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Background: Colon cancer is an aggressive and heterogeneous disease associated with
high morbidity and mortality. The immune system is intimately involved in tumorigenesis
and can influence malignant properties at the protein, epigenetic, and even genomic levels
by shaping the tumor immune microenvironment (TIM). However, immune-related
molecules that can effectively predict the prognosis of colon cancer remain under
exploration.

Methods: A total of 606 patients from TCGA and GEO databases were employed in our
study, in which 429 cases were set as the training cohort and 177 were defined as the
validation cohort. The immune infiltration was evaluated by ESTIMATE, TIMER, and
CIBERSORT algorithms. The risk signature was constructed by LASSO Cox
regression analysis. A nomogram model was generated subsequent to the multivariate
Cox proportional hazards analysis to predict 1-, 3-, and 5-year survival of patients with
colon cancer.

Results: Infiltrating immune cell profiling identified two colon cancer clusters (Immunity_L
group and Immunity_H group). The abundances of immune cells were higher in the
Immunity_H group, which indicated a better prognosis. Through further statistical analysis,
we identified four genes which were highly correlated with prognosis and representative of
this gene set, namely ARL4C, SERPINE1, BST2, and AXIN2. When the patients were
divided into low- and high-risk groups based on their risk scores, we found that patients in
the high-risk group had shorter overall survival time. Moreover, a nomogram including
clinicopathologic features and the established risk signature could robustly predict 1-, 3-,
and 5-year survival in patients with colon cancer.

Conclusion: We identified two distinct immune patterns by analyzing clinical and
transcriptomic information from colon cancer patients. A subsequently constructed
immune-related gene-based prognostic model as well as a nomogram model can be
used to predict the prognosis of colon cancer, thereby guiding risk stratification and
treatment regimen development for colon patients.
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INTRODUCTION

Recent cancer statistics reveals a high incidence of 10.2% for
human colon cancer, while the mortality rate is up to 9.2%, rising
from the fourth to the second place in the oncological field,
seriously threatening human life health (Bray et al., 2018; Siegel
et al., 2020a). Surgical removal of cancerous tissue, combined
with radiotherapy and chemotherapy (if necessary), has been the
mainstay of combating colon malignancies (Nie et al., 2020; Liao
et al., 2021). Due to advances in systemic drug targeting and
surgical techniques, the prognosis of colon cancer patients will be
significantly improved if they are diagnosed at an early stage
(Labianca et al., 2010). Therefore, accurate grading/staging of
colon cancer is helpful for the development of treatment options
as well as the prognosis of patients.

Current prognostic prediction mainly relies on the Tumor,
Nodes, Metastases (TNM) classification system (clinical level)
and histopathological criteria (histological level) (Pagès et al.,
2018). Unfortunately, patients still demonstrated an unpleasing
survival outcome due to the recurrence, metastasis, and resistance

to the agents. Clinicians and researchers have been searching for
novel treatment strategies in the hope for achieving better results,
and they focused on the cellular and molecular levels to identify
valuable markers and tumor-cell differentiation events. A
growing number of studies have demonstrated the role of gene
mutation status, gene expression levels, and signaling pathway
alterations in tumor initiation and progression, but accurately
identifying prognostic factors that can provide targets for therapy
remains difficult at the genomic level (Beane et al., 2009; Nagy
et al., 2018). The immune system is intimately involved in
tumorigenesis and can influence malignant properties at the
protein, epigenetic, and even genomic levels by shaping the
tumor immune microenvironment (TIM) (Deng et al., 2021).
Recently, a large body of evidence has shown that immune-
related molecules are of great value in predicting prognosis and
assessing therapeutic efficacy (Binnewies et al., 2018).

The TIM is a complex system composed of multiple immune
cells infiltrating into tumor tissue and various cytokines and
chemokines secreted by them (Mallmann-Gottschalk et al., 2019).
In there, natural killer (NK) cells can secrete cytokines, such as

FIGURE1 | Flow chart of this study. The square element represents the research process, and the oval element represents the specific researchmethod and result.
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interferon (IFN)-gamma and tumor necrosis factor (TNF)-α,
to exert an immunosuppressive phenotype via inhibiting
tumor cell proliferation and tumor angiogenesis (Liu et al.,
2018). Moreover, tumor associated macrophages (TAMs) and
regulatory T cells (Tregs) mediate a suppressed tumor
microenvironment which helps tumor cells achieve immune
escape, and promotes the development of malignancy (Pan
et al., 2020).

