
O R I G I N A L  R E S E A R C H

Combination Therapy of Metastatic 
Castration-Recurrent Prostate Cancer: 
Hyaluronic Acid Decorated, Cabazitaxel-Prodrug 
and Orlistat Co-Loaded Nano-System

Zhen Qu 
Yuning Ren 
Hongyu Shen 
Huihui Wang 
Lijie Shi 
Deyong Tong

Department of Oncology, 970 Hospital of 
the PLA Joint Logistic Support Force, 
Yantai, 264001, People’s Republic of 
China 

Purpose: Prostate cancer (PCa) is the second leading cause of cancer-related death among 
men in developed countries. Cabazitaxel (CBZ) is recommended as one of the most active 
chemotherapy agents for PCa. This study aimed to develop a hyaluronic acid (HA) deco-
rated, cabazitaxel-prodrug (HA-CBZ) and orlistat (ORL) co-loaded nano-system against the 
prostate cancer in vitro and in vivo.
Methods: Cabazitaxel-prodrug was firstly synthesized by conjugating HA with CBZ 
through the formation of ester bonds. HA contained ORL and CBZ prodrug co-loaded lipid- 
polymer hybrid nanoparticles (ORL/HA-CBZ/LPNs) were constructed and characterized in 
terms of particle size, zeta potential, drug loading capacity and stability. The antitumor 
efficiency and systemic toxicity of LPNs were evaluated in vitro and in vivo.
Results: The resulting ORL/HA-CBZ/LPNs were 150.9 nm in particle size with narrow 
distribution and high entrapment efficiency. The minimum combination index of 0.57 was 
found at a drug ratio of 1:2 (ORL:HA-CBZ, w/w) in the drug co-loaded formulations, 
indicating the strongest synergism effect. ORL/HA-CBZ/LPNs demonstrated an enhanced 
in vitro and in vivo antitumor effect compared with single drug loaded LPNs and free drug 
formulations.
Conclusion: ORL/HA-CBZ/LPNs showed remarkable synergism cytotoxicity and the best 
tumor inhibition efficiency in mice with negligible systemic toxicity. ORL/HA-CBZ/LPNs 
can be highly useful for targeted prostate cancer therapy.
Keywords: metastatic castration-recurrent prostate cancer, cabazitaxel, prodrug technology, 
orlistat, hyaluronic acid

Introduction
Prostate cancer (PCa) is the second leading cause of cancer-related death among 
men in developed countries.1,2 According to the NCCN guideline, it has been 
recommended that androgen deprivation therapy (ADT) is the gold standard ther-
apy for patients with early-stage, low-risk disease and advanced or metastatic 
disease.3,4 As the disease progresses, the majority of advanced PCa can evolve 
into metastatic castration-recurrent PCa (mCRPC). For patients with mCRPC, 
docetaxel is a standard regimen. However, taxane (docetaxel) resistance hinders 
its efficacy; thus, cabazitaxel, abiraterone acetate or enzalutamide are recommended 
as an alternative therapy.
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Cabazitaxel (CBZ), a second-generation taxane, has 
been approved by the FDA for men with metastatic 
CRPC previously treated with a docetaxel-containing 
regimen since June 2010, and is considered one of the 
most active chemotherapy agents.5,6 CBZ is able to over-
come the drug efflux pump P-glycoprotein (Pgp)- 
mediated transport, which leads to docetaxel 
resistance.7 Consequently, CBZ was 10-fold more potent 
than docetaxel in chemotherapy-resistant tumor cells.8 

Jevtana, the commercialized CBZ formulation, is 
a common injection, containing polysorbate 80 and dilu-
ents (13% w/w ethanol in water) for surmounting its 
poor water solubility. Its solubilizing formulation causes 
serious side effects and has no selectivity between 
healthy tissues and tumor tissues.9,10 Meanwhile, its 
overall median survival benefit is 2.4 months.11 

Therefore, it is urgent to exploit new strategies to 
improve its target as well as therapeutic efficacy, and 
decrease its side effects.

