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Abstract Fields as diverse as human genetics and sociology are increasingly using polygenic

scores based on genome-wide association studies (GWAS) for phenotypic prediction. However,

recent work has shown that polygenic scores have limited portability across groups of different

genetic ancestries, restricting the contexts in which they can be used reliably and potentially

creating serious inequities in future clinical applications. Using the UK Biobank data, we

demonstrate that even within a single ancestry group (i.e., when there are negligible differences in

linkage disequilibrium or in causal alleles frequencies), the prediction accuracy of polygenic scores

can depend on characteristics such as the socio-economic status, age or sex of the individuals in

which the GWAS and the prediction were conducted, as well as on the GWAS design. Our findings

highlight both the complexities of interpreting polygenic scores and underappreciated obstacles to

their broad use.

Introduction
Genome-wide association studies (GWAS) have now been conducted for thousands of human com-

plex traits, revealing that the genetic architecture is almost always highly polygenic, that is that the

bulk of the heritable variation is due to thousands of genetic variants, each with tiny marginal effects

(Boyle et al., 2017; Bulik-Sullivan et al., 2015). These findings make it difficult to interpret the

molecular basis for variation in a trait, but they lend themselves more immediately to another use:

phenotypic prediction. Under the assumption that alleles act additively, a ’polygenic score’ (PGS)

can be created by summing the effects of the alleles carried by an individual; this score can then be

used to predict that individual’s phenotype (Henderson, 1984; Meuwissen et al., 2001;

Kathiresan et al., 2008; Lynch and Walsh, 1998). For highly heritable traits, such scores already

provide informative predictions in some contexts: for example, prediction accuracies are 24.4% for

height (using R2 as a measure) (Yengo et al., 2018) and up to 13% for educational attainment (using

incremental R2) (Lee et al., 2018).

This genomic approach to phenotypic prediction has been rapidly adopted in three distinct fields.

In human genetics, PGS have been shown to help identify individuals that are more likely to be at

risk of diseases such as breast cancer and cardiovascular disease (Khera et al., 2018; Inouye et al.,

2018; Mavaddat et al., 2019; Khera et al., 2019). Based on these findings, a number of papers

have advocated that PGS be adopted in designing clinical studies, and by clinicians as additional risk

factors to consider in treating patients (Torkamani et al., 2018; Khera et al., 2018). In human evolu-

tionary genetics, several lines of evidence suggest that adaptation may often take the form of shifts

Mostafavi et al. eLife 2020;9:e48376. DOI: https://doi.org/10.7554/eLife.48376 1 of 52

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.48376
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


in the optimum of a polygenic phenotype and hence act jointly on the many variants that influence

the phenotype (Pritchard and Di Rienzo, 2010; Berg and Coop, 2014; Höllinger et al., 2019;

Sella and Barton, 2019). In this context, the goal is to test whether the set of variants that influence

a trait are rapidly evolving across populations or over time (Field et al., 2016; Berg et al., 2019;

Uricchio et al., 2019; Edge and Coop, 2019; Racimo et al., 2018; Berg and Coop, 2014). Finally,

in various disciplines of the social sciences, PGS are increasingly used to distinguish environmental

from genetic sources of variability (Conley, 2016), as well as to understand how genetic variation

among individuals may cause heterogeneous treatment effects when studying how an environmental

influence (e.g., a schooling reform) affects an outcome (such as BMI) (Barcellos et al., 2018;

Davies et al., 2018). In all these applications, the premise is that PGS will ‘port’ well across

groups—that is that they remain predictive not only in samples very similar to the ones in which the

GWAS was conducted, but also in other sets of individuals (henceforth ‘prediction sets’).

As recent papers have highlighted, however, PGS are not as predictive in individuals whose

genetic ancestry differs substantially from the ancestry of individuals in the original GWAS (reviewed

in Martin et al., 2019). As one illustration, PGS calculated in the UK Biobank predict phenotypes of

individuals sampled in the UK Biobank better than those of individuals sampled in the

BioBank Japan Project: for instance, the incremental R2 for height is approximately 11% in the UK

versus 3% in Japan (Martin et al., 2019). Similarly, using PGS based on Europeans and European-

Americans, the largest educational attainment GWAS to date (’EA3’) reported an incremental R2 of

10.6% for European-Americans but only 1.6% for African-Americans (Lee et al., 2018).

To date, such observations have been discussed mainly in terms of population genetic

factors that reduce portability (Martin et al., 2017; Kim et al., 2018; Duncan et al., 2018; De La

Vega and Bustamante, 2018; Sirugo et al., 2019; Martin et al., 2019). Notably, GWAS does not

pinpoint causal variants, but instead implicates a set of possible causal variants that lie in close physi-

cal proximity in the genome. The estimated effect of a given SNP depends on the extent of linkage

disequilibrium (LD) with the causal sites (Pritchard and Przeworski, 2001; Bulik-Sullivan et al.,

2015). LD differences between populations that arose from their distinct demographic and recombi-

nation histories will lead to variation in the estimated effect sizes and hence to variable

eLife digest Complex diseases like cancer and heart disease are caused by the interplay of

many factors: the variants of genes we inherit, the lifestyles we lead and the environments we

inhabit, plus the interaction of all these factors. In fact, almost every trait, even how many years we

will spend studying, is influenced both by our environment and our genes.

