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The aim of our study was to evaluate the association between polymorphisms in the
methylenetetrahydrofolate reductase (MTHFR) gene and the risk for congenital heart disease (CHD).
Electronic literature databases were searched to identify eligible studies published before Jun, 2014. The
association was assessed by the odds ratio (OR) with a 95% confidence interval (CI). The publication bias was
explored using Begg’s test. Sensitivity analysis was performed to evaluate the stability of the crude results. A
total of 35 studies were included in this meta-analysis. For the MTHFR C677T polymorphism, we detected
significant association in all genetic models for Asian children and the maternal population. Significant
association was also detected in T vs. C for a Caucasian paediatric population (OR51.163, 95% CI: 1.008–
1.342) and in both T vs. C (OR51.125, 95% CI: 1.043–1.214) and the dominant model (OR51.216, 95%
CI:b1.096–1.348) for a Caucasian maternal population. For the MTHFR A1298C polymorphism, the
association was detected in CC vs. AC for the Caucasian paediatric population (OR51.484, 95% CI: 1.035–
2.128). Our results support the MTHFR -677T allele as a susceptibility factor for CHD in the Asian maternal
population and the -1298C allele as a risk factor in the Caucasian paediatric population.

C
ongenital heart disease (CHD) is the most frequently occurring congenital disorder in newborns and is the
most frequent cause of infant death from birth defects. The aetiology of CHD is largely unknown.
Epidemiological studies reveal a significant environmental contribution to the pathogenesis of CHD1–2.

Familial aggregation and twin studies indicate the presence of genetic factors for susceptibility to this condition3–5.
Except for a few types of CHD induced by a single gene mutation, the majority of CHDs are polygenic diseases
affected by both genetic and environmental factors.

The importance of genetic factors in the development of CHD is also supported by recent data from genome-
wide association studies (GWASs). Data from these studies have confirmed that a region on chromosome 4p16
adjacent to the MSX1 and STX18 genes was associated with the risk of ostium secundum atrial septal defect
(ASD)6, and rs2228638 in NRP1 on 10p11 significantly increased the risk of Tetralogy of Fallot (TOF)7. In our
studies, we identified HOMEZ and PLAGL1 as pathogenic genes in Chinese patients with isolated ventricular
septal defects (VSDs)8–9. In addition, our proteomic study revealed plasma protein changes in CHD patients10.

The 5,10-methylenetetrahydrofolate reductase (MTHFR) gene is located on chromosome 1 at 1p36.3. MTHFR
is the key metabolic enzyme of homocysteine (Hcy). It catalyses 5,10-methylenetetrahydrofolate reduction to 5-
methyltetrahydrofolate, which as a methyl donor induces Hcy remethylation to methionine11. A common C677T
mutation (rs1801133) in the MTHFR gene has been described, which results in the conversion of the amino acid
alanine to valine at position 226 in the protein. This mutation was associated with a 50% reduction of MTHFR
enzyme activity, an increase in plasma Hcy concentration and a decrease in plasma folic acid concentration.
Another polymorphism (A1298C, rs1801131) is located in exon 7, within the presumptive regulatory domain,
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and results in a glutamate-to-alanine change with decreased enzyme
activity in vitro12. It has been reported that MTHFR polymorphisms
play important roles in diseases. For example, neural tube defects and
pregnancy complications appear to be linked to impaired MTHFR
function13–14.

Since Wenstrom first noted an association between MTHFR gene
polymorphism and susceptibility to CHD15, other studies have been
undertaken to replicate this work. However, previous case-control
reports have yielded inconsistent results. Wang and co-workers car-
ried out a meta-analysis involving 2,554 CHD patients and 3,838
controls by searching the electronic literature for articles published
before July 22, 2012. They suggested that the infant and maternal
MTHFR C667T polymorphism may be associated with an increased
occurrence of CHD16. By contrast, Mamasoula and co-workers indi-
cated that the MTHFR C677T polymorphism, which directly influ-
ences plasma folate levels, is not associated with the risk of CHD17.
Therefore, we performed an up-dated meta-analysis of all published
studies (until Jun, 2014) to investigate the association between
MTHFR polymorphisms (C677T and A1298C) and the risk of CHD.