Prodrug technology has been applied to enhance its 
solubility, its tumor target and efficacy.12 Several research-
ers have taken advantage of poly(ethylene glycol) PEG- 
based prodrug to synthesize cabazitaxel-PEG prodrugs that 
are capable of accumulating in prostate tumor tissues 
through passive targeting, the enhanced permeability and 
retention (EPR) effect.13,14 Compared with passive target-
ing, prodrug-based active targeting (cancer cell-specific 
targeting) has attracted wide attention in cancer 
therapy.15 Hyaluronic acid (HA), a glycosaminoglycan 
polymer, has the capability to bind to HA principal cell 
surface receptor, CD44, that is a multifunctional cell sur-
face glycoprotein involved in cell proliferation and cell 
migration.16 Various studies have identified that CD44 
expression is higher in PCa tissues than in normal tissues, 
and different kinds of HA targeted nanoparticles were 
engineered for higher PCa therapeutic efficacy.17–19 In 
this study, a novel active targeting CBZ prodrug was 
synthesized by the hydrolysable ester bond between caba-
zitaxel (the hydrophobic part) and hyaluronic acid (the 
hydrophilic part).

Combination therapy is another strategy that can be used 
to conquer drug resistance, improve anticancer efficacy, and 
reduce side effects. Orlistat (ORL), an effective fatty acid 
synthase (FASN), has been researched to enhance taxane 
(paclitaxel, docetaxel and cabazitaxel) sensitivity in resis-
tant cancer cells, including prostate cancer cells, breast 
cancer cells and hepatocellular carcinoma cell lines.20–24 

ORL is a hydrophobic drug, and nanotechnology is applied 

in our study to surpass this shortcoming and co-deliver 
ORL and CBZ prodrug.

Self-assembled amphiphilic prodrug-based nano- 
systems could overcome the limitations of common pro-
drugs, which on their own may be degraded in vivo in an 
uncontrolled manner.25 Nano-systems were also reported 
to have the ability to improve the therapeutic efficacy and 
reduce the systemic toxicity by enhancing the pharmaco-
kinetics parameters, such as large volume distribution and 
tumor deposition of the payloads through enhanced per-
meability and retention (EPR) effect.26 Among all kinds of 
nano-systems, lipid-polymer hybrid nanoparticles (LPNs) 
combine the advantages of polymeric and lipid nanoparti-
cles into one novel drug delivery platform.27 The present 
study describes an LPNs system co-delivery of ORL and 
CBN prodrugs.

In the present study, HA contained CBZ prodrug and 
ORL co-loaded LPNs (ORL/HA-CBZ/LPNs) were con-
structed and characterized in terms of particle size, zeta 
potential, drug loading capacity and stability. The antitu-
mor efficiency and systemic toxicity of NPs were evalu-
ated in vitro and in vivo.

Materials and Methods
Materials
Hyaluronic acid was obtained from Freda Biochem Co., Ltd. 
(Ji’nan, China). Poly (D,L-lactic-co-glycolic acid) (PLGA), 
soybean lecithin (SL), 1,2-distearoyl-sn-glycero-3-phos-
phoethanolamine-N-carboxy (polyethylene glycol)2000 

(DSPE-PEG), CBZ, ORL, 1-ethyl-3-(3-dimethylaminopro-
pyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), 
3-[4, 5-dimethylthiazol-2yl]-2, 5 diphenyltetrazolium 
(MTT), and coumarin-6 (C6) were obtained from Sigma 
Aldrich (St. Louis, MO).

