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Following trauma to the central nervous system (CNS), cells 
in the lesion site die rapidly. In addition, neurons and glia be-
yond the initial lesion are vulnerable. These cells can undergo 
delayed death due to metabolic events that follow the initial 
trauma, via mechanisms thought to be triggered by gluta-
mate-induced excitotoxicity and Ca2+ overload, leading to 
mitochondrial dysfunction, associated with increased oxida-
tive stress (Camello-Almaraz et al., 2006; Peng and Jou, 2010). 
The resultant death of areas of grey and white matter adjacent 
to the lesion site is termed secondary degeneration, and is a 
feature of brain and spinal cord injury (Park et al., 2004; Gi-
aume et al., 2007). Secondary degeneration contributes sub-
stantially to functional loss following neurotrauma (Profyris 
et al., 2004; Farkas and Povlishock, 2007) and rescuing this 
intact, but vulnerable, tissue is considered critical to mini-
mising adverse sequelae and improving long term functional 
outcomes after CNS trauma (Fehlings et al., 2012). However, 
our understanding of many of the metabolic events thought 
to contribute to secondary degeneration is based largely on 
in vitro studies (Khodorov, 2004; Tretter et al., 2007; Peng 
and Jou, 2010) and there is a need to confirm the relevance of 
these mechanisms in vivo, as well as their structural and func-
tional consequences.

To study and develop treatments for secondary degenera-
tion, it is essential to have a reproducible in vivo model system 
that simulates the complex events that occur in humans and 
allows statistical verification of tissue rescue and functional 
improvements. Levkovitch-Verbin and colleagues developed 
an elegant partial optic nerve transection model in which only 
the dorsal optic nerve is injured, allowing spatial separation of 
the dorsal primary injury from ventral optic nerve white mat-
ter vulnerable to secondary degeneration (Levkovitch-Verbin 
et al., 2001; Levkovitch-Verbin et al., 2003; Blair et al., 2005). 
We and others have built upon these studies and this brief 
review describes some of this work further characterising 
metabolic and structural features of secondary degeneration 
following partial optic nerve transection, with particular ref-
erence to dysmyelination, and assessment of efficacy of treat-
ment strategies to limit these changes.

Ca2+ changes and oxidative stress during secondary 
degeneration in vivo
Altered distribution of Ca2+ ions is thought to be a key early 
event in secondary degeneration, but these fine-scale changes 
are difficult to track in vivo. Using nanoscale secondary ion 
mass spectrometry (NanoSIMS) we have quantified changes 
in calcium (Ca) microdomains, which are localised areas of 
increased Ca2+ concentration (Rizzuto and Pozzan, 2006). 
We showed that the density of specific subsets of Ca micro-
domains selectively and significantly decreased after injury, 
in ventral optic nerve vulnerable to secondary degeneration 
(Wells et al., 2012; Lozic et al., 2014). Decreased density of 
Ca microdomains may be accompanied by an efflux of Ca2+ 
from these microdomains and future NanoSIMS assessments 

designed to quantify Ca2+ release are planned. We have also 
demonstrated increased immunoreactivity of the GluR1 sub-
unit of the AMPA receptor in ventral optic nerve astrocytes 
in the first 24 hours after injury (Wells et al., 2012), perhaps 
contributing to changes in Ca2+ flux. 

Increased Ca2+ flux has been associated with increased reac-
tive oxygen and nitrogen species and oxidative stress in vitro 
(Camello-Almaraz et al., 2006; Peng and Jou, 2010). Excess 
influx of Ca2+ leads to perturbations in mitochondrial mem-
brane potential, opening of the mitochondrial permeability 
transition and release of cytochrome c, which increases pro-
duction of reactive oxygen species, overwhelms endogenous 
antioxidant responses and leads to oxidative stress (Kowal-
towski et al., 2009; Peng and Jou, 2010). Oxidative stress has 
been demonstrated as a feature of traumatic brain and spinal 
cord injury (Park et al., 2004; Carrico et al., 2009). However, 
it is not yet clear if oxidative stress contributes to secondary 
degeneration in vivo. We have demonstrated increased immu-
noreactivity of the antioxidant enzyme manganese superoxide 
dismutase (MnSOD) in hypertrophic astrocytes, in the first 
minutes and days after injury (Fitzgerald et al., 2009a; Fitz-
gerald et al., 2010a), associated with increased reactive species 
(unpublished). However, antioxidant activity appears inad-
equate to limit these reactive species and prevent oxidative 
stress, as we observed structural changes in mitochondria of 
axons and glia (Cummins et al., 2013) and oxidative damage 
in optic nerve vulnerable to secondary degeneration, particu-
larly in oligodendrocytes (Fitzgerald et al., 2010a; Szymanski 
et al., 2013). Protein carbonylation, indicated by increased 
carboxymethyl lysine (CML), was demonstrated from 1 day 
after injury (Wells et al., 2012; Szymanski et al., 2013), and we 
observed oxidative damage to DNA and lipids as well as pro-
tein nitration in the first week after injury (unpublished). Ox-
idative stress is likely exacerbated by inflammatory cell infil-
tration, which occurs in the first day after injury in the dorsal 
injury site and becomes apparent in ventral optic nerve vul-
nerable to secondary degeneration by day 3 (Fitzgerald et al., 
2009a, 2010a). Taken together, our data indicate that spread 
of reactive species such as H2O2 via extracellular release and/
or the astrocytic syncytium likely contributes to the spreading 
damage of secondary degeneration in neurons and glia. 

