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Background. Neuroinflammation-induced phosphorylated Tau (p-Tau) deposition in central nervous system contributes to
neurodegenerative disorders. Propofol possesses neuroprotective properties. We investigated its impacts on tumor necrosis
factor-α (TNF-α)-mediated p-Tau deposition in neurons. Methods. Mouse hippocampal neurons were exposed to propofol
followed by TNF-α. Cell viability, p-Tau, mitophagy, reactive oxygen species (ROS), NOD-like receptor protein 3 (NLRP3),
antioxidant enzymes, and p62/Keap1/Nrf2 pathway were investigated. Results. TNF-α promoted p-Tau accumulation in a
concentration- and time-dependent manner. TNF-α (20 ng/mL, 4 h) inhibited mitophagy while increased ROS accumulation
and NLRP3 activation. It also induced glycogen synthase kinase-3β (GSK3β) while inhibited protein phosphatase 2A (PP2A)
phosphorylation. All these effects were attenuated by 25μM propofol. In addition, TNF-α-induced p-Tau accumulation was
attenuated by ROS scavenger, NLRP3 inhibitor, GSK3β inhibitor, or PP2A activator. Besides, compared with control neurons,
100 μM propofol decreased p-Tau accumulation. It also decreased ROS and NLRP3 activation, modulated GSK3β/PP2A
phosphorylation, leaving mitophagy unchanged. Further, 100μM propofol induced p62 expression, reduced Keap1 expression,
triggered the nuclear translocation of Nrf2, and upregulated superoxide dismutase (SOD) and heme oxygenase-1 (HO-1)
expression, which was abolished by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Consistently, the inhibitory
effect of 100 μM propofol on ROS and p-Tau accumulation was mitigated by p62 knockdown, Keap1 overexpression, or Nrf2
inhibitor. Conclusions. In hippocampal neurons, TNF-α inhibited mitophagy, caused oxidative stress and NLRP3 activation,
leading to GSK3β/PP2A-dependent Tau phosphorylation. Propofol may reduce p-Tau accumulation by reversing mitophagy
and oxidative stress-related events. Besides, propofol may reduce p-Tau accumulation by modulating SOD and HO-1
expression through p62/Keap1/Nrf2 pathway.
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1. Introduction

Neurodegenerative disorders, such as Parkinson’s disease
(PD), Alzheimer’s disease (AD), and perioperative neuro-
cognitive disorder (PND), are diseases in which the struc-
ture and function of neurons are impaired, leading to
dysfunction of central nervous system (CNS). While the
causes associated with neuronal impairment remain poorly
understood, increasing evidence proved systemic inflam-
matory response especially neuroinflammation is crucial
in the progression of neurodegenerative diseases [1, 2].
The core of neuroinflammation is likely the same in aging,
metabolic diseases such as hypertension and diabetes, or
cerebral insults such as stroke and injury [3], and inflam-
matory mediator tumor necrosis factor-α (TNF-α) was
proved to serve as a key player and biomarker of neuroin-
flammation [4]. Speaking of molecular mechanisms, plenty
of evidence suggested that the aggregation of β-amyloid, α-
synuclein, and Tau protein plays a crucial role in neurode-
generative cascades [5–7]. However, tauopathy especially
hyperphosphorylation of Tau, rather than Tau itself, was
believed to lead to dementia and neurodegenerative dis-
eases [8]. A recent clinical study also revealed a robust rela-
tionship between phosphorylated Tau protein (p-Tau) in
the brain and the extent of neurodegeneration in AD
patients [9]. Nevertheless, whether neuroinflammation
caused p-Tau accumulation was still unknown, and if so,
how neuroinflammation triggered p-Tau accumulation
was also rarely studied. Although posttranslational Tau
protein modifications may be mediated by many factors,
mitochondrial autophagy (also known as mitophagy), reac-
tive oxygen species (ROS), the activation of the NOD-like
receptor protein 3 (NLRP3) inflammasome, and the regula-
tion of kinases and phosphatases have attracted attention
due to their upstream and downstream effects on tauopa-
thy [10–12].

Propofol is widely used as an intravenous anesthetic/
sedative agent in clinical practice. Apart from hypnotic
advantages, it possesses anti-inflammation [13] and anti-
oxidation effects [14] as well as neuro-protective properties
[15]. On cellular and molecular levels, propofol has been
shown to attenuate TNF-α-induced neuronal dysfunction
[16, 17]. It has also been reported to diminish mitochon-
drial dysfunction and ROS production in isolated rat hip-
pocampal neurons [18, 19]. In addition, animal studies
revealed that propofol exerted cognitive protection by reg-
ulating the expression and posttranslational modification,
mostly phosphorylation of Tau in rat models [20, 21].
Nevertheless, deeper investigation concerning how propo-
fol modulates Tau protein phosphorylation needs to be
carried out.

In the present in vitro study, we examined whether
and how TNF-α caused p-Tau accumulation in hippocam-
pal neurons. More importantly, we investigated the protec-
tive effects and mechanisms of propofol in neurons. The
findings of this study may provide potential therapeutic
targets for the prevention and treatment of p-Tau accumu-
lation and resultant neuron injury as well as neurodegen-
erative disorders.

2. Materials and Methods

2.1. Experimental Design. To examine the effects of TNF-α
on p-Tau accumulation, neurons were exposed to different
concentrations of TNF-α (10, 20, 40, 80, and 160 ng/mL)
for different durations (1, 2, 4, and 8h). Neuron viability
and the amount of Tau as well as p-Tau were examined,
and the optimal TNF-α treatment condition was deter-
mined. To investigate the protective effects of propofol, neu-
rons were incubated with different concentrations (1, 5, 10,
25, 50, and 100μM) of propofol for 1 h followed by TNF-α
treatment. We intended to examine the effect of propofol
on TNF-α-induced p-Tau accumulation, and further investi-
gated the mechanisms including mitophagy, ROS, NLRP3
inflammasome, glycogen synthase kinase-3β (GSK3β),
cAMP-dependent protein kinase (PKA), protein phospha-
tase 2A (PP2A), antioxidant enzyme superoxide dismutase
(SOD), heme oxygenase-1 (HO-1), NADPH quinine oxido-
reductase 1 (NQO1), and p62/Keap1/Nrf2 pathway. To
confirm their roles, inhibitors and activators as well as over-
expression/knockdown technique were applied.