Methods
Search strategy. We conducted a comprehensive search of Embase, Ovid, Web of
Science, the Cochrane database, Medline (PubMed), the Chinese Biomedical
Literature Database (CBM-disc, 1979–2014), the database of National Knowledge
Infrastructure (CNKI, 1979–2014) and the full paper database of Chinese Science and
Technology of Chongqing (VIP, 1989–2014) to identify suitable studies published
before Jun, 2014. The following keywords were used for searching: (‘‘congenital
heart’’ OR ‘‘congenital cardiac’’ OR ‘‘heart defect*’’ OR ‘‘congenital car*’’) AND
(‘‘polymorphism*’’ OR ‘‘variant*’’) AND (‘‘methylenetetrahydrofolate reductase’’
OR ‘‘MTHFR’’). The most complete and recent results were used when there were
multiple publications from the same study group. The references of reviews and
retrieved articles were also searched simultaneously to find additional eligible studies.

Inclusion criteria. Two investigators reviewed all identified studies independently to
determine whether an individual study was eligible for inclusion. The selection
criteria for studies to be considered for this meta-analysis were as follows: 1) MTHFR
polymorphisms in CHD; 2) case-control or case-cohort study; 3) proper CHD
diagnosis criteria; 4) original data; 5) human subjects, not animal studies. We
expected the clinical assessment of the patients to include anthropometric
measurement and physical examination for dysmorphism and malformation, and
diagnostic studies to include chest X-ray examination, electrocardiogram, ultrasonic
echocardiogram, etc. Studies would be excluded if the necessary information could
not be obtained.

Data extraction. Two investigators extracted the data independently, and a third
investigator reviewed the result. The following information was extracted from each
study: first author, year of publication, study population (country, ethnicity), the
number of patients and controls in the study, genotype information, genotype
methods, and main types of CHD. If any data essential to the analysis were not
available from a study, best efforts were made to contact the authors to fill in the
missing data.

Statistical analysis. Allele frequencies for the MTHFR (C677T and A1298C)
polymorphisms from each study were determined by the allele counting method18.
The genotype distributions of controls were used to estimate the frequency of the
putative risk allele (-677T and -1298C) using the inverse variance method19–20. The
Hardy-Weinberg Equilibrium (HWE) is the most fundamental rule of population
genetics. It prescribes the genotype frequencies at a locus in terms of its allele
frequencies in a population. In the most general form, it states that selection,
migration, and random genetic drift occur with random mating in a population in the
absence of mutation21. The deviation from HWE for the distribution of the allele
frequencies was analysed by Fisher’s exact test in control groups. We examined the
contrast of a vs. A, aa vs. AA, aa vs. Aa and also examined the recessive genetic model
(aa vs. AA1Aa) and the dominant genetic model (Aa1aa vs. AA). The associations
between MTHFR polymorphisms and CHD susceptibility were estimated by OR and
its 95% CI. The significance of the pooled OR was determined by the Z-test; P , 0.05
was considered statistically significant. To evaluate the specific effects of ethnicity,
stratified analyses were performed.

Heterogeneity across the eligible studies was tested using the Q-test, and the results
were considered statistically significant when P , 0.122–23. Heterogeneity was also
quantified with the I2 metric (I2 5 (Q - df)/Q 3 100%; I2 , 25%, no heterogeneity; I2 5

25–50%, moderate heterogeneity; I2 5 50–75%, large heterogeneity; I2 . 75%,
extreme heterogeneity). When the effects were assumed to be homogenous (P . 0.1,
I2 , 50%), the fixed-effects model was used; otherwise, the random-effects model was
more appropriate24–26. Sensitivity analysis was performed to evaluate the stability of
the results. If more than seven studies were included, Begg’s test was used to measure
publication bias, which was shown as a funnel plot27–28. P , 0.05 was considered

representative of statistically significant publication bias. All analyses were performed
using STATA software, version 10.0 (Stata Corporation, College Station, TX, USA),
Review Manager (RevMan version 5.1.1, The Nordic Cochrane Centre: http://ims.
cochrane.org/revman/download) and R statistical software (version 2.15.2, http://
www.r-project.org).

Results
Studies included in the meta-analysis. A total of 126 abstracts that
met the inclusion criteria were retrieved through the databases. Two
reviewers then selected the relevant studies independently. Forty-five
relevant studies that described the association between the MTHFR
polymorphism and CHD were identified. However, after reading the
full articles and contacting the authors, we excluded five meta-
analysis studies29–33, four family-based studies34–37, and one study in
which information could not be obtained even after the authors were
contacted38. Figure 1 shows the process of study selection and
exclusion, with specification of reasons. Finally, 35 studies that met
the inclusion criteria, corresponding to 9,329 CHD children and
15,076 normal controls, 3,232 mothers with CHD offspring and
27,174 normal controls for the C677T polymorphism and 1,761
CHD children and 1,868 normal controls/705 mothers with CHD
offspring and 15,458 controls for the A1298C polymorphism, were
considered in the meta-analysis15,17,39–71. The main characteristics of
the included studies are listed in Table 1–2.