Synthesis of Cabazitaxel-Prodrug
Cabazitaxel-prodrug (HA-CBZ) was synthesized by con-
jugating HA-COOH with CBZ-OH through the formation 
of ester bonds (Figure 1). HA-COOH (2 equivalents), 
EDC·HCl (4 equivalents), NHS (4 equivalents), DMAP 
(2 equivalents) were dissolved in acetonitrile.28,29 CBZ- 
OH (1 equivalent) was dissolved in dimethylformamide 
and added to the above HA containing acetonitrile solu-
tion. When the mixture was stirred overnight, the solid 
precipitates in the reaction mixture were removed through 
filtration. HA-CBZ was purified by column 
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chromatography, vacuum drying and analyzed by 
1H-NMR spectroscopy.

LPNs Preparation
LPNs were self-assembled via a single-step nanoprecipita-
tion method.14 Briefly, 200 mg of PLGA polymer, 20 mg 
of ORL and 40 mg of HA-CBZ were dissolved in 20 mL 
of acetonitrile (solution A). 50 mg of SL and 50 mg of 
DSPE-PEG were dissolved in an ethanol aqueous solution 
(4%, v/v), heated to 70°C (solution B). Solution A was 
then added to solution B dropwise under gentle stirring for 
2 h at room temperature. Organic solvents and free mole-
cules were removed by washing the solution three times 
using an Amicon Ultra-4 centrifugal filter (weight cut-off 
of 10,000 Da) to obtain ORL/HA-CBZ/LPNs. HA con-
tained, no drug loaded LPNs (HA-LPNs) were prepared 
using HA instead of HA-CBZ. Single drug loaded LPNs 
(ORL/LPNs and HA-CBZ/LPNs) and blank LPNs were 
prepared using a single ORL (20 mg), HA-CBZ (40 mg) 
or no drug.

Particle Size, Zeta Potential and 
Morphology Analysis
The particle size (mean diameters), polydispersity index 
(PDI), and zeta potential of LPNs were measured by 
photon correlation spectroscopy (PCS) using a Zetasizer 
Nano ZS (Malvern Instruments, UK).30 Briefly, LPNs 
were diluted at 2% (v/v) in 1 mM NaCl in triplicate, and 
three independent measurements were performed in dis-
posable folded capillary cells with a 173° scattering angle 
at 25°C.31 To characterize the morphology of the ORL/ 
HA-CBZ/LPNs, they were imaged by transmission elec-
tron microscopy (TEM).

Stability of LPNs
Serum stability of LPNs was determined by the changes in 
the mean diameter of the LPNs.32 Firstly, LPNs were 
incubated in PBS (pH 7.4) containing 50% FBS at 
37 °C. In addition, the LPNs long-term stability was 
determined by storing the LPNs at 4 °C. The particle 

Figure 1 Synthesis and the 1H NMR spectrum of cabazitaxel-prodrug (HA-CBZ).
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size was measured by the same method in “Particle size 
and zeta potential analysis” section.

Entrapment Efficiency and Drug Loading
The entrapment efficiency (EE) and drug loading (DL) of 
LPNs were evaluated by HPLC method using a reverse 
column with C18, 5 μm, 4.5 mm ×25 cm.33 The HPLC 
analysis was performed with a flow rate of 1.5 mL/min. 
The injected volume of the sample was 10 μL, and UV 
detection was monitored at 195 nm for ORL.34 For CBZ 
testing, the detection wavelength was 230 nm.35 The EE 
and DL were calculated using the equations:

EE% = (Total amount of drug added to the system  
– the amount of free drug in the system)/Total  
amount of drug added to the system × 100;

DL% = (Total amount of drug added to the system  
– the amount of free drug in the system)/Total  
amount of carrier material in the system × 100.

In vitro Drug Release of LPNs
In vitro drug release of LPNs was evaluated using a dialysis 
method.36 Drugs loaded LPNs were sealed in dialysis bags 
(weight cut-off of 3500 Da) placed on PBS at pH 7.4 under 
100 rpm and constantly shaken. The release medium 
(0.5 mL) was taken out at determined time intervals, and 
the amount of released drugs was calculated by the same 
method in “Entrapment efficiency and drug loading” section.

