 95% confidence interval [CI]: 0.823-0.942; sensitiv-
y = 80.6%; specificity = 94%; and accuracy = 90.1%) for discrim-
ating the high– from the low–malignant potential GISTs (Figure
). In the validation set, this radiomic model had a similar
scrimination capacity (AUC = 0.920, 95% CI: 0.870-0.971;
nsitivity = 76.3%; specificity = 88.7%; and accuracy = 84%) (Fig-
e 3B). Finally, the selected three features, including maximum
ameter, intensity values range, and tumor location (Table 2), were
corporated into the radiomic nomogram building (Figure 4).
The High– and Low Mitotic Count Groups. In the training set,
e radiomic model had a satisfactory discrimination capacity (AUC =
820, 95% CI: 0.753-0.887; sensitivity =63.3%; specificity =91.3%;
LASSO method. This method minimized the sum of squares of
efficients being not more than a tuning parameter (λ). (A) Tuning
10-fold cross-validation. The AUC was plotted versus log (λ). (B)
plot was plotted versus the log (λ). Each colored line represents
λ, where five features had nonzero coefficients.
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Table 2. Selected Features with Descriptions of the High– and Low–Malignant Potential Groups

Feature Name Description

Tumor location Gastric or nongastric
Maximum diameter Measures the size of the tumor region
Intensity values range Represents the range of intensity values
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d accuracy = 85.4%) for discriminating the high– from the low–
itotic count groups (Figure 5A). In the validation set, this radiomic
odel had a similar discrimination capacity (AUC = 0.769, 95% CI:
654-0.883; sensitivity = 52.4%; specificity = 81%; and accuracy =
5%) (Figure 5B).

iscussion
this study, we developed and validated an effectively preoperative
diomic model using CE-CT to differentiate the high– from the
w–malignant potential GISTs, and we further built a personalized
diomic nomogram to predict malignant potential for patients with
ISTs. Moreover, we also developed and validated a radiomic model
differentiate the high– from the low–mitotic count GISTs. The
esent research confirmed the predictive ability of radiomic model
r both malignant potential and mitotic count of GISTs, and it may
a potential imaging method for assessing prognosis and guiding

inical treatment decision making before surgery in a noninvasive
ay.
Despite complete surgical resection, up to 50% of GISTs will recur
a median of 24 months [29]. Accurate preoperative risk grade

assification for patients with GISTs has gained a lot of attention due
the emergence of targeted drugs [11,30]. A previous CE-CT study
1] investigated the associations between imaging features, mitotic
unt, and risk categories and found that some imaging features,
cluding heterogeneous enhancement, angiogenesis, necrosis, adja-
nt organ invasion, and irregular margins, were correlated with the
gh-risk category. Meanwhile, irregular margins and adjacent organ
vasion were associated with the high mitotic count. It should be
ted that these imaging findings were judged by radiologists'
bjective analysis, and this qualitative analysis would bring about
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ble 3. Selected Features with Descriptions of the Low– and High–Mitotic Count Groups

ature Name Description

tensity values range Represents the range of intensity values
hericity Measures the shape in the ROI
xel value sum Represents the sum calculations for voxels in the ROI
iformity Represents a histogram parameter
n v e r s e d i f f e r e n c e
moment_AllDirection_offset1_SD

Inverse difference moment is the local homogeneity.

verse difference moment_angle0_offset4
n v e r s e d i f f e r e n c e
moment_angle45_offset4
n v e r s e d i f f e r e n c e
moment_angle90_offset4
n v e r s e d i f f e r e n c e
moment_angle135_offset4
verse difference moment_angle0_offset7
n v e r s e d i f f e r e n c e
moment_angle90_offset7
rrelation_angle135_offset7 Correlation measures the similarity of the gray levels

in neighboring pixels
ng run high gray level emphasis_All
Direction_offset1_SD

Represents a feature of gray level run-length matrix

h o r t r u n e m p h a s i s _ A l l
Direction_offset4_SD

Represents a feature of gray level run-length matrix

te: Suffix of “0,” “45,” “90,” and “135” means the directions of gray-level matrix directions.
ter- and intraobserver variability. However, in our present study,
antitative radiomic features were extracted and selected to build a
diomic model which could effectively avoid inter- and intraobserver
riability.
Positron-emission tomography/computed tomography (PET/CT)
n assess tumor anatomy and glucose metabolism and has been
nsidered as an important imaging tool for GISTs [32–34].
okumoto et al. [34] used PET/CT to discriminate the high from
w malignant potential of GISTs, and they found that PET/CT
ight be useful for evaluating the risk category of GISTs
ensitivity = 85.7%, specificity = 62.5%) but could not be used
r evaluating the mitotic count. Our present study built a CT-based
diomic model with a similar prediction performance with a
nsitivity of 76.3% and a specificity of 88.7%. Furthermore, in
r study, we further developed and validated a CT-based radiomic
odel to differentiate the high– from the low–mitotic count GISTs
ith a diagnostic accuracy of 75%. In addition, Wong et al. [35]
mpared the performance between magnetic resonance imaging
RI) and PET/CT of GISTs, and they reported that diffusion