Pooled Prevalence of MTHFR -677T and -1298C in the Controls.
The pooled MTHFR –677T allele frequency determined using the
random-effects model was 28.99% (95 CI: 26.14%–32.02%) in the
Caucasian paediatric population and was 42.28% (95% CI: 34.17%–
50.83%) in the Asian paediatric population. There was no hetero-
geneity among the Caucasian and Asian maternal population
studies. The MTHFR –677T allele frequency was 31.76% (95 CI:
30.14%–33.43%) in the Caucasian maternal population and was
41.51% (95% CI: 37.50%–45.64%) in the Asian maternal population.

The pooled –1298C allele frequency in the fixed-effects model was
33.12% (95 CI: 29.80%–36.61%) in the Caucasian paediatric popu-
lation and was 31.09% (95% CI: 25.34%–37.46%) in the Caucasian
maternal population using the random-effects model.

Association between MTHFR C677T polymorphism and risk of
CHD. We investigated the association between the MTHFR C677T
polymorphism and the risk of CHD for each study. When all the
eligible studies were pooled in the overall population of children with
random-effects models, significant associations were observed in all
genetic models: T versus C (OR 51.248, 95% CI: 1.093–1.426; P 5

0.001), TT versus CC (OR 51.485, 95% CI: 1.140–1.935; P 5 0.003),
and TT versus CT (OR 5 1.312, 95% CI: 1.100–1.565; P 5 0.003), the
dominant model (OR 5 1.240, 95% CI: 1.053–1.461; P 5 0.010), and
the recessive model (OR 5 1.410, 95% CI: 1.139–1.724; P 5

0.001;(Figure 2). In addition, significant associations were observed
in the overall maternal population in all genetic models for T versus
C (OR 51.215, 95% CI: 1.085–1.361; P 5 0.001), TT versus CC (OR
51.488, 95% CI: 1.169–1.859; P 5 0.001), TT versus CT (OR 5

1.315, 95% CI: 1.042–1.659; P 5 0.021), the dominant model (OR
5 1.258, 95% CI: 1.144–1.383; P 5 2.14e-6), and the recessive model
(OR 5 1.408, 95% CI: 1.128–1.757; P 5 0.002; (Figure 3). The Z-test
indicated that the pooled ORs were statistically significant.

In the stratified analysis by ethnicity, significant associations were
found when all studies were pooled with fixed or random-effects
models for T versus C (OR 51.163, 95% CI: 1.008–1.342; P 5
0.039) in Caucasian children, and for T versus C (OR 51.125, 95%
CI: 1.043–1.214; P 5 0.002), dominant model (OR 5 1.216, 95% CI:
1.096–1.348; P 5 2.24e-4) in the Caucasian maternal population. In
addition, significant associations were found when all studies were
pooled in fixed or random-effects models for all genetic models in
Asian children and the maternal population. The main results of
meta-analysis are shown in Table 3.
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Association between MTHFR A1298C polymorphism and risk of
CHD. We investigated the association between the MTHFR A1298C
polymorphism and the risk of CHD for each study. Overall, when all
the eligible studies were pooled in the fixed-effects model, significant
associations were observed for CC vs. AC (OR51.354, 95% CI:
1.022–1.793; P 5 0.034), and for the recessive model (OR51.322,
95% CI: 1.015–1.732; P 5 0.038) in the overall paediatric population.
The main results of the meta-analysis are shown in Table 4.

In the analysis stratified by ethnicity, significant associations were
found in the Caucasian paediatric population when all studies were
pooled in the fixed-effects model for CC versus AC (OR 5 1.484,
95% CI: 1.035–2.128; P 5 0.032; Figure 4). The main results of the
meta-analysis are shown in Table 4.

Sensitivity analyses. We removed the studies due to the genotype
distribution in the control groups deviating from HWE. We found
that the corresponding ORs for the C677T polymorphism for the TT
vs. CT and recessive models in the overall paediatric population and
for all genetic types in the overall maternal population and the Asian
maternal population were not substantially altered (Table 5). This
finding supports the reliability of the results.