To address these suppressive immune phenotypes, targeting
immune-tumor cell interactions has become more intensively
studied, and immunotherapy has emerged as a promising area of
cancer treatment and has demonstrated its impressive clinical
value in colon cancer. This is mostly attributed to the face of
immune checkpoint inhibitors as antitumor agents, such as
programmed death 1 receptor (PD1) and cytotoxic T
lymphocyte antigen 4 (CTLA-4) inhibitors (Yaghoubi et al.,

FIGURE 2 | Two patterns of colon cancer based on immune cell clustering. (A) Cumulative distribution function (CDF) under different clustering numbers. (B)
Relative change in area under CDF curve with different clustering numbers. (C) Clustering heatmap when k = 2. (D) Heatmap showing the differences in immune cell
ssGSEA scores between two clusters. (E) PCA regarding two clusters. (F) The differences in response rates to immune checkpoint blockades between two clusters. (G)
The expressions of HLA genes between two clusters.
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2019). However, immunotherapy for colon cancer is still
imperfect, for example, the effect of immunotherapy cannot be
evaluated in advance. In conclusion, immunogenomic
classification will help to guide the identification and effective
treatment of early colon cancer and improve the accuracy of
prognosis evaluation.

In this study, we performed an immunogenomic profiling of
patients with colon cancer and divided them into two distinct
subtypes: high immunity (Immunity_H) and low immunity
(Immunity_L). We focused on analyzing two independent
cohorts of colon cancer patients to identify genes highly
associated with prognosis; based on their expression levels, the

FIGURE 2 | (continue)

FIGURE 3 | (A–J) Kaplan–Meier survival curves of individual cell types with significant prognostic values. (K) Differences in abundance of 10 immune cells between
normal and tumor tissues. (L) Immune cell abundances estimated by five algorithms (CIBERSORT, EPIC, IPS, MCPcounter, and TIMER) between two clusters.
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patients were allocated risk scores. We then combined
clinicopathological characteristics and the risk scores to
establish a model to accurately predict the survival rate of
patients with colon cancer. This analysis is of great
significance for the survival prediction of patients with colon
cancer and provides a potential target for its treatment.

MATERIALS AND METHODS

Data Source and Extraction
The data we used for analysis were obtained from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) (The
Cancer Genome Atlas Network, 2012). In the dataset, 429
colon adenocarcinoma (COAD) patients had complete
clinicopathological and transcriptomic expression data. Thus,
they were enrolled as the training set. In addition, we also

downloaded three datasets, including GSE17536 (n = 177),
GSE17537 (n = 55), and GSE103479 (n = 156) in the Gene
Expression Omnibus (GEO, https:/www.ncbi.nlm.nih.gov/geo/)
to validate the results (Smith et al., 2010; Dienstmann et al., 2019).
The crude RNA expression data Fragments Per Kilobase of exon
model per Million mapped fragments (FPKM) were transformed
into Transcripts Per Kilobase of exon model per Million mapped
reads (TPM) for a better statistical evaluation.

Clustering for Distinct Immune Patterns in
Colon Cancer
We screened and quantified 28 immune cell types in the TCGA-
COAD dataset using the single sample gene set enrichment
analysis (ssGSEA) algorithm (Barbie et al., 2009). For each
independent dataset, an enrichment score was calculated to
represent the enrichment level of 28 immune cell types for

FIGURE 3 | (continue)
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FIGURE 4 | The biological functions of differentially expressed genes between two clusters. (A) The differentially expressed genes between the Immunity_L and
Immunity_H groups. Red triangles represent up-regulated genes and green triangles represent down-regulated genes. (B) Enrichment results of GO terms. Orange:
biological process, green: cellular component, purple: molecular function. (C) Enrichment results of KEGG pathways. Blue: cellular process, green: environmental
information processing, red: organismal systems.
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FIGURE 5 | The heatmap of differentially expressed genes.
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each tumor sample. Based on these ssGSEA scores, we performed
consensus clustering on TCGA-COAD. In brief, cluster analysis
was performed using “ConsensusClusterPlus” (Wilkerson and
Hayes, 2010), using agglomerative k-means clustering with a 1-
Pearson correlation distance and resampling 80% of the samples
for 10 repetitions. The optimal number of clusters was
determined using the empirical cumulative distribution
function plot. A principal component analysis (PCA) was
conducted to analyze the distinguishing ability of the clustering.

Quantification of Immunotherapy
Response, Major Histocompatibility
Complex, and Immune Microenvironment
We used the “ESTIMATE” package to calculate the Immune,
Stromal, and ESTIMATE scores for each sample to show the
component fractions and tumor purity (Yoshihara et al., 2013).
ImmuCellAI (Immune Cell Abundance Identifier) is a tool to
estimate the abundance of 24 immune cells from gene expression
dataset including RNA-Seq andmicroarray data (Miao et al., 2020).
We applied it to predict patients’ response to immune checkpoint

blockade therapy. The gene expression of the major
histocompatibility complex (MHC), human leukocyte antigen
(HLA), has also been explored in different clusters. Moreover,
the abundances of diverse immune and stromal components were
calculated using the “IOBR” R package (https://github.com/IOBR/
IOBR), which is designed for multi-omics immuno-oncology
biological research to decode tumor microenvironment and
signatures (Zeng et al., 2021). Specifically, five algorithms built
into the tool, including CIBERSORT (Newman et al., 2015),
immunophenoscore (IPS) (Charoentong et al., 2017), MCP-
counter (Becht et al., 2016), xCell (Aran et al., 2017), and EPIC
(Racle et al., 2017), were used to calculate the scores of 51
infiltrating (immune and stromal) cells in each sample.