To identify some of the genetic factors at play, scientists perform analyses known as genome-

wide association studies, or GWAS for short. In these studies, the genomes from many different

people are scanned to look for genetic differences associated with differences in traits. By summing

up all the small genetic differences, so-called “polygenic scores” can be calculated. When there is a

large genetic component to a trait, polygenic scores can be useful predictive tools.

But there is a catch: polygenic scores make less accurate predictions for individuals of a different

ancestry than those involved in the GWAS, which limits the use of these tools around the world.

Mostafavi, Harpak et al. set out to understand if there are other factors in addition to ancestry that

could influence the performance of polygenic scores.

Using data from the UK Biobank, an international health resource that pairs genomic data and

clinical information, Mostafavi, Harpak et al. examined polygenic scores among individuals that

share a single, common ancestry. These polygenic scores were used to predict three traits (blood

pressure, body mass index and educational attainment) in individuals and the predictions were then

compared to the actual trait values to see how accurate they were. The analysis revealed that even

within a group of people with similar ancestry, the accuracy of polygenic scores can vary, depending

on characteristics such as the sex, age or socioeconomic status of the individuals.

This analysis emphasises how variable GWAS and their predictive value can be even within

seemingly similar population groups. It further highlights both the complexities of interpreting

polygenic scores and underappreciated obstacles to their broad use in medical and social sciences.
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phenotypic prediction accuracies (Rosenberg et al., 2019). Populations will also differ in the allele

frequencies of causal variants. This problem is particularly acute for alleles that are rare in the popu-

lation in which the GWAS was conducted but common in the population in which the trait is being

predicted. Such variants are likely to have noisy effect size estimates in the estimation sample or

may not be included in the PGS at all, and yet they contribute substantially to heritability in the tar-

get population. Furthermore, causal loci or effect sizes may differ among populations, for instance if

the effect of an allele depends on the genetic background on which it arises (e.g., Adhikari et al.,

2019). For all these reasons, we should expect PGS to be less predictive across ancestries.

In practice, given that most individuals (about 80%) included in current GWAS are of European

ancestry (Popejoy and Fullerton, 2016; Martin et al., 2019), PGS are systematically more predictive

in European-ancestry individuals than among other people. As a consequence, the clinical applica-

tions and scientific understanding to be gained from PGS will predominantly and unfairly benefit a

small subset of humanity. A number of papers have therefore highlighted the importance of expand-

ing GWAS efforts to include more diverse ancestries (Martin et al., 2018; Bien et al., 2019;

Wojcik et al., 2019; Martin et al., 2019; Sirugo et al., 2019).

Importantly, factors other than ancestry could also impact the accuracy and portability of PGS.

For example, the educational attainment of an individual depends not only on their own genotype,

but on the genotypes of their parents, due to nurturing effects (Kong et al., 2018), and of their

peers, due to social genetic effects (Domingue et al., 2018), and of course on non-genetic factors.

Also, traits such as height and educational attainment show strong patterns of assortative mating,

which can distort effect size estimates in GWAS (Domingue et al., 2014; Robinson et al., 2017;

Ruby et al., 2018). To what extent these effects remain the same across cultures and environments

is unknown, but if they differ, so will the prediction accuracy. More generally, while we still know lit-

tle about genotype-environment interactions (GxE) in humans, they are well-documented in other

species—notably in experimental settings—and would further reduce the portability of PGS across

environments (Gibson, 2008; Tropf et al., 2017; Mills and Rahal, 2019; Lynch and Walsh, 1998).

In addition, the extent of environmental variability could differ between GWAS and prediction

groups, which would change the proportion of the variance in the trait explained by a PGS (i.e., the

prediction accuracy). PGS for some traits may also include a component of environmental or cultural

confounding with population structure (Sohail et al., 2019; Haworth et al., 2019; Lawson et al.,

2020; Kerminen et al., 2018; Berg et al., 2019); this source of confounding can increase or

decrease prediction accuracy, depending on the structure in the prediction samples.

Given these considerations, it is important to ask to what extent PGS are portable among groups

within the same ancestry. To explore this question, we stratified the subset of UK Biobank samples

designated as ‘White British’ (WB) according to some of the standard sample characteristics of

GWAS studies: the ages of the individuals, their sex, and socio-economic status. We chose to focus

on these particular characteristics because they vary among GWAS samples depending on sample

ascertainment procedures. Furthermore, these characteristics have been shown to influence herita-

bility for some traits in a study of a subset of the UK Biobank (Ge et al., 2017), raising the possibility

that these choices also influence prediction accuracy. Indeed, for three example traits, we show that

there exist major differences in the prediction accuracy of the PGS among these groups, even

though they share highly similar genetic ancestries. We further demonstrate for a variety of

traits that prediction accuracy differs markedly depending on whether the GWAS is conducted in

unrelated individuals or in pairs of siblings, even when controlling for the precision of the estimates.