2.2. Cell Culture. Cryopreserved primary mouse hippocam-
pal neurons were commercially obtained from Gibco-Life
Technologies (Carlsbad, CA, USA) and cultured in B-27
Plus Neuronal Culture System (Gibco-Life Technologies,
Carlsbad, CA, USA). After thawed and seeded in tissue cul-
ture flasks containing 5mL media supplemented with neu-
ronal growth supplement, 1% penicillin/streptomycin and
5% fetal bovine serum, neurons were kept in a humidified
incubator filled with 5% CO2 and 95% air at 37°C. The cul-
ture media were replaced every other day, until neurons
reached about 70% confluency and were ready for experi-
ments without subculturing.

2.3. TNF-α Treatment and Propofol Pretreatment Protocol.
Recombinant mouse TNF-α was obtained from Sigma-
Aldrich (St. Louis, MO, USA) and was reconstituted with
sterile water to a stock concentration of 0.1mg/mL. To
investigate the effect of TNF-α on p-Tau accumulation, neu-
rons were exposed to different concentrations of TNF-α (10,
20, 40, 80, and 160ng/mL) for different durations (1, 2, 4,
and 8h). By measuring the expression and phosphorylation
of Tau protein, we aimed to determine the optimal condi-
tion, under which TNF-α exerted significant effect on the
accumulation of p-Tau.

To investigate the protective effects of propofol against
TNF-α in hippocampal neurons, we incubated neurons with
different concentrations (1, 5, 10, 25, 50, and 100μM) of
propofol (Sigma-Aldrich, St Louis, MO, USA) or its solvent
0.1% dimethyl sulfoxide (DMSO, Sigma-Aldrich, St Louis,
MO, USA) for 1 h followed by TNF-α treatment (with the
presence of propofol or DMSO). By observing the expres-
sion and phosphorylation of Tau protein, we intended to
identify the optimal concentration, at which propofol
exerted protective effects against p-Tau accumulation.

2.4. Cell Viability Assay. 3-4,5-dimethylthiazol-2,5-diphenyl-
tetrazolium bromide (MTT) assay was used to assess the
viability of neurons. Briefly, neurons were seeded in 6-well
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culture plates and exposed to respective treatment. After
removing culture media, neurons were rinsed with
phosphate-buffered saline (PBS). MTT was dissolved in
serum-free medium at a final concentration of 0.5mg/mL
and each well was loaded with 150μL MTT. After incubating
at 37°C for 30min, 150μL dimethyl formamide was added,
and the incubation continued for 4 h, during which formazan
crystals formed. Then, 150μL DMSO was added to dissolve
formazan crystals. A microplate reader (Bio-Rad, Hercules,
CA, USA) was used to determine the absorbance values at
570nm, and optical density served as unit. Cell viability was
expressed as the percentage of absorbance of treated neurons
compared with that of untreated control neurons.

2.5. Mitochondrial Membrane Potential (MMP)
Determination. MMP was determined through fluorescent
dye rhodamine-123 (Rh123), which is a lipophilic cationic
fluorescent probe for mitochondria, and the fluorescence
was examined through flow cytometry with the use of
fluorescence-activated cell sorter (FACS). Briefly, Rh123
(Beyotime Institute of Biotechnology, Shanghai, China)
was dissolved in DMSO to make a 5mM stock solution.
After treatment, neurons were washed with PBS and incu-
bated with 5μM Rh123 at 37°C in a dark chamber for
30min. Then, neurons were washed with PBS to remove
excess dye, and BD FACSPresto™ System (BD Biosciences,
San Jose, CA, USA) was applied to detect the fluorescent sig-
nal at an excitation wavelength of 490nm and an emission
wavelength of 585nm. Data were expressed as mean± stan-
dard deviation of fluorescent intensity of Rh123 staining.

2.6. Mitophagy Assessment. The extent of mitophagy was
evaluated by using Mitophagy Detection Kit (Beyotime
Institute of Biotechnology, Shanghai, China) according to
the manufacturer’s instructions. In brief, after treatment,
neurons were washed with Hanks’ HEPES solution, incu-
bated with 0.1μM mitophagy dye working solution at 37°C
for 30min, and incubated with 1μM lysosome dye working
solution at 37°C for 30min. After washing with Hanks’
HEPES solution to remove excessive dye, the fluorescence
was detected at an excitation wavelength of 550nm and an
emission wavelength of 610nm. Data were expressed as
mean± standard deviation of fluorescent intensity.

2.7. Intracellular ROS Measurement. Intracellular ROS was
monitored using a ROS-sensitive fluorogenic dye. The method
is based on fluorescent 2’,7’-dichlorofluorescein (DCF), which
is oxidatively converted from non-fluorescent 2’,7’-dichlorodi-
hydrofluorescein diacetate (DCFH-DA, Beyotime Institute of
Biotechnology, Shanghai, China). In brief, neurons were
seeded in 6-well culture plates and exposed to respective treat-
ment. Thereafter, neurons were incubated with 10μMDCFH-
DA for 30min at 37°C. Then, the reaction mixture was aspi-
rated and replaced with 200μL PBS in each well. The plates
were placed on a shaker for 10min at room temperature in
the dark, and subject to fluorescence microplate reader with
an excitation wavelength of 485nm and an emission wave-
length of 535nm. The data were recorded as folds of increased

fluorescence intensity in treated neurons compared with that
of untreated neurons.