Profiling of the Differentially Expressed
Prognostic Genes Related to Colon Cancer
Subtype-specific Immunity
We performed difference analysis between the Immunity_Low
(Immunity_L) group and Immunity_High (Immunity_H) group
using the “limma” package (Ritchie et al., 2015). The absolute

FIGURE 6 |Construction of risk signature based on differentially expressed genes. (A) The forest plot of differentially expressed genes with prognostic significance.
(B) The screening of coefficients and likelihood deviance under LASSO analysis. (C) The coefficients of model genes. (D) Best cutoff value selected by the log-rank test.
(E) The relationship between risk score, survival status, and model gene expression. (F) The Kaplan–Meier survival curve showing the difference between high risk and
low risk groups in TCGA-COAD. (G) The ROC curves regarding 1-, 3-, and 5-year survival outcomes in TCGA-COAD. (H) The differences in response rates to
immune checkpoint blockades between two groups.
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values of differential expression multiples >1.5 and p < 0.05 were
used as the criteria for screening differentially expressed genes.
The up- and down-regulated immune related genes (IRGs) in
colon cancer were displayed in volcano plot. For functional
analysis, we used the “org.Hs.eg.db” package (version 3.1.0) to
perform the gene ontology (GO; including biological process,
molecular function, and cellular component) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
annotation. A Benjamini–Hochberg false discovery rate (BH-
FDR) <0.05 was considered statistically significant. The
enrichment results were displayed as histogram and lollipop
charts.

Identification of Prognostic Genes and
Construction of Immune Signature
Univariate Cox regression analysis based on differentially
expressed genes was used to screen immune related genes
significantly related to the prognosis of colon cancer with p <
0.05 as the threshold. Subsequently, a Least Absolute Shrinkage

and Selection Operator (LASSO) Cox regression analysis with
“glmnet” package (Tibshirani, 1996) was used to further identify
essential genes and allocate coefficients for them. The risk score of
each sample was calculated using the following formula:

Risk score � ∑ n
i�1Coefipxi

where Coefi is the risk coefficient of each factor and xi is the
mRNA expression value (logarithmic transformed TPM) of each
factor. After determining the optimal cut-off value of risk score
through “survival” and “survminer” packages, patients were
divided into low risk and high risk groups correspondingly.
Survival curves were used to show the differences in survival
time and survival probability between high risk and low risk
patients based on the Kaplan–Meier method. The area under
curve (AUC) of receiver operating characteristic (ROC) curves
represented the predictive accuracy (Heagerty et al., 2000).
Univariate and multivariate Cox regression models were used
to analyze whether the risk score was able to independently
predict survival in patients with colon cancer.

FIGURE 6 | (continue)
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Establishment of Nomogram Prognosis
Prediction Model
Nomograms are widely used to predict the prognosis of the
disease, so we drew a nomogram based on all independent
prognostic factors identified by multivariate Cox regression
analysis to predict the survival probability of patients within 1,
3, and 5 years by using the “rms” package. For practical
application, we created a dynamic nomogram through
“DynNom” package and built an interactive web-based tool
with Shiny (https://shiny.rstudio.com/) (Supplementary
Material S1). A nomogram calibration curve was plotted to
judge nomogram accuracy by observing the relationship
between predicted probability and actual incidence. The
practicability of 1-, 3-, and 5-years OS was evaluated by ROC
curves. The prognostic ability of the nomogram and other
predictors (risk score, N stage, and M stage) for survival were
evaluated by decision curve analysis (DCA) curves using the
“rmda” R package.

Cell Culture
Normal human colon epithelial cells (NCM-460) and two human
colon cancer cell lines (HCT116, HCT8) were obtained from the
cell bank at the Chinese Academy of Sciences (Shanghai, China).
All cells were authenticated by short tandem repeat (STR)
profiling upon receipt and were propagated for less than

6 months after resuscitation. All cell lines were cultured in
Dulbecco’s modified eagle medium (DMEM) medium with
10% fetal bovine serum (FBS; Thermo Fisher Scientific,
Waltham, MA, USA). These cell lines were maintained in a
humidified chamber containing 5% CO2 at 37°C.