Cell Culture and Mice Xenograft
The human prostate cancer cell lines (LNCaP and PC3 
cells that express CD4437,38) and human prostate normal 
cells (RWPE-2 cells) were received from the American 
Type Culture Collection (ATCC, Manassas, VA, USA) and 
cultured in DMEM containing 10% heat-inactivated fetal 
bovine serum, 100 U/mL penicillin, and 0.1 mg/mL strep-
tomycin at 37°C in a humidified 5% CO2 incubator.

Male BALB/c nude mice (4–6-week-old) were obtained 
from Beijing Vital River Laboratory Animal Technology 
Co., Ltd (Beijing, China) and PCa xenograft mice were 
generated by injecting LNCaP cells (1×107 each) into the 
abdominal cavity of mice. The mice are maintained and 
treated in compliance with the policy of the National 
Institutes of Health guide for the care and use of laboratory 
animals and the animal experiments were approved by the 
Institutional Animal Care and Use Committee of the 970 
Hospital of the PLA Joint Logistic Support Force.

In vitro Anti-Proliferative Effect of LPNs
In vitro anti-proliferative effect of LPNs was assessed 
using MTT assay to determine the cell viability.39 

Various concentrations of LPNs and free drugs (from 0.1 
to 100 µM) were treated to LNCaP, PC3 or RWPE-2 cells 
(5×103 cells/well) and incubated for 48 h. Then, the med-
ium was removed and added 20 µL of MTT solution 
(5 mg/mL) into each well, incubated for another 4 
h. After the removal of unreduced MTT and old culture 
medium, 150 µL of DMSO was added to each well to 
dissolve the formazan crystals. The plate was shaken for 
10 minutes and the absorbance was read at 570 nm and the 
50% growth inhibition (IC50) was calculated.

Synergistic Effects of LPNs
Combination index (CI) analysis was applied using Chou 
and Talalay method to evaluate the synergistic effects of 
ORL and HA-CBZ in one LPNs system on LNCaP cells.41 

Combination Index, when 50% growth inhibition was 
achieved (CI50), values of ORL/HA-CBZ/LPNs were cal-
culated by the equation:42

CI50 = (IC50)ORL/(C)ORL + (IC50)HA-CBZ/(C)HA-CBZ, 
where (IC50)ORL and (IC50)CBZ represent the IC50 values 
of ORL and CBZ in the single drug loaded LPNs, while 
(C)ORL and (C)CBZ represent the concentration of ORL and 
CBZ in the ORL/HA-CBZ/LPNs combination system at 
the IC50 value. CI > 1 represents antagonism, CI = 1 
represents additive and CI < 1 represents synergism.

Cellular Uptake of LPNs
Cellular uptake of LPNs was analyzed using coumarin-6 
(C6) as an indicator.26 C6 loaded LPNs were prepared by 
the method in section 2.3 adding C6 (20 mg) along with 
the PLGA to get solution A. LNCaP cells were seeded at 
on 24-well black plates. C6 loaded LPNs were added to 
replace the culture medium and incubated with the cells 
for 4 h. Then, the cells were washed three times with 
D-Hank’s solution, collected and centrifugated. Cell 
uptake efficiency was quantified using a BD 
FACSCalibur flow cytometer.

In vivo Tissue Distribution and 
Pharmacokinetics of LPNs
When the tumor volume of PCa xenograft mice reached 
about 100 mm3, the mice were randomly divided into four 
groups (10 mice per group): ORL/HA-CBZ/LPNs, HA-CBZ 
/LPNs, ORL/LPNs, and free ORL/HA-CBZ were injected 
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via the tail vein at certain drug doses (ORL 5 mg/kg and/or 
HA-CBZ 10 mg/kg).39,43 The blood samples of mice were 
taken through tail vein puncture and were centrifuged (3400 
g, 15 min at 4 °C), and the supernatant plasma was collected 
and stored at −80°C. Mice were euthanized at 24 h, tissues 
including the tumor, heart, liver, spleen, lung, and kidney 
were excised. The tissue samples were rinsed with saline, 
weighed, and stored at −80°C. The tissues were homoge-
nized in lysis buffer, mixed with methanol, and then centri-
fuged for 30 min, then analyzed along with the blood 
samples were by the same method in “Entrapment efficiency 
and drug loading” section.