2.8. Mitochondrial ROS Assessment. ROS generation within
mitochondrial compartment was assessed in live cells using
MitoSOX Red, a fluorogenic dye that is taken up by mito-
chondria where it is readily oxidized by superoxide anion
and serves as mitochondrial ROS indicator. Briefly, neurons
were seeded in 6-well culture plates, and MitoSOX Red
(Beyotime Institute of Biotechnology, Shanghai, China)
was dissolved in DMSO to form 5mM stock solution. After
treatment, neurons were loaded with 1μMMitoSOX Red for
10min at 37°C in the dark. Then, neurons were washed with
PBS, and fluorescence intensity was determined with fluo-
rescence microplate reader at 510nm excitation and
580 nm emission, respectively. Data were recorded as folds
of increased fluorescence intensity in treated neurons com-
pared with that of untreated neurons.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). The
production of interleukin-1β (IL-lβ) and interleukin-18
(IL-18) was evaluated by SimpleStep ELISA kit (Beyotime
Institute of Biotechnology, Shanghai, China) according to
the manufacturer’s instructions. Briefly, after treatment, the
culture media were harvested. In addition, neurons were
scrapped off, suspended in PBS, and subject to ultrasonic
homogenizer. Then, the homogenates and culture media
were centrifuged at 2000 revolutions per minute (rpm) for
10min at 4°C, and the supernatant was collected and trans-
ferred to 24-well plates precoated with antibody against IL-
lβ or IL-18. After incubating at 4°C for 30min, the capture
and detector antibody cocktail were added, and incubation
lasted for 30min at 4°C. Then, the supernatant was removed,
and the wells were washed with PBS. Subsequently, the
detection reagent was added, and the absorbance at 450nm
was measured with a microplate reader (Bio-Rad, Hercules,
CA, USA). A standard curve was plotted using standard
IL-1β or IL-18 supplied by the kit, and data were expressed
as pg/mL.

2.10. Preparation of Whole Cell Extracts. After treatment, cul-
ture media were removed, and neurons were washed with PBS
and then scraped off the culture flasks. After centrifugation for
5min at 1000 rpm at 4°C, neuron pellets were suspended in
radioimmunoprecipitation assay (RIPA) lysis solution (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) containing 1%
protease inhibitor and 0.1% phosphatase inhibitor, and placed
on ice for 10min with intermittent homogenization by vortex-
ing. Then, the whole cell proteins were obtained by centrifug-
ing for 10min at 5000 rpm, and the protein concentration was
determined by BCA protein assay kit (Beyotime Institute of
Biotechnology, Shanghai, China).

2.11. Preparation of Nuclear Extracts. Nuclear extracts were
prepared using nuclear extract kit (Active Motif, Carlsbad,
CA, USA) according to the manufacturer’s protocol. After
treatment, culture media were thoroughly removed. Then,
neurons were washed with PBS, scraped off, transferred to
prechilled tubes, pelleted by centrifugation at 1000 rpm for
5min at 4°C, suspended in hypotonic buffer, and incubated
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on ice for 15min. After adding detergent and intermittent
vortexing for 10 sec, the suspensions were centrifuged at
14,000 rpm for 1min at 4°C. Then, the pellets were sus-
pended in complete lysis buffer, vortexed for 10 sec, and
incubated for 30min at 4°C. The suspensions were centri-
fuged at 14,000 rpm for 10min at 4°C, and the supernatant
was collected. Protein concentration was quantified by
BCA protein assay kit (Beyotime Institute of Biotechnology,
Shanghai, China), and the purity of nuclear fractions was
verified by the absence of cytosolic marker α-tubulin.

2.12. Preparation of Cytosolic Extract. Cytosolic fractions
were separated using ProteoExtract subcellular proteome
extraction kit (Calbiochem, La Jolla, CA) according to the
manufacturer’s protocol. Briefly, after treatment, neurons
were harvested and washed twice with wash buffer and were
suspended in 50μL extraction buffer I containing protease
inhibitor cocktail and lysed by gently rocking for 5min. Cell
debris and heavy membrane organelles were pelleted by cen-
trifugation at 10,000 rpm for 10min. The supernatant con-
taining cytosolic fraction was collected, and protein
concentrations were quantified by BCA protein assay kit
(Beyotime Institute of Biotechnology, Shanghai, China).
The purity of cytosolic fractions was verified by the absence
of nuclear marker Histone H3.

2.13. Protein Analysis by Western Blot Analysis. Equal
amounts of protein (40μg per lane) were heated to 95°C for
5min followed by storing on ice for 5min, separated with
8% or 10% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE), and electrophoretically transferred
to polyvinylidinene fluoride membranes (Millipore, Bedford,
MA, USA) for 90min at a constant current of 200mA. After
sealing the membranes with 5% skimmed milk at room tem-
perature for 2 h, 1 : 500~1000 dilution of specific primary
antibodies (Cell Signaling Technology, Beverly, MA, USA)
against NLRP3, cleaved-caspase-1, pro-caspase-1, GSK3β,
phosphorylated GSK3β, PKA, phosphorylated PKA, PP2A,
phosphorylated PP2A, p62, Keap1, Nrf2, SOD, HO-1,
NQO1, Tau, p-Tau, α-tubulin, Histone H3, or GAPDH were
incubated with the membranes for overnight at 4°C. Subse-
quently, the membranes were washed with TBST (Tris-buff-
ered saline containing 0.1% Tween 20) and incubated with
1 : 5000 dilution of HRP-conjugated species-specific second-
ary antibody (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) at room temperature for 2 h. The immunoreactive
bands were detected with Amersham ECL plusWestern blot-
ting detection reagent (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), and images were scanned and recorded with
Odyssey System (LI-COR Biosciences, Lincoln, NE, USA).
The gray values of protein bands were analyzed with Image
J v1.8.0 software. The values of GAPDH served as internal
control for whole cell or cytosolic proteins, and values of His-
tone H3 served as an internal control for nuclear proteins.
During the examination of nuclear proteins, α-tubulin was
used to rule out contamination of cytosolic component.
The relative expression of target protein was calculated
according to the equation: gray value of target protein
band/gray value of control protein band.