RNA Extraction and qPCR
Total RNA from cultured cells and fresh tissues was extracted
with Trizol regent (Thermo Fisher Scientific). We used
NanoDrop and an Agilent 2,100 bioanalyzer (Thermo Fisher
Scientific) to determine the concentration of extracted total RNA.
cDNA was obtained by reverse transcription using a reverse
transcription kit (Hiscrip II Q RT SuperMix for qPCR;
Vazyme, Nanjing, China) according to the manufacturer’s
protocol. Quantitative real-time polymerase chain reaction
amplification was performed with SYBR Green PCR master
mix (Takara, Japan) according to the manufacturer’s protocol.
Primers were designed as follows: SERPINE1, forward, 5′-AGT
GGACTTTTCAGAGGTGGA-3′, reverse, 5′-GCCGTTGAA
GTAGAGGGCATT-3′; ARL4C, forward, 5′-CCAGTCCCT
GCATATCGTCAT-3′, reverse, 5′-TTCACGAACTCGTTG
AACTTGA-3′; BST2, forward, 5′-CACACTGTGATGGCC
CTAATG-3′, reverse, 5′-GTCCGCGATTCTCACGCTT-3′;
AXIN2, forward, 5′-TACACTCCTTATTGGGCGATCA-3′,
reverse, 5′-TTGGCTACTCGTAAAGTTTTGGT-3′. GAPDH

TABLE 1 | Clinicopathological characteristics between the low risk and high risk groups

Characteristics Total (N = 429) Low risk (N = 333) High risk (N = 96) p Valuea

Age 0.59
Mean ± SD 66.70 ± 12.77 66.52 ± 12.75 67.31 ± 12.88
Median [min-max] 69.00 [31.00,90.00] 68.00 [31.00,90.00] 69.00 [34.00,89.00]

Gender 0.87
Female 202 (47.09%) 158 (36.83%) 44 (10.26%)
Male 227 (52.91%) 175 (40.79%) 52 (12.12%)

AJCC stage <0.01
Stage I 74 (17.25%) 68 (15.85%) 6 (1.40%)
Stage II 170 (39.63%) 131 (30.54%) 39 (9.09%)
Stage III 123 (28.67%) 89 (20.75%) 34 (7.93%)
Stage IV 62 (14.45%) 45 (10.49%) 17 (3.96%)

T stage <0.01
T1 9 (2.10%) 9 (2.10%) 0 (0.0e + 0%)
T2 75 (17.48%) 69 (16.08%) 6 (1.40%)
T3 297 (69.23%) 221 (51.52%) 76 (17.72%)
T4 48 (11.19%) 34 (7.93%) 14 (3.26%)

N stage 0.01
N0 253 (58.97%) 208 (48.48%) 45 (10.49%)
N1 99 (23.08%) 73 (17.02%) 26 (6.06%)
N2 77 (17.95%) 52 (12.12%) 25 (5.83%)

M stage 0.39
M0 367 (85.55%) 288 (67.13%) 79 (18.41%)
M1 62 (14.45%) 45 (10.49%) 17 (3.96%)

Disease type 0.35
Adenocarcinoma 372 (86.71%) 292 (68.07%) 80 (18.65%)
Mucinous adenocarcinoma 57 (13.29%) 41 (9.56%) 16 (3.73%)

Survival status <0.01
Alive 340 (79.25%) 276 (64.34%) 64 (14.92%)
Dead 89 (20.75%) 57 (13.29%) 32 (7.46%)

ap Value between the low risk group and high risk group.
AJCC, American Joint Committee on Cancer.
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was used as an endogenous control, and relative gene expression
was determined by the comparative 2−ΔΔCT method.

Immunohistochemistry
The Human Protein Atlas (HPA) (https://www.proteinatlas.org/)
is a program for mapping human proteins in cells, tissues, and
organs using integration of various omics technologies (Uhlen
et al., 2017; Sun et al., 2018). We obtained representative
immunohistochemistry results of the four target proteins in
colon cancer and normal colon tissues from the tissue atlas
and pathology atlas in HPA database, respectively.

Statistical Analysis
In this study, Kaplan–Meier method was used to estimate the
overall survival rate of different groups, and log-rank was used to
test the significance. The inter-group comparisons were achieved
by using Wilcoxon rank sum test. The chi-square test was used to
compare the clinicopathologic features (age, gender, TNM stage,

and AJCC stage) between the low risk group and high risk group.
Univariate and multivariate Cox regression analyses were utilized
to evaluate the independent prognostic value of the risk signature
regarding OS. Statistical analyses were made using R software
(version 4.0.3). Most visualizations were achieved by “ggplot2”
package. In most situations, p < 0.05 was used as a significant
threshold if not otherwise specified Figure 1.