Publication bias. Begg’s test and a funnel plot were performed to
assess the publication bias of the literature. We detected publication
biases for the C677T polymorphism for the T vs. C and dominant
models in the Caucasian paediatric population (Table 3). This might
represent a limitation of our analysis because the studies with null
findings, especially those with small sample size, were less likely to be
published. By using the trim and fill method, we showed that, if the
publication bias was the only source of the funnel plot asymmetry,
they needed two and one more studies, respectively, to balance the
funnel plot. The adjusted risk estimate was attenuated. The adjusted
OR for T vs. C was 1.142 (95% CI: 0.729–1.786) and for the dominant
model was 1.253 (95%CI: 0.738–2.133). The results suggest no evi-
dence of publication biases in other genetic models and populations
(Figure 5).

Discussion
It is estimated that 7.9 million children are born with a serious birth
defect of genetic or partially genetic origin each year in the world.
CHDs are the most commonly occurring conditions. However, the
aetiology of CHDs is largely unknown, and there are no established
strategies for reducing their public health impact.

Many studies have demonstrated that genetic factors play import-
ant roles in the pathogenesis of CHD. In our previous studies, we
have detected several novel variations of the PLAGL1 and HOMEZ
genes in Chinese patients with isolated VSD. We believe that these
two genes are directly linked aetiologically with isolated VSD in the
population8,9. In addition, the results of recent genome-wide asso-
ciation studies indicated that a region on chromosome 4p16 adjacent
to the MSX1 and STX18 genes was associated (P59.5 3 1027) with
the risk of ostium secundum ASD6. These studies also showed that
1p12 (rs2474937 near TBX15; P 5 8.44 3 10210) and 4q31.1
(rs1531070 in MAML3; P 5 4.99 3 10212) were associated with
congenital heart malformations in Han Chinese populations72.

In 1999, Kapusta and associates first reported that maternal hyper-
homocysteinaemia is correlated with an increased risk of CHDs73.
More recently, Hobbs and co-workers studied mothers whose preg-
nancies were affected by congenital heart defects (224 case subjects)
or unaffected by any birth defect (90 control subjects) and identified
Hcy, S-adenosylhomocysteine, and methionine as the most import-
ant biomarkers predictive of case or control status36. The MTHFR
protein is a key enzyme in Hcy metabolism. The MTHFR gene is
located on chromosome 1 at 1p36.3. The major product of the
MTHFR gene is a catalytically active 77 kDa protein that catalyses
the conversion of 5,10-methylenetetrahydrofolate into 5-methylte-
trahydrofolate, the major circulating form of folate. Two common
genetic polymorphisms associated with reduced MTHFR activity
have been identified. The C677T polymorphism is located in exon
4 at the folate-binding site and results in an alanine-to-valine sub-
stitution. In healthy homozygous subjects, the 677TT genotype is
associated with higher total Hcy and lower folate plasma level. The

Figure 1 | Flow chart of the study selection process and specific reasons for exclusion from the meta-analysis.
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other polymorphism (A1298C) is in exon 7 within the presumptive
regulatory domain and results in a glutamate-to-alanine change.
Heterozygosity and homozygosity are associated neither with higher

total Hcy nor lower folate plasma concentration. The MTHFR gene
polymorphisms are directly linked with many diseases20,74. Our
recent meta-analysis demonstrated that the MTHFR C677T poly-

Figure 2 | Pooled OR (recessive model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677TT and
congenital heart disease (CHD) in the overall paediatric population.

Figure 3 | Pooled OR (recessive model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677TT and
congenital heart disease (CHD) in the overall maternal population.
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morphism is associated with the risk of myocardial infarction in
young/middle-aged Caucasians and is associated with susceptibility
to preeclampsia20,74.

A number of studies have investigated the association between
MTHFR genotype and the risk of CHD. In fact, in the last few years,
several case–control studies were performed on this topic. However,
the results are inconclusive. The two most recent meta-analyses for
associations between polymorphism and CHD also led to conflicting
conclusions. By reviewing all studies published before April, 2011,
Yin and co-workers suggested that the foetal and paternal MTHFR
C667T gene may be associated with an increased occurrence of
CHD32. By contrast, after analysis of 7,698 cases and 13,159 controls
by reviewing studies published before 2010, Mamasoula and co-
workers indicated that the same polymorphism, which directly influ-
ences plasma folate levels, is not associated with CHD risk17. Others
also conducted meta-analysis to evaluate the association between
MTHFR polymorphism and CHD29–31. It is possible that the rela-
tively small sample size of these studies affected the accuracy of the
results. Therefore, it is essential to re-perform a meta-analysis to
evaluate the association. In our present study, we enlarged the sample
size to 24,405 participants (9,329 CHD children and 15,076 normal
controls), and performed sensitivity analysis to evaluate the stability
of the results. In addition, we are the first to evaluate the association
between the MTHFR A1298C polymorphism and CHD by
meta-analysis. We are indebted to Dr. Christensen from McGill
University for kindly allowing us access to his previously un-
published data for this meta-analysis.