2.14. Transient Transfection. Small interfering RNA (siRNA)
and plasmid were transiently transfected with lipofectamine
RNAiMAX transfection reagent (Thermo Fisher Scientific,
Waltham, USA). siRNA against mouse p62 (5′-CGAGGA
ATTGACAATGGCCAT-3′) and scramble control siRNA
(5′-UUCUCCGAACGUGUCACGUTT-3′) were purchased
from Cell Signaling Technology (Beverly, MA, USA), and
Keap1 overexpression plasmid (5′-AGTGGCGAATGATC
ACAGCAAT-3′) and random control plasmid (5′-ACGU
GACACGUUCGGAGAATT-3′) were designed and con-
structed by GenePharma (Shanghai, China). Briefly, on
reaching 50% confluency, 10μL lipofectamine and 5μg
siRNA/plasmid were mixed for 20min, followed by incuba-
tion with neurons for 6 h at 37°C. Thereafter, neurons were
washed with PBS and cultured in culture media for 48h
and exposed to respective treatment. The transfection effi-
ciency was examined via Western blot analysis 48 h after
transfection.

2.15. Statistical Analysis. Data were presented as mean
values with standard deviations. All experiments were per-
formed with 5 independent repeats carried out in different
cultures. Group differences were assessed with paired two-
tailed Student’s t-test or one-way ANOVA, followed by post
hoc Tukey testing. All analyses were performed using SPSS
version 13.0, and p ≤ 0:05 was considered 95% confidence
limits as a significant difference.

3. Results

3.1. TNF-α Induced p-Tau Accumulation in Hippocampal
Neurons in a Concentration- and Time-Related Manner. To
mimic in vivo neuroinflammation, we treated primary
mouse hippocampal neurons with different concentrations
of inflammation mediator TNF-α (10, 20, 40, 80, and
160 ng/mL) for 4 h. By Western blot analysis, we found that
TNF-α (10~80 ng/mL) had minor effect on Tau protein
expression, which was reduced by 160ng/mL TNF-α
(Figure 1(a)). In addition, we found that 20~80 ng/mL
TNF-α induced the amount of p-Tau, which was also inhib-
ited by 160ng/mL TNF-α (Figure 1(a)). Next, we treated
neurons with 20 ng/mL TNF-α for different durations (1, 2,
4, and 8h), and showed that although TNF-α (1~8h) had
no effect on Tau protein expression, 4- and 8-h treatment
induced its phosphorylation status (Figure 1(b)). We also
examined the effect of TNF-α on neuron viability and
showed that 10, 20, 40, and 80ng/mL TNF-α treatment for
4 h had minor effect on neuron viability, which was greatly
reduced by 160ng/mL TNF-α (Figure 1(c)). In addition,
we showed that treatment of neurons with 20ng/mL TNF-
α for different durations (1, 2, 4, and 8h) did not affect cell
viability (Figure 1(c)). We postulated the reduced expression
and phosphorylation of Tau after 160ng/mL TNF-α expo-
sure was due to suppress cell viability. Thereafter, 20 ng/
mL TNF-α incubation for 4 h was considered an optimal
stimulus to induce p-Tau without affecting neuron viability
and was applied in the following experiments.
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3.2. Propofol Pretreatment Concentration Dependently
Prevented TNF-α-Induced p-Tau Accumulation in
Hippocampal Neurons. To mimic clinical administration of
propofol, and to exam the effect of propofol on p-Tau accu-
mulation, we incubated hippocampal neurons with different
concentrations (1, 5, 10, 25, 50, and 100μM) of propofol or
0.1% DMSO for 1 h, followed by TNF-α treatment (20 ng/
mL, 4 h). Please note that this concentration range covers
plasma concentrations of propofol during general anesthe-
sia and sedation in clinical practice. As shown in
Figure 2(a), we indicate that both propofol and DMSO
had no effect on Tau protein expression. However, 25, 50,
and 100μM propofol attenuated TNF-α-induced p-Tau
accumulation, which was not affected by DMSO. In addi-
tion, we observed the effect of propofol or DMSO alone
in neurons and revealed they had no effect on basal status
of Tau protein expression (Figure 2(b)). Interestingly, we
detected 100μM propofol reduced p-Tau accumulation,
while DMSO had no such effect (Figure 2(b)). We also
reported that neither propofol nor DMSO affected neuron
viability (Figure 2(c)). Accordingly, we believed that the
effect of propofol was independent of its solvent DMSO
and thereafter further investigated detailed mechanisms

for 25 and 100μM propofol-regulated p-Tau accumulation
in hippocampal neurons.