In vivo Treatment Efficacy of LPNs in Mice
When the tumor volume of PCa xenograft mice reached 
about 100 mm3, the mice were randomly divided into eight 
groups (10 mice per group). ORL/HA-CBZ/LPNs, HA- 
CBZ/LPNs, ORL/LPNs, blank LPNs, free ORL/HA- 
CBZ, free ORL, free HA-CBZ, and saline solution 
(0.9%) (each contained ORL 5 mg/kg and/or HA-CBZ 
10 mg/kg) were injected via the tail vein at day 0, 3, 6, 
9, and 12.39,44 From the first day of treatment, tumor 
volume and body weight were measured every three 
days. The tumor volume (TV) was measured by calipers 
and calculated using the equation: TV (%) = length × 
width2/2. Blood was also collected to detect the serum 
markers including blood urea nitrogen (BUN), lactate 
dehydrogenase (LDH), alanine aminotransferase (ALT), 
and white blood cells (WBC).46,47

Statistical Analysis
Data were expressed as mean ± standard deviations. 
Statistical analyses were performed using an unpaired, 
two-tailed Student’s t-test (between two groups) or one- 
way analysis of variance (ANOVA) (among three or more 
groups) followed by Tukey’s test. P < 0.05 was considered 
significant.

Results
Characterization of HA-CBZ and LPNs
HA-CBZ was characterized by 1H-NMR. The peak at 4.08 
ppm presented the formation of the ester bonds (Figure 1). 
Other peaks belong to HA and CBZ, respectively. The size of 
the HA contained drugs loaded and blank LPNs were around 
150 nm with narrow PDIs (less than 0.20) (Table 1). However, 
ORL/LPNs showed a size of 123.1 ± 5.5 nm, which could 
prove the presence of HA enlarged the size of the particles. 
ORL/HA-CBZ/LPNs showed a dim ring surrounding the core, 
which may be evidence of the HA decoration on the particles’ 
surface (Figure 3A). LPNs also exhibited more negative zeta 
potentials when HA was applied. The EEs of LPNs were about 
90% with different DLs summarized in Table 1.

Stability in Serum and During Storage
The stability of LPNs was monitored by measuring the 
mean diameter of the LPNs during the storage time or in 
the presence of FBS. During the stability studies, there 
were no remarkable changes in the particle size in the 
presence of plasma (Figure 2A) and during 3 months of 
storage at 4°C (Figure 2B).

In vitro Drug Release
Figure 3B and C illustrated that LPNs had sustained 
release behaviors. CBZ showed similar release from 
ORL/HA-CBZ/LPNs and HA-CBZ/LPNs. On the con-
trary, ORL release from ORL/HA-CBZ/LPNs and ORL/ 
LPNs are different. ORL released slower from ORL/HA- 
CBZ/LPNs (60 h to complete) than that of ORL/LPNs (36 
h to complete), which may be attributed to the HA coating 
delayed the drug release.

In vitro Anti-Proliferative Effect
In vitro anti-proliferative effect of LPNs was evaluated on 
LNCaP, PC3 and RWPE-2 cells. Both LNCaP and PC3 
cells were inhibited in concentration deepened manners 

Table 1 The Particle Size, Zeta Potential, Entrapment Efficiency, and Drug Loading of LPNs

LPNs Particle Size (nm) Zeta Potential (mV) PDI EE (%) DL (%)

ORL CBZ ORL CBZ

Blank LPNs 122.9 ± 5.9 −7.3 ± 0.8 0.13 ± 0.02 / / / /
ORL/LPNs 123.1 ± 5.5 −6.6 ± 0.9 0.15 ± 0.03 89.5 ± 3.8 / 6.3 ± 0.5 /