RESULTS

Infiltrating Immune Cell Profiling Identified
Two Colon Cancer Clusters
We screened and analyzed 28 immune cell types by ssGSEA for
every tumor sample (Supplementary Table S2). Then, we
performed consensus clustering on TCGA-COAD dataset
based on the ssGSEA scores, which represented the activity or
infiltration levels of immune cells in the tumor sample. Finally,

FIGURE 7 | External validation. (A) The risk distribution, the Kaplan–Meier survival curve, and the ROC curves in GSE17536. (B) The risk distribution, the
Kaplan–Meier survival curve, and the ROC curves in GSE17537. (C) The risk distribution, the Kaplan–Meier survival curve, and the ROC curves in GSE103479.
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the patients were divided into two unique immune clusters (C1
and C2; Figures 2A–C). We found that the ssGSEA scores of all
the immune cell types were higher in C2 than those in C1

(Figure 2D). The C1 and C2 were thus defined as the
Immunity_Low (Immunity_L) group and Immunity_High
(Immunity_H) group, respectively (Supplementary Table S3).
Furthermore, the heatmap clearly demonstrated that the
Immunity_H group possessed higher stromal scores, immune
scores, and ESTIMATE scores when compared with the
Immunity_L group (Figure 2D). Correspondingly, the
Immunity_H group exhibited lower tumor purity.

PCA result further confirmed the reliability of this clustering,
as the subgroups could be significantly distinguished (Figure 2E).
More importantly, the Immunity_H group showed a higher
response rate to immune checkpoint blockers than the
Immunity_L group (51 vs. 15%; p < 0.001; Figure 2F). At the
same time, we found that most HLA genes were expressed at
higher levels in the Immunity_H group than in the Immunity_L
group (Figure 2G). These results collaborated that our clustering
significantly distinguished colon cancers into two groups with
distinct immune landscapes.

Next, we examined the relationship between individual
immune cell ssGSEA score and COAD patient’s overall
survival and found that 10/28 cell types were significantly
correlated with patient prognosis. Specifically, activated
B cell (p = 0.03; Figure 3A), effector memory CD4+ T cell (p
= 0.02; Figure 3B), eosinophil (p = 3.4e-3; Figure 3C),
immature B cell (p = 0.04; Figure 3D), neutrophil (p = 0.04;
Figure 3E), and type 17 T helper cell (Th17; p = 7.7e-3;
Figure 3F) were beneficial to patient survival, as a patient
with higher scores of these cell types would have a higher
survival probability, whereas CD56dim NK cell (p = 0.02;
Figure 3G), myeloid-derived suppressor cell (MDSC; p =
0.02; Figure 3H), natural killer T cell (p = 0.05; Figure 3I),
and T follicular helper cell (Tfh; p = 8.2e-3; Figure 3J) were
unfavorable to patient survival, as a patient with higher scores of
these cell types would have a worse survival. We then compared
the abundances of these immune cells between normal and
tumor tissues. Except for the natural killer T cell and type 17 T
helper cell, the remaining eight immune cells had generally
lower abundance in tumor tissues than in normal tissues
(Figure 3K). We used five algorithms to demonstrate
differences in the infiltrating cells between the two groups.
Overall, the abundances of immune cells were higher in the
Immunity_H group, especially for those calculated by
CIBERSOFT algorithm (Figure 3L).

Differentially Expressed Genes Related to
Colon Cancer Cluster-Specific Immunity
Were Identified and Verified
We analyzed the differentially expressed genes between the two
colon cancer immune subtypes in TCGA-COAD cohort. A total
of 18 genes were up-regulated in the immunty_H group and
down-regulated in the Immunity_L group. Conversely, 259
genes were down-regulated in the immunty_H group and
up-regulated in the Immunity_L group (Supplementary
Table S4; Figure 4A). Through GO enrichment analysis, we
found these differentially expressed genes were mostly located
on collagen-containing extracellular matrix, involved in

FIGURE 8 | The expression of these four genes in colon cancer cells and
tissues. (A) The relative mRNA levels of the four genes in normal colon
epithelial cells (NCM-460) and colon cancer cells (HCT116, HCT8) by qPCR.
(B) Representative IHC images of the four genes in colon cancer and
normal colon tissues.
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biological processes including response to interferon-gamma
and extracellular matrix organization. In terms of molecular
functions, these genes were mainly involved in extracellular
matrix structural constituent and chemokine activity
(Figure 4B). The results were consistent to the well-
established immune processes. Furthermore, KEGG
enrichment analysis concluded that these genes mainly
participated in the cellular processes of phagosome,
environmental information processing such as cytokine-
cytokine receptor interaction. Besides, they were enriched in
the organismal systems including hematopoietic cell lineage,
Th17 cell differentiation, and chemokine signaling pathway
(Figure 4C). These results largely indicated that these
differentially expressed genes derived from immunogenomic
clusters were closely linked to immune-related pathways.