3.3. The Effect of TNF-α and Propofol on Mitophagy, ROS,
NLRP3 Inflammasome, and GSK3β/PP2A in Hippocampal
Neurons. Recently, a large body of evidence implied the cor-
relation between NLRP3 inflammasome activation and Tau
phosphorylation, which relies on the balance between
kinases (GSK3β and PKA) and phosphatase (PP2A) activity
[22–24]. As such, we examined the effect of TNF-α and pro-
pofol on the activation of NLRP3 inflammasome, GSK3β,
PKA, and PP2A. In this in vitro study, NLRP3 inflamma-
some activation was evaluated by measuring NLRP3 expres-
sion, cleavage of pro-caspase-1, and release of matured IL-lβ
and IL-18. As shown in Figure 3, we demonstrate that TNF-
α (20 ng/mL, 4 h) increased NLRP3 expression (Figure 3(a)),
induced the cleavage of pro-caspase-1 (Figure 3(b)), and
increased matured IL-lβ and IL-18 release (Figure 3(c)),
which were all attenuated by 25μM propofol pretreatment
(Figure 3). Besides, we identified that TNF-α (20 ng/mL,
4 h) increased the phosphorylation of GSK3β (Figure 4(a))
and PKA (Figure 4(b)), while reduced PP2A phosphoryla-
tion (Figure 4(c)). Although 25μM propofol did not affect
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Figure 1: The effect of TNF-α on p-Tau accumulation and cell viability in mouse hippocampal neurons. (a) TNF-α treatment for 4 h
induced p-Tau in a concentration-dependent manner. The upper panel was a representative experiment, and the lower panel was the
summary of densitometric data from 5 separate experiments. GAPDH served as loading control. Data were expressed as normalized
ratio of protein band density of Tau or p-Tau against GAPDH and were presented as mean± standard deviation. (b) 20 ng/mL TNF-α
induced p-Tau in a time-dependent manner. (c) The effect of TNF-α treatment on cell viability. Data were expressed as the percentage
of absorbance of treated neurons compared with control neurons.
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TNF-α-modulated PKA phosphorylation (Figure 4(b)), it
ameliorated GSK3β phosphorylation and increased PP2A
phosphorylation (Figures 4(a) and 4(c)). In addition, com-
pared with control neurons, 25μM propofol alone did not
affect NLRP3 expression, pro-caspase-1 cleavage, or matured
IL-lβ/IL-18 release, while 100μM propofol marked reduced
NLRP3 expression and pro-caspase-1 cleavage (Figures 3(a)
and 3(b)). In consistence, 25μM propofol alone had no sig-
nificant effect on the phosphorylation of GSK3β, PKA, or
PP2A; however, 100μM propofol decreased GSK3β phos-
phorylation and increased PP2A phosphorylation (Figure 4).

Furthermore, it has been suggested that abnormal mitoph-
agy and resultant ROS dysregulation serve as an important
mediator for NLRP3 inflammasome activation [22–24]. So,
we examined the effect of TNF-α and propofol on mitoph-
agy and ROS balance. As shown in Figure 5, we show that
TNF-α (20 ng/mL, 4 h) inhibited the extent of mitophagy
(Figure 5(a)), disrupted MMP values (Figure 5(b)), and
induced intracellular ROS (Figure 5(c)) as well as mitochon-
drial ROS (Figure 5(d)). And all these effects were amelio-

rated by 25μM propofol pretreatment (Figure 5). Please
note that 25μM propofol alone did not affect mitophagy
or ROS. While interestingly, we discovered that compared
with control neurons, 100μM propofol had no effect on
mitophagy (Figures 5(a) and 5(b)), but it reduced intracellu-
lar ROS (Figure 5(c)) and mitochondrial ROS (Figure 5(d))
to a lower extent than the basic levels.

To confirm the role of ROS, NLRP3 inflammasome,
GSK3β, and PP2A in modulating p-Tau accumulation, we
pretreated neurons with specific inhibitors or activators. As
shown in Figure 6(a), TNF-α-induced p-Tau accumulation
is attenuated by 40μM ebselen (a ROS scavenger), 1μM
YQ128 (a NLRP3 inhibitor), 10μM SB216763 (a GSK3β
inhibitor), and 1μMPP2A activator. In addition, we revealed
that 40μM ebselen inhibited TNF-α-induced activation of
NLRP3 inflammasome (Figure 3). It also ameliorated TNF-
α-mediated phosphorylation of GSK3β (Figure 4(a)) and
PP2A (Figure 4(c)). Consistently, 1μM YQ128 reduced
GSK3β phosphorylation (Figure 4(a)), while induced PP2A
phosphorylation (Figure 4(c)). Summarized from above data,
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Figure 2: The effect of propofol on p-Tau accumulation and cell viability in mouse hippocampal neurons. (a) Propofol reduced p-Tau in
hippocampal neurons exposed to TNF-α (20 ng/mL, 4 h). The upper panel was a representative experiment, and the lower panel was the
summary of densitometric data from 5 separate experiments. GAPDH served as loading control. Data were expressed as normalized
ratio of protein band density of Tau or p-Tau against GAPDH and were presented as mean± standard deviation. (b) The effect of
propofol on p-Tau in untreated hippocampal neurons. (c) The effect of propofol on neuron viability. Data were expressed as the
percentage of absorbance of treated neurons compared with untreated control neurons.
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we believed ROS functioned upstream of NLRP3 inflamma-
some, which modulates GSK3β and PP2A phosphorylation,
leading to p-Tau accumulation.

3.4. The Effect and Mechanism of Propofol on Antioxidant
Enzyme Expression. As shown in Figure 2(b), we report that
compared with untreated neurons, 100μM propofol reduced
basic levels of p-Tau. In addition, 100μM propofol reduced
ROS (Figures 5(c) and 5(d)) without affecting the extent of
mitophagy (Figures 5(a) and 5(b)). The underlying mecha-
nism of how ROS was reduced was of great interest. It is
known that cellular ROS homeostasis is modulated by their
synthesis and their scavenging through the antioxidant
machinery with SOD, HO-1, and NQO1 acting as major
antioxidants in CNS [25]. We found that 25μM propofol
alone had no effect on the expression of SOD and HO-1,
which was markedly induced by 100μM propofol
(Figure 7(a) left and 7a middle). In contrast, 25μM and

100μM propofol had no effect on NQO1 expression
(Figure 7(a) right).