Dysmyelination during secondary degeneration
When we looked more closely at the cell types exhibiting signs 
of oxidative stress, we observed that increased CML immuno-
reactivity was particularly prominent in oligodendrocytes vul-
nerable to secondary degeneration ((Szymanski et al., 2013) 
and unpublished), despite reports of resistance of mature oli-
godendrocytes to oxidative damage (Back et al., 2005). Con-
currently, paranodes significantly lengthened, as did Nodes of 
Ranvier, and there was greater incidence of abnormal node/
paranode structures (Szymanski et al., 2013). Similar changes 
have been reported in models of inflammatory demyelinating 
disease, including multiple sclerosis (Lonigro and Devaux, 
2009; Oluich et al., 2012). Later after injury myelin became 
increasingly decompacted, with increased thickness of myelin, 
due to loosening of myelin lamaellae, and increased num-
bers of intraperiodic lines (Payne et al., 2011, 2012). These 
kinds of abnormalities and perturbations in myelin, referred 
to as dysmyelination, have been reported following spinal 
cord injury and in demyelinating diseases including multiple 
sclerosis (Krsulovic et al., 1999; Rosenbluth and Schiff, 2009; 
Nomura et al., 2013). Visuomotor function, which is signifi-
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cantly compromised from one day after injury (unpublished), 
progressively worsened in the 6 months following partial 
transection (Payne et al., 2012). Oligodendrocyte precursor 
cells (OPCs) proliferated and appeared to differentiate and 
possibly remyelinate axons, at least to some extent. However, 
there was significant death of OPCs and their total numbers 
remained chronically lower in ventral optic nerve vulnerable 
to secondary degeneration (Payne et al., 2013). Depletion of 
OPCs may have compromised normal adult myelinogenesis 
(Young et al., 2013), neuromodulation (Polito and Reynolds, 
2005) and myelin repair. We consider it likely that oxidative 
stress in oligodendrocytes and their precursors contributes to 
the dysmyelination we observe, as well as associated chronic 
functional loss. It is interesting to note that following partial 
optic nerve transection, multifocal electroretinogram re-
sponses are reduced in inferior retina vulnerable to secondary 
degeneration (Chu et al., 2013), perhaps further contributing 
to loss of visual function.

Strategies to limit dysmyelination during secondary 
degeneration
A key goal of increasing understanding of the metabolic and 
structural features of secondary degeneration is to enable 
rational design of treatment strategies to limit these changes. 
We have used the relatively CNS specific voltage gated calci-
um channel inhibitor lomerizine (Hara et al., 1999) as a strat-
egy to limit excess Ca2+ flux, and potentially oxidative stress, 
during secondary degeneration. While lomerizine reduced 
necrotic and to a lesser extent apoptotic death of retinal gan-
glion cells vulnerable to secondary degeneration (Fitzgerald 
et al., 2009a; Fitzgerald et al., 2009b), it did not fully restore 
visual function (Fitzgerald et al., 2009a; Selt et al., 2010). 
More recently we have combined lomerizine with additional 
Ca2+ channel inhibitors: the highly soluble AMPA receptor 
antagonist YM872 (also known as zonampanel or INQ) (At-
sumi et al., 2003; Furukawa et al., 2003); and the P2X7 recep-
tor antagonist oxATP (Wang et al., 2004; Matute et al., 2007). 
Only treatment with all three of the Ca2+ channel inhibitors in 
combination reduced myelin decompaction, lengthening of 
Nodes of Ranvier and CML immunoreactivity (indicative of 
reduced oxidative stress) in oligodendroglia of ventral optic 
nerve (Savigni et al., 2013). The combination of three Ca2+ 
channel inhibitors also preserved visual function following 
partial optic nerve transection (Savigni et al., 2013). From this 
work we can conclude that inhibiting multiple Ca2+ perme-
able receptors is beneficial for preventing dysmyelination and 
preserving function in white matter vulnerable to secondary 
degeneration. However, beneficial effects may not be due sole-
ly to reduced Ca2+ influx from the extracellular space per se. 
Inhibition of downstream signalling pathways of individual 
receptors, such as those leading to calpain mediated axonal 
degeneration (Thompson et al., 2010), and/or resultant re-
ductions in release from intracellular Ca2+ stores (Stirling et 
al., 2014) may also contribute to beneficial effects. Further-
more, we have not yet ascertained whether it is inhibition of 
Ca2+ permeable receptors in oligodendrocytes, OPCs and/or 
other cell types, such as astrocytes, neuronal somata and/ or 
axons, or even photoreceptors, which is beneficial.