HA-LPNs 156.8 ± 5.9 −19.5 ± 2.8 0.15 ± 0.02 / / / /

HA-CBZ/LPNs 149.3 ± 6.1 −17.3± 3.1 0.17 ± 0.03 / 91.3 ± 3.4 / 5.9 ± 0.6
ORL/HA-CBZ/LPNs 150.9 ± 6.4 −18.9 ± 3.3 0.16 ± 0.04 90.2 ± 3.4 88.5 ± 2.9 5.6 ± 0.7 5.5 ± 0.8

Note: Data presented as means ± standard deviations.
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(Figure 4). ORL/HA-CBZ/LPNs exhibited the most 
remarkable cell inhibition efficiency (less than 30% of 
cell alive at the highest toxicity), showing less cell viabi-
lity at the end of the study than single drug loaded LPNs 
and free drugs (P < 0.05). All the drug(s) contained for-
mulas showed considerable anti-proliferative effect com-
pared with control (P < 0.05). Blank LPNs did not show 
obvious cytotoxicity. Drugs loaded LPNs and free drugs 
showed similar effects on RWPE-2 cells, which may prove 
the specific ability of LPNs on cancer cells.

Synergistic Effects Evaluation
The synergistic effects of ORL and CBZ in one LPNs 
system were evaluated on the basis of CI50 values of 
different drug ratios. Table 2 shows that when ORL: HA- 
CBZ ratios vary from 5:1 to 1:5, synergistic effects were 
achieved (CI50 < 1). The minimum CI50 value (0.54) was 

achieved by the ratio of 1:2, which was determined as the 
drug amounts for the ORL/HA-CBZ/LPNs preparation.

Cellular Uptake
The cellular uptake efficiency of HA contained LPNs and 
blank LPNs showed different manners (Figure 5). HA 
contained LPNs (around 69%) were taken up more by 
cancer cells than that of blank LPNs (43.5%, P < 0.05), 
which may be explained by the HA coating that improved 
the uptake of the LPNs.

In vivo Tissue Distribution and 
Pharmacokinetics
HA contained ORL/HA-CBZ/LPNs and HA-CBZ/LPNs 
showed higher drug distribution in tumor than non-HA 
involved ORL/LPNs (P < 0.05), the latter exhibited higher 
drug accumulation compared with free ORL/HA-CBZ 

Figure 2 Stability presented as changes in the particle size in the presence of plasma (A) and during 3 months of storage at 4°C (B).

Figure 3 TEM image of ORL/HA-CBZ/LPNs (A). The release profiles of ORL (B) and HA-CBZ (C) from LPNs. Data presented as Means ± SD.
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(P < 0.05) (Figure 6). To be noticed, the drug accumula-
tion in heart for free ORL/HA-CBZ was higher than that 
of LPNs formulations (P < 0.05). The pharmacokinetic 
parameters plasma drug peak concentration (Cmax), half- 
life of drugs (T1/2), and area under the curve (AUC) were 
summarized in Table 3.

In vivo Treatment Efficacy
To test the in vivo treatment efficacy of the drugs loaded 
LPNs and free drugs, PCa xenograft mice were applied. 
Figure 7A shows that tumor growth was not affected by 
blank LPNs, with the similar growth curves to the saline 
solution group. However, the tumor volume was signifi-
cantly inhibited by the drugs contained groups. When 
drugs were loaded in LPNs (ORL/HA-CBZ/LPNs), 
a higher tumor growth inhibition effect was achieved 
compared with free drugs (free ORL/HA-CBZ) (P < 
0.05). ORL/HA-CBZ/LPNs also illustrated more 

pronounced antitumor ability than single drug loaded HA- 
CBZ/LPNs and ORL/LPNs (P < 0.05).