A Four-Gene Risk Signature was
Constructed in the Training Set
These differentially expressed genes showed a completely distinct
expression patterns between the immunty_H group and the
Immunity_L group (Figure 5). By univariate Cox regression
analysis, we screened 11 differentially expressed genes that were
significantly associated with prognosis (Figure 6A), of which
AXIN2 was a protective factor because it harbored a hazard ratio
(HR) of less than 1 (HR= 0.861, p = 0.0481), while the remaining 10
genes were risk factors: SERPINE1 (HR = 1.24, p = 0.0076), SFRP2
(HR = 1.12, p = 0.0203), APOE (HR = 1.15, p = 0.0230), ARL4C
(HR = 1.27, p = 0.0236), BST2 (HR = 1.15, p = 0.0283), TGFB1 (HR
= 1.25, p = 0.0302), SLC2A3 (HR = 1.23, p = 0.0369), VSIG4 (HR =
1.2, p = 0.0389), C1QA (HR = 1.18, p = 0.0455), and BGN

(HR = 1.18, p = 0.0466). We performed further screening of
these genes by LASSO regression analysis and identified four
genes which were highly correlated with prognosis and
representative of this gene set, namely ARL4C, SERPINE1, BST2,
and AXIN2 (Figure 6B).

The LASSO analysis also allocated coefficients for these four
genes (Figure 6C), thus facilitating the assignment of risk score to
each patient. Under the best cut-off value of 0.56 detected by log-
rank test (Figure 6D), we displayed risk scores and survival status
distributions as Figure 6E. The high risk group had more
mortality events. And it clearly showed that ARL4C,
SERPINE1, and BST2 expression increased with increasing risk
score, whereas the expression of the AXIN2 decreased with
elevating risk score. The clinicopathological characteristics
between the high and low risk groups are summarized in
Table 1. It shows that the risk signature was an independent
indicator of prognosis as the characteristics were not significantly
different between the two groups, including age (p = 0.097),
gender (p = 0.36), AJCC pathologic stage (p = 0.22), T stage (p =
0.052), N stage (p = 0.46), M stage (p = 0.48), and disease type (p =
0.40). Kaplan-Meier survival curves depicted that colon cancer
patients with higher risk scores significantly had worse clinical
outcomes (HR = 2.17, 95% CI 1.41–3.35, p < 0.001; Figure 6F).
The ROC curves demonstrated that the risk signature harbored a
promising ability to predict OS in the TCGA-COAD cohort
(AUC: 1 year = 0.60, 3 years = 0.61, 5 years = 0.60;
Figure 6G). Besides, we also analyzed the response to immune
checkpoint blockers in the high risk and low risk groups. The
result showed that the low risk group showed higher response rate
to immune checkpoint blockers than the high risk group (35 vs.
22%; p = 0.017; Figure 6H).

TABLE 2 | Univariate and multivariate analyses in TCGA-COAD cohort.

Variable N Univariate analysis Multivariate analysis

HR (95% CI) p Value HR (95% CI) p Value

Age (years) 429 1.02 (1.00, 1.04) 0.091
Gender
Female 202 1 (ref)
Male 227 1.11 (0.73, 1.70) 0.627

T stage
T1 9 1 (ref)
T2 75 0.48 (0.05, 4.68) 0.531
T3 297 1.83 (0.25, 13.21) 0.551
T4 48 6.01 (0.80, 45.04) 0.081

N stage
N0 253 1 (ref) 1 (ref)
N1 99 1.70 (0.98, 2.97) 0.060 0.30 (0.10, 0.87) 0.027
N2 77 4.63 (2.82, 7.58) <0.001 0.69 (0.25, 1.90) 0.477

M stage
M0 367 1 (ref) 1 (ref)
M1 62 4.65 (2.98, 7.24) <0.001 21.87 (5.21, 91.76) <0.001

AJCC stage
Stage I 74 1 (ref) 1 (ref)
Stage II 170 2.42 (0.72, 8.10) 0.153 2.23 (0.66, 7.50) 0.195
Stage III 123 4.77 (1.45, 15.69) 0.010 9.99 (2.15, 46.42) 0.003
Stage IV 62 13.72 (4.19, 44.94) <0.001 NA NA
Risk score 429 7.16 (1.97, 26.00) 0.003 3.12 (0.81, 12.00) 0.011