Previous findings implied p62/Keap1/Nrf2 pathway as a
key mechanism for SOD and HO-1 expression [26, 27]. Our
data demonstrated that 25μM propofol did not affect the
expression of p62 (Figure 7(b) left) or Keap1 (Figure 7(b)
middle), and did not affect the nuclear translocation of
Nrf2 (Figure 7(b) right). However, 100μM propofol induced
p62 (Figure 7(b) left), reduced Keap1 expression (Figure 7(b)
middle), and triggered the nuclear translocation of Nrf2
(Figure 7(b) right). More importantly, we found that
100μM propofol-induced SOD and HO-1 expression was
mitigated by blocking p62 expression through p62 siRNA,
by enhancing Keap1 expression through Keap1 overexpres-
sion, and by 10μM ML385 (Nrf2 inhibitor) treatment
(Figure 7(c)), suggesting the critical role of p62, Keap1 and
Nrf2. Consistently, 100μM propofol-modulated ROS and
p-Tau accumulation was abolished by p62 knockdown,
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Figure 3: The effect of TNF-α and propofol on NLRP3 inflammasome activation. (a) The effect of TNF-α and propofol on NLRP3 protein
expression. The upper panel was a representative experiment, and the lower panel was the summary of densitometric data from 5 separate
experiments. GAPDH served as loading control. Data were expressed as normalized ratio of protein band density of NLRP3 against
GAPDH and were presented as mean± standard deviation. (b) The effect of TNF-α and propofol on pro-caspase-1 cleavage. (c) The
effect of TNF-α and propofol on the release of matured IL-lβ (left) and IL-18 (right). Data were expressed as mean± standard deviation,
and pg/mL served as unit.
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Keap1 overexpression, and ML385 treatment (Figures 5(c)
and 5(d) and 6(b)). The efficiency of p62 knockdown and
Keap1 overexpression was demonstrated by immunostaining
(Figure 7(d)).

4. Discussion

In the present study, we investigated the effect and mecha-
nism of inflammation mediator TNF-α and anesthetic agent
propofol on p-Tau accumulation in mouse hippocampal
neurons. Our data implied that TNF-α may induce p-Tau
accumulation via inhibiting mitophagy, inducing ROS,
which modulated NLRP3 and GSK3β/PP2A activity. More
meaningfully, we proved that propofol may inhibit p-Tau
accumulation through modulating mitophagy, ROS, and
related events, and through enhancing SOD and HO-1
expression via p62/Keap1/Nrf2 signal pathway.

Tau is a microtubule-associated protein that is predom-
inantly expressed in the brain. In healthy neurons, Tau is
almost exclusively located in the axon and is closely associ-
ated with the proper functioning of the cytoskeletal network
in terms of microtubule assembly. Under normal conditions,
Tau contributes to maintain neuronal functions such as
transport of mRNA and proteins along the axons, microtu-
bule stabilization, actin reorganization, and synaptic activity
as well as neurite extension. In contrast, Tau pathology may
cause neurofibrillary tangles and neuronal dysfunction,
which are closely correlated with neurodegenerative disor-
ders [5, 28]. Besides protein expression level, posttransla-
tional modifications of Tau, such as phosphorylation,
nitration, ubiquitination, truncation, glycosylation, and
isomerization, are proved to influence its function [28]. Dur-
ing the past decades, increasing evidence indicated that
abnormally phosphorylated Tau plays a critical role during
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Figure 4: The effect of TNF-α and propofol on kinase/phosphatase phosphorylation. (a) The effect of TNF-α and propofol on the expression
and phosphorylation of GSK3β. The upper panel was a representative experiment and the lower panel was the summary of densitometric
data from 5 separate experiments. GAPDH served as loading control. Data were expressed as normalized ratio of protein band density of
phosphorylated GSK3β against GSK3β, which was normalized with GAPDH, and were presented as mean± standard deviation. (b) The
effect of TNF-α and propofol on the expression and phosphorylation of PKA. (c) The effect of TNF-α and propofol on the expression
and phosphorylation of PP2A.
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Figure 5: The effect of TNF-α and propofol on mitophagy and ROS. (a) The effect of TNF-α and propofol on the extent of mitophagy. Data
were expressed as mean± standard deviation of fluorescence intensity of mitophagy dye staining. (b) The effect of TNF-α and propofol on
MMP values. Data were expressed as mean± standard deviation of fluorescence intensity of Rh123 staining. (c) The effect of TNF-α and
propofol on intracellular ROS. p62 siRNA, Keap1 overexpression plasmid, and Nrf2 inhibitor were used to modulate p62/Keap1/Nrf2
pathway. The data were recorded as folds of increased fluorescence intensity in treated neurons compared with that of untreated
neurons. (d) The effect of TNF-α and propofol on mitochondrial ROS. Data were recorded as folds of increased fluorescence intensity in
treated neurons compared with that of untreated neurons.
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the development of AD in animal studies and clinical trials
[9, 21, 28]. Although systematic inflammation and neuroin-
flammation are widely accepted as a central process to the
pathogenesis of neurodegenerative disorders [1–3], detailed
mechanism is far from clear. Here, in the present, in vitro
study, we treated mouse hippocampal neurons with inflam-
mation mediator TNF-α to mimic in vivo neuroinflamma-
tion status and proved that TNF-α may induce the
accumulation of p-Tau in neurons (Figure 1(a)). Our data
at least provide a potential linkage between inflammation
and neuron dysfunction, and this needs to be further studied
in animal models. In addition, we reported that TNF-α-
induced accumulation of p-Tau was attenuated by propofol
pretreatment (Figure 2(a)), and one of the astonishing
findings of our study is that propofol, within clinically
achieved concentrations, may reduce the basic level of p-
Tau (Figure 2(b)). Although whether propofol exerts benefi-
cial or detrimental effects to CNS in the clinical practice is
debatable [29–31], a large body of in vitro evidence from
us and other researchers proved the anti-inflammation and
neuro-protective property of propofol [16–19]. The current
findings implied a novel research field to the neuro-
protective effect of propofol and more importantly provided
a novel target for the protection of neurons and neurodegen-
erative disorders against inflammation.