We are also pursuing anti-oxidant strategies in an effort to 
reduce dysmyelination due to secondary degeneration. Irradi-
ation with red/near-infrared light (R/NIR-IT, 630–1,000 nm) 
was developed as a therapeutic strategy for the treatment of 

a range of injuries and diseases, following observations of 
beneficial effects on minor wound healing in space (Whelan 
et al., 2001). Specific to the nervous system, beneficial effects 
have been reported following retinal degeneration (Natoli 
et al., 2010; Albarracin et al., 2011), CNS injury (Byrnes et 
al., 2005), stroke (Lapchak et al., 2007) and peripheral nerve 
damage (Rochkind et al., 2009; Ishiguro et al., 2010), as sum-
marized in our recent review (Fitzgerald et al., 2013). While 
there is controversy regarding the mechanism of action of R/
NIR-IT, one hypothesis is that it acts by improving oxidative 
metabolism and reducing oxidative stress. The enzyme cyto-
chrome c oxidase, complex IV of the electron transport chain, 
is proposed to act as a photoacceptor for irradiation at these 
wavelengths, with absorption spectra matching efficacious 
wavelengths (Moody, 2005; Wong-Riley et al., 2005). Specif-
ically, irradiation is thought to lead to activation via changes 
in the oxidation-reduction state of this enzyme (Karu et al., 
2008). 

We have demonstrated that 670 nm R/NIR-IT delivered 
by light emitting diode (LED) array increased cytochrome c 
oxidase activity in optic nerve vulnerable to secondary degen-
eration (Szymanski et al., 2013). This was accompanied by 
reduced MnSOD immunoreactivity in astrocytes (Fitzgerald 
et al., 2010b), reduced incidence of mitochondrial autophag-
ic profiles (Cummins et al., 2013), rescue of node/paranode 
abnormalities and preservation of visual function (Fitzgerald 
et al., 2010b; Szymanski et al., 2013). Nevertheless scepticism 
regarding efficacy of R/NIR-IT as a treatment for CNS injury 
remains, largely due to uncertainty regarding penetrance of 
the irradiation and lack of consensus on optimal treatment 
parameters, even within a single type of CNS injury (Fitzgerald 
et al., 2013). Our current efforts are focussed on developing 
an optimal R/NIR-IT treatment protocol for prevention of 
dysmyelination during secondary degeneration following par-
tial optic nerve transection in vivo and conducting multi-cen-
tre comparative assessments of efficacy of a single R/NIR-IT 
treatment paradigm across multiple CNS injury types. 

Additional strategies we are pursuing to limit dysmyelin-
ation and functional loss due to secondary degeneration 
following neurotrauma include use of nanotechnologies to 
deliver rationally designed inhibitors and anti-oxidants to ar-
eas of nerve specifically vulnerable to secondary degeneration. 
We have demonstrated anti-oxidant capacity of phospholipid 
calix[4]arene formulations in vitro (James et al., 2013) and 
developed multimodal polymeric nanoparticles, function-
alised with magnetite nanoparticles and fluorescent dyes for 
tracking by magnetic resonance imaging and fluorescence 
microscopy respectively, for delivery of therapeutics (Evans 
et al., 2011). We have shown effective release of lomerizine 
from these multimodal nanoparticles (Evans et al., 2012) 
and demonstrated lack of toxicity following injection of our 
nanoparticles into a partial optic nerve injury site (Harri-
son et al., 2012). Polymeric nanoparticles have the potential 
to safely deliver effective anti-oxidant treatment strategies 
to specific cell types vulnerable to secondary degeneration, 
overcoming solubility and delivery limitations, and we are 
currently undertaking studies to assess their efficacy in this 
regard. 

Summary and conclusions
The progression of secondary degeneration following partial 
optic nerve transection is characterised by initial, rapid onset 



NEURAL REGENERATION RESEARCH 
June 2014,Volume 9,Issue 11 www.nrronline.org

1098

alterations to Ca2+ distributions and increases in indicators 
of oxidative stress, particularly in astrocytes. Reactive species 
and altered Ca2+ flux may spread to ventral optic nerve vul-
nerable to secondary degeneration via the astrocytic syncy-
tium. Oxidative stress in oligodendrocytes and alterations to 
node/paranode structure are evident by 24 hours after injury 
in ventral optic nerve vulnerable to secondary degeneration, 
before detection of inflammatory cell infiltration at 3 days. 
OPC numbers are also reduced from 3 days, despite prolif-
eration of these cells. While retinal ganglion cell axonal loss 
is evident in ventral optic nerve by 7 days, secondary death 
of retinal ganglion cell somata is not detected until 2 weeks 
after injury and is followed by continued axonal swelling and 
decompaction of myelin surrounding remaining vulnerable 
axons. Chronic functional loss persists until at least 6 months 
following injury. Treatment strategies including combinations 
of Ca2+ channel inhibitors and R/NIR-IT have been shown to 
limit oxidative stress, dysmyelination and functional losses of 
secondary degeneration. However, it is likely that multi-facet-
ed combinatorial treatment strategies will be required to limit 
the many aspects of damage during secondary degeneration, 
especially in more complex models and in patients suffering 
from neurotrauma. 
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