HR, hazard ratio; CI, confidence interval; AJCC: American Joint Committee on Cancer; NA: not applicable.
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FIGURE 9 |Construction and validation of the nomogrammodel. (A)Construction of the nomogrammodel combining risk score and prognostic clinicopathological
indicators in TCGA-COAD. (B) Online dynamic nomogram accessible at https://scxiangya.shinyapps.io/DynNom/, depicting an example for predicting the survival
probability of a patient with TxN0M0 colon cancer and a risk score of 0.448. (C) Sankey diagram showing the distribution of patients in the high risk and low risk groups.
(D) The calibration curve judging nomogram accuracy by comparing the relationship between predicted and observed overall survival. (E) Time dependent ROC
curves showing the predictive ability of the nomogram. (F) Decision curve analysis curves and clinical impact curves evaluating the benefit when using the
nomogram model.
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Validation Cohort Demonstrated Stability of
the Risk Signature
To externally validate the prognostic ability of the established risk
signature, we calculated risk scores for patients in another three
independent cohorts (GSE17536, GSE17537, and GSE103479)
using the same formula (Figures 7A–C). Consistently, colon
cancer patients with higher risk scores had lower OS rate and
shorter OS time in the validation cohorts. The ROC analysis also
indicated that the risk signature had a promising prognostic value
for patients with colon cancer in the validation cohort (AUC for
GSE17536: 1 year = 0.65, 3 years = 0.61, 5 years = 0.58; AUC for
GSE17537: 1 year = 0.68, 3 years = 0.73, 5 years = 0.58; AUC for
GSE103479: 1 year = 0.56, 3 years = 0.58, 5 years = 0.61). These
results showed that the risk signature had an effective and stable
OS-predictive ability for colon cancer patients.

In Vitro Validation Demonstrated High
Expression ofModel Genes in Colon Cancer
at Transcriptional and Protein Levels
To confirm that these four genes are indeed highly expressed in
colon cancer, the expressions of these four genes were detected by
quantitative PCR (qPCR) in normal colon epithelial cells (NCM-
460) and colon cancer cells (HCT116 and HCT8). The results
showed that the expression levels of these four genes in colon
cancer cells were obviously higher than those in normal colon
epithelial cells (Figure 8A). Furthermore, we confirmed the
protein expression profiles of these four genes in human
tissues. As showed in immunohistochemistry results
(Figure 8B), these four proteins were mainly distributed in the
cytoplasm or membrane and were upregulated in colon cancer
tissues compared with corresponding normal tissues. These
results evidently demonstrated that ARL4C, SERPINE1, BST2,
and AXIN2 were upregulated in colon cancer cells and tissues at
the transcriptional and protein levels, implying the importance of
these four genes in colon cancer pathogens.

The Risk Signature-based Nomogram Had
Better Prediction Ability and Practical Value
Firstly, we used univariate and multivariate Cox analyses to assess
whether the established risk signature was an independent
prognostic factor for patients with colon cancer (Table 2).
Based on the data of colon cancer samples in the TCGA data
set, univariate Cox analysis indicated that N stage, M stage, AJCC
stage, and risk score were remarkably associated with OS (p <
0.05). Subsequent multivariate Cox analysis further showed that
N, M stages, and risk score were independent predictors of OS (p
< 0.05). These results indicated that our risk signature, as an
independent prognostic indicator, might be useful for clinical
prognosis evaluation.

To create a clinically applicable quantitative tool to predict the
OS of colon cancer patients, we constructed a nomogram model
including the risk score, N stage, and M stage in the TCGA data
set (Figure 9A), which was available online (https://scxiangya.
shinyapps.io/DynNom/) as screenshot in Figure 9B. The Sankey

diagram exhibited the distribution of the clinicopathological
features of the patients in different groups (Figure 9C).
Calibration plots using 1,000 booted resampling revealed
perfect concordance regarding the observed vs. predicted rates
of 1-, 3- and 5-year OS in the TCGA-COAD cohort (Figure 9D).
The ROC analysis also indicated that the nomogram had a stable
and robust power in predicting the OS for colon cancer patients
(AUC: 1 year = 0.775, 3 years = 0.766, 5 years = 0.717; Figure 9E).
The DCA result indicated that the model combining prognosis-
related clinicopathologic characteristics and risk signature
conferred a better predictive potency than the three-factor
model alone (Figure 9F).

DISCUSSION

Colon cancer is one of the major malignant tumors of the
gastrointestinal tract, and approximately 600,000 people die
from it every year (Bray et al., 2018; Siegel et al., 2020b),
although 5-year survival for colon cancer has approached 65%
with improved surgical methods and subsequent treatments in
developed countries (Miller et al., 20192019). For colon cancer
patients who present with local invasion or distant metastasis, the
mortality rate is very high (Misale et al., 2012; Edwards et al.,
2014; Fang et al., 2017). Therefore, there is an urgent need to find
some new predictive parameters or therapeutic targets that are
highly correlated with prognosis. This helps us to establish an
early warning system in advance to rapidly identify patients with
more critical conditions in clinical work to guide the development
of subsequent treatment regimens and the prediction of survival
outcomes.