The phosphorylation status of Tau relies on the balance
between kinases (including but not limited to glycogen syn-
thase kinase, cyclin-dependent kinase, mitogen-activated
protein kinase, and microtubule affinity regulating kinase)
that phosphorylate it and one major phosphatase (PP2A)
that dephosphorylates it [32]. It is noted that different
kinases are responsible for the hyperphosphorylation of

Tau protein in response to various stimuli. For example,
ischemia/reperfusion injury induced Tau phosphorylation
through cyclin-dependent kinase 5 (CDK5) [33]; sleep
disturbances-associated Tau phosphorylation was mediated
via p38 mitogen-activated protein kinase (p38MAPK) [34];
virus infection enhanced Tau phosphorylation by double-
stranded RNA-dependent protein kinase [35]; sepsis trig-
gered Tau phosphorylation through GSK-3β [36]; and metal
dysregulation activated rapamycin/ribosomal S6 protein
kinase and thus caused Tau phosphorylation [37]. In a pre-
vious study, streptozotocin was intracranially injected into
the rats to induce neuroinflammation, and it was revealed
that plasma TNF-α release was increased and p-Tau was
induced by GSK-3β in the hippocampus area [38]. Consis-
tently, a recent animal study carried out in mice demon-
strated chronic systemic exposure to lipopolysaccharide
caused neuroinflammation by promoting TNF-α release
and triggered Tau hyperphosphorylation through activating
GSK-3β [39]. In addition to GSK-3β, the role of protein
kinase A (PKA) in hippocampus Tau phosphorylation and
neuroinflammation-related cognitive deficits has been con-
firmed in animal AD models [40, 41]. Since we focused on
inflammation-induced Tau phosphorylation in the current
study, we only examined GSK-3β and PKA and proved that
both were activated by TNF-α (Figure 4). However, our data
implied that propofol only modulated GSK-3β activation
(Figure 4). In addition, we examined phosphatase PP2A
and showed that TNF-α inhibited PP2A activity, which
was induced by propofol (Figure 4). In consistence, we
showed that TNF-α-induced p-Tau accumulation was atten-
uated by propofol, GSK-3β inhibitor, and PP2A activator
(Figure 6). Taken together, we inferred that the effect of
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Figure 6: The effect of specific signal modulators on p-Tau accumulation in hippocampal neurons. The upper panel was a representative
experiment and the lower panel was the summary of densitometric data from 5 separate experiments. GAPDH served as loading control.
Data were expressed as normalized ratio of protein band density of Tau or p-Tau against GAPDH and were presented as mean
± standard deviation. (a) The effect of TNF-α, propofol, ROS scavenger, NLRP3 inhibitor, GSK3β inhibitor, and PP2A activator. (b) The
effect of propofol and p62/Keap1/Nrf2 pathway regulators: p62 siRNA, Keap1 overexpression plasmid, and Nrf2 inhibitor.
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Figure 7: Continued.
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propofol on p-Tau accumulation was mediated through
modulating kinase (GSK-3β) and phosphatase (PP2A)
simultaneously.

Inflammasome is a type of cytosolic multiprotein com-
plex and plays a crucial role in innate immunity. Among
reported inflammasomes, NLRP3 inflammasome is the most
studied. More and more experimental evidence showed that
the activation of NLRP3 inflammasome is closely related to
neurodegenerative diseases [22]. Recently, the role of NLRP3
inflammasome in tauopathy-induced neurodegeneration
attracts extensive attention [24]. It was published that tauo-
pathy (Tau hyperphosphorylation) and neurodegeneration
(hippocampal atrophy) were decreased in the NLRP3-
deficient mice compared with wild type mice, implying its
critical role [42]. However, how NLRP3 inflammasome
modulates Tau phosphorylation is far from clear. It was
shown that GSK-3β activity was reduced, while PP2A activ-
ity was increased in NLRP3 knockout mice [24]. This study
also revealed that the kinase activity of CDK5 and
p38MAPK remained unchanged in NLRP3 knockout mice
[24]. Consistently, it was recognized that GSK-3β and
PP2A were subject to NLRP3 inflammasome activation
and were responsible for regulating Tau protein phosphory-
lation in neuronal cells [43]. Combined with our findings
that propofol inhibited TNF-α-modulated NLRP3 inflam-
masome activation and GSK-3β/PP2A activity (Figure 4)
as well as Tau phosphorylation (Figure 6), we believed that
the beneficial effects of propofol on p-Tau accumulation
were via inhibiting NLRP3 inflammasome-mediated GSK-
3β/PP2A activity.

NLRP3 inflammasome activation generally requires two
steps: priming and protein complex assembly. Priming is
triggered by pattern recognition receptor signals, leading to
transcriptional activation of NLRP3 inflammasome compo-
nents. Protein complex assembly is correlated with NLRP3
inflammasome activation, leading to inflammatory response
through caspase-1 activation and inflammatory cytokine IL-
1β maturation and secretion. Although a variety of external
or host-derived stimuli, such as mitochondrial dysfunction,

ion flux, and lysosomal damage are involved in the activa-
tion of NLRP3 inflammasome [43], recent studies focused
on mitochondrial autophagy and subsequent oxidative stress
[44–46]. It was reported that in intracerebral hemorrhage
brain injury model, ROS was elevated, and NLRP3 inflam-
masome pathway was activated [47]. It also reported that
ROS scavenger may inhibit NLRP3 inflammatory response
and alleviate brain injury [47]. Another study proved during
ischemia/reperfusion injury, mitochondria malfunction
caused ROS accumulation and stimulated NLRP3 inflamma-
some activation [48]. In addition, it was shown that increased
ROS, which is duo to impaired mitophagy, contributed to
NLRP3 inflammasome signaling activation in neurodegener-
ative diseases [49, 50]. Here in this study, our data also sug-
gested a correlation between mitophagy, ROS, and NLRP3
inflammasome activation after TNF-α treatment (Figures 3
and 5). Based on the findings that propofol and ROS scaven-
ger could reduce intracellular ROS and NLRP3 inflamma-
some activation (Figures 3 and 5), we concluded that ROS
was indispensable for NLRP3 inflammasome activation.

In general, we deduced from this in vitro study that
TNF-α impaired neuron mitophagy, caused excessive oxida-
tive stress, which activated NLRP3 inflammasome, resulting
in dysregulation of GSK-3β/PP2A activity and advanced p-
Tau accumulation. Further, we believed that propofol may
decrease p-Tau accumulation via enhancing mitophagy,
reducing oxidative stress and subsequent events. Neverthe-
less, we discovered an interesting phenomenon that relative
high concentration of propofol (100μM) reduced basic level
of p-Tau (Figure 2(a)). It also modulated GSK-3β/PP2A
phosphorylation (Figure 4), NLRP3 inflammasome activity
(Figure 3), and ROS (Figures 5(c) and 5(d)). However,
100μM propofol had no significant effect on mitophagy
(Figures 5(a) and 5(b)). The potential mechanisms for
reduced ROS in this scenario deserve investigations.

