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A commentary on

Phase-amplitude coupling at the organism level: The amplitude of spontaneous alpha rhythm

fluctuations varies with the phase of the infra-slow gastric basal rhythm

by Richter, C. G., Babo-Rebelo, M., Schwartz, D., and Tallon-Baudry, C. (2017). Neuroimage 146,
951–958. doi: 10.1016/j.neuroimage.2016.08.043

The study by Richter et al. (2017) found significant electrophysiological communication between
gastric pacemaker activity and the alpha rhythm within certain regions of the cerebral cortex
including the right anterior insula. In other words, they found a role for interstitial cells of
Cajal in interoception, the sensory system responsible for detecting internal regulation responses.
The communication between ICC and the insular cortex occurred through phase amplitude
coupling, the phase of the lower frequency gastric pacemaker modulated the amplitude of
alpha waves in the anterior insula. Although phase amplitude coupling has almost exclusively
been shown to occur within the brain, this study discovered that it also facilitates gut—brain
communication. Interestingly, phase amplitude coupling was also observed within the gut; the
amplitude of the higher frequency dominant intestinal pacemaker [the “slow wave” generated
by interstitial cells of Cajal associated with the myenteric plexus (ICC-MP; Huizinga et al.,
1995; Thomsen et al., 1998)] was seen to be modulated by the phase of a lower frequency
induced rhythmic depolarization likely originating in the network of ICC associated with the
deep muscular plexus (ICC-DMP) (Huizinga et al., 2014). This interaction changed propulsive
activity into the classical segmentation pattern of the intestine associated with absorption of
nutrients. The study from Richter et al. (2017) is highly significant since it demonstrates
the ongoing monitoring of gastric pacemaker activity by the right anterior insula. In the
stomach, the three-cycles/min pacemaker activity responsible for the orchestration of its dominant
peristaltic activity, is generated by a network of ICC-MP and ICC-IM (the intramuscular ICC)
(Edwards and Hirst, 2006). The communication between gastric ICC and the brain involves
the intramuscular array (IMA)-ICC-complexes which incorporate ICC-IM, nerve endings of
the vagal afferents and varicosities of motor neurons (Powley et al., 2008, 2016), ideally suited
for bi-directional communication with the brain (Figure 1). The vagal afferents connect to
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FIGURE 1 | Branches of IMAs (brown, 3,3′-diaminobenzadine stained)

run in tight apposition with ICC-IM (blue-gray, c-Kit immuno-labeled

with peroxidase). Branches of IMA arrays vary in their degree of varicosity

and in the tightness of apposition. (A) Four neighboring principal branches of

an IMA array coursing in tight apposition with a network of neighboring ICC-IM

intercalated among smooth muscle bundles (unstained). In this example, the

IMA branches express modest swellings or varicosities, most of which are in

close proximity to the somata and processes of ICC-IM. (B) Two neighboring

principal branches of an IMA array course near to, and appear to contact

intermittently, the local ICC-IM network. In contrast to the array branches

shown in (A), those shown in (B) are more lamelliform, the apparent contacts

with the ICC-IM are more intermittent, and many of the IMA lamellae appear to

lie on the smooth muscle bundles (unstained) adjacent to the ICC-IM network.

(C,D) Two examples of principal IMA branches that course in tight conjunction

with ICC-IM and form swellings or varicosities on both ICC-IM somata and

fibers. Scale bar = 10 µm. Reproduced with permission from Powley et al.

(2016).

the insular cortex via the nucleus tractus solitarius (Shipley,
1982) and the insular cortex innervates the dorsal motor
nucleus, which, in turn, provides innervation to enteric nerves
of the stomach (Berthoud et al., 1990). The insular cortex
was activated during gastric balloon distention and deactivated
during ingestion of a meal, indicating a detailed monitoring
of stomach conditions (Geeraerts et al., 2011). Vagal afferents
are all connected to ICC (Powley et al., 2016) indicating that
the vagus will not monitor individual ICC but the features

of the interconnected network of ICC (Huizinga et al., 2015;
Pawelka and Huizinga, 2015; Wei et al., 2016). How detailed

information from this network is conveyed to the brain should
be a topic for future research. This information will contain
signals from several slow waves propagating over the stomach
at the same time. This information will contain changes in ICC
network properties that occur in response to a meal (Chen
and McCallum, 1992) (Berthoud, 2008), which may relate to
satiety (Andrews and Sanger, 2002). There is the potential that
detailed information regarding meal quality and/or quantity, or
even types of nutrients ingested could be signaled via alterations
in ICC signaling. Detailed information is now emerging how
ICC network properties change in patients with gastroparesis
(O’Grady et al., 2012; O’Grady and Abell, 2015) and diabetes
(He et al., 2001). Dyspepsia may relate to abnormal vago-vagal
reflexes, including efferent innervation and abnormal signaling
from the stomach to the insula or abnormal processing of
such signals (Page and Blackshaw, 2009; Lee et al., 2016).
Abnormalities in initiation and conduction were observed in
patients with gastroparesis in the presence of a normal 3 cpm
frequency (O’Grady et al., 2012) suggesting that in certain
conditions, the recorded ICC pacemaker frequency may be
normal but that it is the injury to the ICC network that is
related to gastroparesis, which may relate to delayed gastric
emptying and/or the initiation of nausea and vomiting through
vagal afferents. Gastric dysmotilities are also related to depression
indicating the myriad of ways that different regions of the brain
can influence each other (Ruhland et al., 2008). Gastric slow
wave activity changes markedly in response to neurotransmitters
and hormones (El-Sharkawy and Szurszewski, 1978; El-Sharkawy
et al., 1978), hence it is likely that the insular cortex monitors
such changes. Vagal stretch and tension receptors are always
incorporated in mechanistic explanations as to how the stomach
signals to the brain (Young et al., 2008; Kentish et al., 2013).
The study of Richter et al. (2017) suggests that the ICC-IMA
complexes are a sensorimotor unit and that sensations might be
primarily integrated by and expressed by ICC activity and as such
monitored by the insular cortex, where, in conjunction with other
regions of the brain, conscious and subconscious decisions are
made how to react to these stimuli. Monitoring of slow wave
activity, even at rest (Richter et al., 2017), ensures an exquisitely
sensitive system that is instantly available to inform the brain of
any activity, change in activity or abnormal conditions. Further
investigations into the role of ICC will be essential to unravel this
gut brain communication pathway, including the sensitivity of
ICC to inflammation, the remarkable ability of ICC to recover
from severe injury and loss (Wang et al., 2002; Bettolli et al., 2012)
and the molecular basis of ICC network regeneration (Hayashi
et al., 2013).
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