Although it has long been recognized that the immune cells
play an important role in tumor initiation and development
(Fridman et al., 2012), these insights have not made a major
influence on routine clinical practice. Moreover, the
transcriptomic correlation of immune infiltration in cancer
tissues on diagnosis and prognosis has attracted substantial
interest. However, very few of these studies focused on the
association between the difference of the immune cell
composition and prognosis in colon cancer.

In this study, we first analyzed 28 immune cell types to divide
TCGA-COAD into two unique immune patterns: the
Immunity_H group and Immunity_L group. The two groups
showed significant differences in anti-tumor immune activity,
immune cell infiltration, and response to immune checkpoint
blockades. Regarding the specific cell types, the complex and
diverse immune cells in the TIM include T lymphocytes
(70–80%), B lymphocytes (10–20%), macrophages (5–10%),
NK cells (<5%), and dendritic cells (1–2%) (Frankel et al.,
2017). Additionally, Tregs and TAMs contribute to tumor
escape with immune suppressive activity and inhibit anti-
tumor responses. Immune cells infiltrating tumors mediate the
TIM and thereby influence tumor prognosis (Wu et al., 2013). In
this study, we found that effector memory CD4 T cells, activated
B cells, eosinophils, and Th17 cells were positively correlated with
patient survival prognosis, while the immunosuppressive cells
MDSCs were negatively correlated with survival prognosis.
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Tumor immunotherapy is known to act as a tumor suppressor by
acting through these immune cells, so we could screen out colon
cancer patients who could benefit from immunotherapy based on
different expression levels of immune cells.

It is of great significance to find which immune-related genes
that play important roles in the development of the colon cancer
and the prognosis of the patient. By specific algorithms, we
identified a group of immune-related genes that predict the
prognosis of colon cancer patients. With further screening and
model construction, four genes including ARL4C, SERPINE1,
BST2, and AXIN2 were singled out to be highly associated with
prognosis. It has been found that overexpression of ARL4Cmight
contribute to the tumorigenesis and lead to worse prognosis in
colorectal cancer (Chen et al., 2016), which supported the result
of our study. A recent study has found that SERPINE1
participated in colon cancer microenvironment remodeling
and immune cell infiltration (Wang et al., 2021). This
explained why patients with overexpression of SERPINE1 had
poor prognosis in our study. Moreover, the prognostic
significance of BST2 in colon cancer has been put forward as
early as 2015 (Chiang et al., 2015). And finally, AXIN2 has been
consistently classified as a tumor suppressor gene in colorectal
cancers both in vivo and in vitro (Church and Fazio, 2005;Waaler
et al., 2012). However, it should be noted that AXIN2 was
previously identified as a potent tumor promoter instead of a
suppressor, as it was found to exert global control over gene
expression networks which were critical for tumor-invasive and
metastatic behavior (Wu et al., 2012). Its precise function in the
carcinomatous state may require further studies. In general, these
four genes are promising prognostic molecules in colon cancer.
The constructed model can well distinguish colon cancer patients
and predict prognosis, thereby helping to develop individualized
treatment options based on survival risk.

The aim of this study is to construct a model composed of
prognostic immune related genes, which can robustly predict
prognosis. The multivariate Cox regression analysis result
showed that the survival time of the high risk group was
significantly lower than that of the low risk group. This shows
that our model can be used as an independent prognostic factor
for colon cancer patients. According to the nomogrammodel, the
survival rate of colon cancer patients is consistent with the actual
situation. This indicates that the model can well distinguish colon
cancer patients and outperform clinical parameters alone.
Combining the fact that there was a significant difference in
the immune cell constitutions between the Immunity_H and
Immunity_L groups, we hypothesized that the immune-related
genes may affect the tumor prognosis by affecting the immune
infiltration. Consequently, the responses rates to immune
checkpoint blockade were significantly different between the
groups with distinct immune landscapes. It is thus suggested
that the poor prognosis of patients in the Immunity_L group may
be due to the immunosuppressive microenvironment.

However, there are still some limitations in our study. Due to
insufficient clinical information in the three GEO cohorts, the
nomogram model failed to be validated, and the AUC values of
ROC curves for the risk signature were not high due to the limited

sample size. Therefore, we will further validate this prognostic
model in other independent large cohorts to ensure the reliability
of our model. Moreover, functional experiments are also needed
to further reveal the interplay between immune related genes and
tumors.

CONCLUSION

We identified two distinct immune patterns by analyzing clinical
and transcriptomic information from colon cancer patients,
which exhibited distinct tumor purity and immune
composition. A subsequently constructed immune-related
gene-based prognostic model as well as a nomogram model
was closely related to the prognosis of colon cancer patients to
predict prognosis more precisely, thereby guiding risk
stratification and treatment regimen development for colon
patients.
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