In vivo Tolerance Analysis
To verify the impact of LPNs on systemic toxicity in vivo, 
the body weight and serum markers of mice were 
recorded. No significant difference in the mice weights 
was found among the tested groups, revealing that LPNs 
did not introduce toxicity. When compared with the saline 
control group, free drug(s) groups showed increased ALT 
values, while LPNs groups showed negligible changes of 
ALT, LDH, BUN, and WBC levels over the control group 
(Figure 7B and C). These results indicated the well toler-
ance of LPNs at the tested dose, which did not bring about 
obvious systemic toxicity when administered in vivo.

Discussion
To achieve the combination therapy of PCa, an HA deco-
rated, CBZ-prodrug and ORL co-loaded LPNs were con-
structed in this study. First, HA was conjugated with CBZ 
to produce HA-CBZ. HA-coated Vorinostat-loaded lipid 
nanoparticles were developed by Tran et al and improved 
drug delivery to CD44 Overexpressing cancer cells was 
achieved by selective ability of HA. In our study, LPNs 
improved the ability of the delivery system and dual drugs 
could bring the synergistic anticancer effect.45

A single-step nanoprecipitation method was employed 
to prepare LPNs. Liang et al, describe that this method has 
the following advantages: simplicity, lower energy con-
sumption, narrow size distribution and nice dispersibility 

Figure 4 In vitro anti-proliferative effect of LPNs evaluated on LNCaP (A) and PC3 cells (B). Data presented as Means ± SD. *P< 0.05.

Table 2 CI50 and the Corresponding IC50 Values of ORL/HA- 
CBZ/LPNs at Different ORL to HA-CBZ Weight Ratio

ORL: HA-CBZ 
(w:w)

IC50 of ORL 
(μM)

IC50 of HA-CBZ 
(μM)

CI50

5:1 16.7 ± 1.9 3.3 ± 0.6 0.82
2:1 11.3 ± 1.1 5.7 ± 0.9 0.86

1:1 7.6 ± 1.3 7.7 ± 1.1 0.90

1:2 2.6 ± 0.5 5.2 ± 1.2 0.54
1:5 2.1 ± 0.3 10.5 ± 1.8 0.98

Note: Data presented as means ± standard deviations.
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of the nanoparticles.46 They argued that this method facil-
itates the incorporation of lipophilic drugs into nanoparti-
cles, thus increasing the EE of the delivery systems. EEs 

of LPNs tested in this section were about 90%, which was 
in accordance with their findings. Centrifugal filters with 
a weight cut-off of 10,000 Da were used by researchers for 
purification by removing the free molecules and made 
narrow polydispersity index, which was also applied in 
this study.28,47 LPNs exhibited more negative zeta poten-
tials when HA was applied, which may reduce the sys-
tematic toxicity and were important for efficient cancer 
therapy.48 Yan et al developed a negatively charged, doc-
etaxel and curcumin co-loaded nanoparticles (−38 mV) for 
prostate cancer therapy.49 They argued that the negative 
surface charge of NPs can reduce the systematic toxicity 
and were important for efficient cancer therapy. Lu and 
colleagues also concluded that the negatively charged HA 
added negative charge to the NPs and obtained a more 

Figure 5 Cellular uptake of LPNs. Data presented as Means ± SD. *P< 0.05.

Figure 6 In vivo tissue biodistribution of ORL (A) and CBZ (B). Data presented as Means ± SD. *P< 0.05.

Table 3 The Pharmacokinetic Parameters

Parameters Drugs Free ORL/HA- 
CBZ

ORL/HA-CBZ 
/LPNs

Cmax (L/kg/h) ORL 11.6 ± 0.9 12.9 ± 1.1
HA-CBZ 18.9 ± 1.8 20.7 ± 1.9

T1/2 (h) ORL 0.9 ± 0.1 3.9 ± 0.6*
HA-CBZ 1.5 ± 0.3 5.6 ± 0.9*

AUC (mg/L·h) ORL 31.5 ± 2.1 129.8 ± 4.9*
HA-CBZ 58.6 ± 2.9 198.4 ± 7.9*

Notes: Data presented as means ± standard deviations; *P< 0.05 compared with 
free ORL/HA-CBZ.
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negatively charged NPs for the delivery to lung cancer 
cells.25 Gao et al discussed that HA ligands would enhance 
the cancer cell-specific adherence of the NPs, thus result-
ing in cancer cells permeation.50