Our results indicate that the frequency of the putative risk allele -
677T was 28.99% in Caucasian children and 31.76% in the Caucasian
maternal population, whereas the frequency of -677T was 42.28% in
Asian paediatric and 41.51% in the Asian maternal population. In

addition, the pooled –1298C allele frequency was 33.12% in
Caucasian children and 31.09% in the Caucasian maternal popu-
lation. The meta-analysis results showed that associations exist
between the MTHFR C677T polymorphism and susceptibility to
CHD for all genetic models in all paediatric and maternal popula-
tions, especially in the Asian population. We also detected a signifi-
cant association in the genetic model for T vs. C in the Caucasian
paediatric population and in T vs. C and TT vs. CT for the Caucasian
maternal population (Table 3). In our analysis of the A1298C poly-
morphism, we detected an association in the genetic model for TT vs.
CT in the Caucasian paediatric population (Table 4). The results
showing significant association for all genetic models in the overall
maternal population and the Asian maternal population, and for the
TT vs. CT and recessive models in the overall paediatric population
were found to be stable and reliable by sensitivity analyses (Table 5).

Some limitations of this meta-analysis should be discussed.
First, significant heterogeneity was observed in some genetic mod-
els when we pooled ORs. Under this condition, we used the ran-
dom-effects model to pool the data. Sensitivity analysis was
performed to evaluate the stability of the crude results. Second,
publication biases appear to substantially contaminate the literat-
ure with regard to some genetic associations. The results of the
trim and fill method demonstrated that the publication biases may
affect the stability of positive results.

In conclusion, our results support the MTHFR –677T allele as a
susceptibility factor for CHD in the Asian maternal population and
the -1298C allele as a risk factor in the Caucasian paediatric popu-
lation. Because of the heterogeneity and publication bias, we believe
that other positive results may not be stable in our meta-analysis. A
large number of homogeneous studies should be performed to evalu-
ate these crude results in the future.

Table 5 | Sensitivity analysis of association between MTHFR C677T polymorphism and CHD

Subgroup Genetic model

Test of heterogeneity Test of association

Q P I2 (%) OR 95% CI Z P

Children Overall TT vs. CT 32.42 0.020 44.5 1.303 1.064–1.596 2.56 0.010
Recessive model 61.61 0.000 70.8 1.335 1.028–1.735 2.16 0.030

Maternal Overall T vs. C 32.48 0.006 53.8 1.215 1.042–1.425 2.48 0.013
TT vs. CC 29.99 0.012 50.0 1.570 1.125–2.192 2.65 0.008
TT vs. CT 26.09 0.037 42.5 1.462 1.104–1.937 2.65 0.008

Dominant model 22.10 0.105 32.1 1.198 1.035–1.386 2.43 0.015
Recessive model 29.49 0.014 49.1 1.527 1.149–2.030 2.92 0.004

Asian Maternal T vs. C 3.96 0.412 0.0 1.595 1.348–1.886 5.45 5.04e-8
TT vs. CC 3.49 0.479 0.0 2.548 1.788–3.631 5.18 2.22e-7
TT vs. CT 1.51 0.825 0.0 1.884 1.415–2.509 4.34 1.42e-5

Dominant model 4.93 0.295 18.9 1.605 1.215–2.121 3.33 0.001
Recessive model 2.05 0.727 0.0 2.073 1.583–2.716 5.29 1.22e-7

Figure 4 | Pooled OR (CC vs. AC) and 95% CI of individual studies and pooled data for the association between the polymorphism A1298C and
congenital heart disease (CHD) in the Caucasian paediatric population.
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Figure 5 | Funnel plot of the C1858T polymorphism and susceptibility to CHD (recessive model) in (a) the overall paediatric population (z 5 0.18, P 5
0.860) and (b) the overall maternal population (z 5 0.91, P 5 0.363).
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