eighted imaging had a similar performance as PET/CT in diagnosis
d treatment response evaluation for patients with GISTs. In fact,
E-CT is the most routinely used imaging examination tool for
ISTs patients, while PET/CT or MRI is regarded as an additional
aging examination tool because PET/CT and MRI examinations
e relatively expensive and take a long time [3]. Therefore, CT-based
diomic model in discriminating malignant potential of GISTs could
ve better generalizability and clinical application value.
In the present study, we used the three selected features, including
mor location and maximum diameter and intensity values range, to
velop a radiomic model and an individualized radiomic nomogram
r discriminating malignant potential of GISTs. Malignant potential
GISTs is commonly stratified based on tumor size, tumor location
astric or nongastric), and mitotic count [3,9,36–39]. Tumor size is
important factor for assessing the malignant potential and

ognosis of GISTs (Tables S1 and S2). The NCCN guideline has
commended that the tumor should be surgically resected when
mor size is larger than 2 cm, and the tumor can be resected or
onitored by endoscopy when tumor size is smaller than 2 cm [40].
owever, it is insufficient to discriminate the high– from the low–
alignant potential GISTs simply only by tumor size since some
ISTs with small size may be high-risk malignancy and have poor
ognosis [41,42]. Tumor location is another important factor for
ognosis evaluation and is a main component of the modified NIH
iteria [9] (Table S1). The small intestine GISTs have been reported
be more aggressive and have worse prognosis than gastric GISTs of
e same size [43,44]. In this study, tumor size and tumor location
ere significantly different between the high– and low–malignant
tential groups, and as expected, these two factors finally remained
ter a series of radiomic feature selections in the radiomic model.
umor size can be measured and tumor location can be determined
conventional CE-CT, but mitotic count is difficult to be

lculated preoperatively. Thus, in our study, we further built and
lidated a specialized radiomic model to predict mitotic count of
ISTs, which showed satisfactory performance in distinguishing
gh– and low–mitotic count GISTs. After radiomic feature selection,
e 14 remaining features included range of intensity values,
hericity (measured the shape in the ROI), voxel value sum,
iformity, local homogeneity (including seven features of inverse
fference moment), similarity of the gray levels in neighboring pixels,
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Figure 3. ROC curves of the radiomic model in training set (A) and validation set (B) in the high– and low–malignant potential groups.
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d two features of gray level run-length matrix (Table 3). These
maining radiomic features represented an assessment of tumor
ape and tumor heterogeneity. Iannicelli et al. [31] investigated the
lations between the morphological CE-CT features and mitotic
unt of GISTs, and they found a statistically significant association
tween shape of lesion margins and mitotic count: most (90.9%) of
sions with the low mitotic count showed regular margins (P =
16), suggesting that solid lesions with smooth and not crispy
gure 4. Developed radiomic nomogram. The radiomic model, maximu
diomic nomogram. The probability of each predictor can be converted
mogram. After adding up the corresponding prediction probability at
toff point of our nomogram is 0.5. The case would be diagnosed as
yond the cutoff point.
rders could be more aggressive than the ones with jagged borders.
oreover, most (81.8%) of lesions with the high mitotic count
owed heterogeneous enhancement and necrosis which represented
mor heterogeneity, while there were no statistically significant
fferences which may be caused by its small sample size (only 44
tients). In addition, it is noteworthy that the radiomic feature, the
nge of intensity values, remained after radiomic feature selection in
th radiomic models for malignancy differentiation (Table 2) and
m diameter, range, and tumor location were used for building the
into scores according to the first scale “Points” at the top of the

the bottom of the nomogram is the malignancy of the tumor. The
high malignant potential when the total prediction probability is
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Figure 5. ROC curves of the radiomic model in training set (A) and validation set (B)in the high– and low–mitotic count groups.
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itotic count differentiation (Table 3), which suggested that the
diomic feature, intensity values range, might be a potential imaging
omarker for both mitotic count and malignancy differentiation of
ISTs.
In the present study, radiomic features were analyzed using two-
mensional (2D) image in the largest axial plane rather than three-
mensional (3D) images of whole tumor. A previous study
monstrated that single-slice 2D features analysis was sufficient to
aluate the tumor pathology and clinical outcomes due to no
gnificant difference between 2D and 3D texture evaluation of liver
etastases [45]. Recently, several studies further demonstrated that
radiomics analysis of a single-slice largest cross-sectional image

d good performances in preoperatively differentiating malignant
ades of colorectal cancer [46] and determining lymph node
etastasis in colorectal cancer [18].
However, a limitation of our study is the fact that gene mutations
e not considered in this present study. Most GISTs have an
tivating mutation in tyrosine kinase protein receptor (KIT) gene or
atelet-derived growth factor receptor (PDGFRA) gene. Chinese
nsensus guidelines for the diagnosis and management of GISTs [3]
ve recommended c-kit or PDGFRA gene mutational analysis,
hich is important for diagnosing some difficult cases, predicting the
erapeutic effect of targeted drugs and guiding medical decision
aking. In recent years, radiogenomics, which concentrates on the
sociation between imaging phenotypes and genomics, has emerged
d developed in the field of tumor research and received increasing
tention [47]. Hence, it is worthwhile to investigate the relationship
tween radiomic features and different c-kit or PDGFRA mutation
further radiogenomic study.
In conclusion, our preliminary study showed that the radiomic
odel had a good performance for preoperatively predicting both
alignant potential and mitotic count of GISTs in a noninvasive
ay. Although promising, these results were preliminary and
quired validation on a prospective dataset to assess the potential
r clinical translation. After validation, the radiomic assessment
ay become a potential imaging biomarker for GISTs and can be
nveniently performed for the preoperative personalized predic-
on of malignant potential for patients with GISTs.
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