It is recognized that the cellular ROS homeostasis is
modulated by their synthesis, mainly through NADPH oxi-
dase complex, and their scavenging through the antioxidant
machinery with glutathione and ascorbate acting as major

p62 64 kDa Keap1

36 kDa

70 kDa

36 kDaGAPDH GAPDH

Control siRNA Control plasmidp62 siRNA Keap1 plasmid

(d)

Figure 7: The effect and mechanism of propofol on antioxidant enzyme expression. (a) Left: SOD; middle: HO-1; and right: NQO1. The
upper panel was a representative experiment, and the lower panel was the summary of densitometric data from 5 separate experiments.
GAPDH served as loading control. Data were expressed as normalized ratio of protein band density of SOD, HO-1, or NQO1 against
GAPDH and were presented as mean± standard deviation. (b) Left: p62; middle: Keap1; and right: Nrf2. The upper panel was a
representative experiment, and the lower panel was the summary of densitometric data from 5 separate experiments. GAPDH served as
loading control for p62, Keap1, and cytosolic Nrf2. Histone H3 served as loading control for nuclear Nrf2. Data were expressed as
normalized ratio of protein band density of p62, Keap1, or Nrf2 against loading control and were presented as mean± standard
deviation. (c) The effect of p62/Keap1/Nrf2 pathway regulators on antioxidant enzyme expression. Left: SOD; middle: HO-1; and right:
NQO1. The upper panel was a representative experiment, and the lower panel was the summary of densitometric data from 5 separate
experiments. GAPDH served as loading control. (d) The siRNA and plasmid transfection efficiency. Left: a representative
immunostaining of duplicate p62 siRNA and duplicate scramble siRNA transfection. Right: a representative immunostaining of duplicate
Keap1 plasmid and duplicate control plasmid transfection.
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antioxidants. Among multiple antioxidant enzymes, SOD,
HO-1, and NQO1 were extensively studied in hippocampal
neurons and neurological disorders [25, 51–54]. SOD is a
group of metal-containing enzymes that catalyze the dismu-
tation of superoxide radicals to molecular oxygen and
hydrogen peroxide, providing cellular defense against reac-
tive oxygen species. It was reported that sinomenine may
improve hippocampal and cognitive dysfunction through
modulating SOD activity and ROS, while it was also sug-
gested that catalase, glutathione reductase, glutathione per-
oxidase, and myeloperoxidase were not involved [55]. HO-
1 is a cytoprotective enzyme that catalyzes the degradation
of heme to carbon monoxide, iron, and biliverdin, and its
induction has been regarded as an adaptive cellular response
against inflammatory response and oxidative injury. It was
reported that increased expression of HO-1 was correlated
with less intracellular ROS and improved neuronal and neu-
rological function in mice [56]. NQO1 is a cytosolic enzyme
which catalyzes the reduction of quinones and a wide variety
of other compounds. It is often upregulated in response to
cellular stress, and it has a role in minimizing free radical
load within cells. Previous study showed that increased
NQO-1 activation was correlated with less ROS and
improved cell viability in hippocampal neuronal cells [57].
Animal study also proved that upregulated NQO-1 expres-
sion was correlated with reduced oxidative stress and
improved neurological status in rats following traumatic
brain injury [58]. Here in the present study, we demon-
strated that SOD and HO-1 expression were induced by
100μM propofol; however, we did not detect modulation
of NQO-1 (Figure 7).

Speaking of the molecular mechanisms for antioxidant
enzyme activation in CNS, plenty of data pointed to p62/
Keap1/Nrf2 pathway [51, 56, 58]. It is believed that p62
aggregation leads to Keap1 degradation by autophagosomes.
Under normal conditions, Keap1 functions as an adapter
protein of the Cul3-ubiquitin E3 ligase complex responsible
for degrading Nrf2. Accordingly, increased p62 leaves Nrf2
free to transfer to the nucleus and binds to antioxidant-
responsive elements in the promoter of antioxidant
enzymes. We believed that p62/Keap1/Nrf2 pathway was
responsible for propofol-modulated SOD/HO-1 expression
and p-Tau accumulation, since p62 knockdown/Keap1 over-
expression/Nrf2 inhibitor almost completely blocked the
beneficial effects of propofol (Figure 7(c) and 6(b)).

We realized there are several issues that are unsolved in
this study and deserve further investigations. Firstly, it is
known that neuronal TNF-α receptor (TNFR), such as
TNFR-I and TNFR-II perform fundamentally different roles
in CNS pathology [59], while we did not examine which
receptor is responsible for TNF-α-induced p-Tau accumula-
tion in hippocampal neurons. Also, we did not investigate
whether propofol affects the expression and activation of
specific TNFR. The answer to these questions may reveal a
novel therapeutic target for tauopathy. Secondly, in this
study, in order to investigate the protective effects of propo-
fol, its exposure was 1 h ahead of TNF-α. While we did not
know whether propofol could reverse the accumulation of
p-Tau when the neurons have already been exposed to

TNF-α for a while, this needs to be revealed, and the results
may provide solid evidence for the beneficial property of
propofol in those patients who have been suffered from
neuroinflammation.

5. Conclusions

In conclusion, we testified that TNF-α may induce p-Tau
accumulation via inhibiting mitophagy, inducing ROS,
which modulated NLRP3 and GSK3β/PP2A activity. We
also proposed that propofol may inhibit p-Tau accumulation
through modulating mitophagy, ROS, and resultant events
and through enhancing SOD and HO-1 expression via
p62/Keap1/Nrf2 pathway.
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