The plasma and long-term stability of LPNs would have 
vital importance when the complexes are administered 
in vivo. One of the major concerns for nanoparticles is the 
electrostatic interaction between the vectors and the plasma 
composition such as proteins, which will increase the size of 
the nanoparticles.51 During the stability studies, there were 
no remarkable changes in the particle size in the presence of 
plasma and during 3 months of storage at 4°C, which would 
prove the ability of the system when administration in vivo 
and enhance the targeting proportion of the vector to the 
target organ, and thus would be favorable to improve the 
therapeutic effects.

A significant advantage of the nano-system is the sus-
tained or controlled release of the drug due to the 
enhanced permeability and retention effect (EPR) effects, 
which greatly enhances the bioavailability and reduces the 
side effects of the drugs.52 The drugs were released from 
LPNs in sustained behaviors in the study carried out by 
Shao et al.52 They discussed that the dual drugs were 
mainly located in the polymeric core and the shell needs 
to be firstly destabilized and then the core may be corroded 

and let the drugs release slowly. Also, their point of view: 
“HA modified LPHNs reveal slower release than the non- 
modified nanoparticles, which may cause by the HA coat-
ing on the LPNs surface which delayed the drug release” is 
the same as we found in the present research.

In vitro anti-proliferative effect of LPNs was assessed 
by MTT assays in order to test the inhibitory effect of 
samples on tumor cell growth.53 Higher cytotoxicity of 
drugs loaded LPNs compared with free drugs indicates 
that nano-systems can enhance the cytotoxicity. To validate 
the synergistic effect of drugs co-loaded NPs, the combina-
tion index (CI) was further determined using the isobolo-
gram equation of Chou and Talalay.54 ORL/HA-CBZ/LPNs 
displayed a minimum CI50 value when ORL-to-HA-CBZ 
ratio was 1:2 (w/w) varying from 5:1 to 1:5, which means 
synergistic effects were achieved and this drug ratio could 
develop the ability of the drugs to a large extent.

In vivo tissue distribution show that HA LPNs show 
higher drug distribution in tumor compared with non-HA 
involved ORL/LPNs, while the latter exhibit more accu-
mulation in tumor than free ORL&CBZ. This phenomenon 
could be explained by the target ability of HA and the EPR 
effect on the tumor site that let the LPNs accumulated 
easily in the tumor.55 ORL/HA-CBZ/LPNs illustrated the 
most significant in vivo tumor inhibition efficiency, which 

Figure 7 In vivo anti-tumor efficacy and toxicity of LPNs evaluated by the curve of tumor volume (A), the serum markers (B), and WBC (C) after treatment. Data 
presented as Means ± SD. *P< 0.05.
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was better than single drug loaded HA-CBZ/LPNs, ORL/ 
LPNs and free drugs formulations. No significant differ-
ence in the mice weights was found among the tested 
groups, revealing that LPNs did not introduce toxicity. 
When compared with the saline control group, free drug(s) 
groups showed increased ALT values, while LPNs groups 
showed negligible changes of WBC, ALT, LDH, and BUN 
levels over the control group. This could be explained by 
the LPNs would reduce the side effects of drugs.46 These 
results indicated the well tolerance of LPNs at the tested 
dose, which did not bring about obvious systemic toxicity 
in vivo when administered in vivo.

Conclusion
In summary, Cabazitaxel-prodrug was firstly synthesized 
and ORL/HA-CBZ/LPNs were prepared. ORL/HA-CBZ 
/LPNs showed remarkable synergism cytotoxicity and the 
best tumor inhibition efficiency in mice with negligible 
systemic toxicity. ORL/HA-CBZ/LPNs can be highly use-
ful for targeted prostate cancer therapy.
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