This finding is again unexpected under standard GWAS assumptions; it underscores the importance

of genetic effects that are included in estimates from some study designs and not others and high-

lights underappreciated challenges with GWAS-based phenotypic prediction.

At present, it is difficult to determine the reasons why we see such variable prediction

accuracy across these strata and study designs. Contributing factors probably include indirect

genetic effects from relatives, assortative mating, varying levels of genetic and environmental vari-

ance, GxE interaction effects and perhaps undetected confounding. Nonetheless, our results make

clear that the prediction accuracy of PGS can be affected in unpredictable ways by known—and pre-

sumably unknown—factors in addition to genetic ancestry.
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Results

Sample characteristics of the GWAS and prediction set can influence
prediction accuracy even within a single ancestry
We examined how PGS for a few example traits port across samples that are of similar genetic

ancestry but differ in terms of some common study characteristics, such as the male:female ratio

(henceforth ‘sex ratio’), age distribution, or socio-economic status (SES). To this end, we limited our

analysis to the largest subset of individuals in the UKB with a relatively homogeneous ancestry:

337,536 unrelated individuals that were characterized by the UKB, based on self-reported

ethnicities as well as genetic analysis, as ‘White British’ (WB) (Bycroft et al., 2018). In all analyses,

we further adjusted for the first 20 principal components of the genotype data, to account for popu-

lation structure within this set of individuals (Materials and methods).

In all analyses, we randomly selected a subset of individuals to be the prediction set; we then con-

ducted GWAS using the remaining individuals and built a PGS model by LD-based clumping of the

associations (Materials and methods). To examine the reliability of the prediction, we considered the

incremental R2, that is the R2 increment obtained when adding the PGS to a model with other covari-

ates (referred to as ’prediction accuracy’ henceforth). Whether this measure is appropriate depends

on how PGS are to be used; it is not always the most obvious choice in human genetics, where the

goal is often to identify individuals at high risk of developing a particular disease (i.e., in the tail of

the polygenic score distribution). Nonetheless, because it has been widely reported in discussions of

portability across genetic ancestries (e.g., Lee et al., 2018; Martin et al., 2019), we also used it

here; later, we also present some results on binary traits using incremental area under the receiver

operator curve (AUC).

As a first case, we considered the prediction accuracy of a PGS for diastolic blood pressure in

prediction sets stratified by sex, motivated by reports that variation in this trait may arise for some-

what distinct reasons in the two sexes (Reckelhoff, 2001; Zhou et al., 2017). We randomly selected

males and females as prediction sets (20K individuals each), and used a subset of the rest of the indi-

viduals for GWAS, matching the numbers of females and males in the GWAS set (total sample

size 122,774); we refer to this mixed set, somewhat loosely, as the ’diverse GWAS.’ Adjusting for

mean sex effects and medication use (see Materials and methods), the prediction accuracy is

about 1.15-fold higher for females than for males (Mann-Whitney p ¼ 1:1 � 10�5; Figure 1A). Thus,

despite equal representation of males and females in the GWAS set, the prediction accuracy varies

depending on the sex ratio of prediction samples. To examine this further, we repeated the same

analysis but performed the GWAS in only one sex (which we refer to as ’stratified GWAS’ using the

same sample size as in the diverse GWAS). [Note that the diverse GWAS sample is not a merge of

the stratified GWAS samples but a mixed-sex sample of equal sample size to that used in the

women-only and the men-only GWAS, to allow for direct comparison between GWASs. Results for

the merged GWAS (with a much larger sample size) are presented in Appendix 1—figure

1A.] When the GWAS is conducted only in females, the prediction accuracy is about 1.35-fold higher

for females than for males; in turn, when GWAS was done in only males, the prediction accuracy in

both sexes is similar, as well as somewhat decreased (Figure 1A).

We then considered two other cases, evaluating prediction accuracy in groups stratified by age

for BMI—since the UK Biobank participants were enrolled within about a five-year span, differences

in age could in principle also be reflective of cohort effects—and by adult SES for years of schooling,

using the Townsend deprivation index as a measure; our choices were motivated by prior evidence

suggesting that these characteristics of the GWAS influence estimates of SNP-heritability

(Branigan et al., 2013; Conley et al., 2015; Belsky et al., 2018; Elks et al., 2012; Ge et al., 2017).

We withheld a random set of 10K individuals in each quartile of age and SES for prediction and per-

formed GWAS using a subset of the remaining individuals, matching the sample sizes across quar-

tiles in the GWAS set (total sample sizes of 72,328 and 73,280 for BMI and years of schooling

GWAS, respectively). Similar to our observation for diastolic blood pressure, the prediction accuracy

varies across prediction sets: it is 1.4-fold higher for BMI in the youngest quartile compared to the

oldest (Mann-Whitney p ¼ 1:1 � 10�5; Figure 1B), and 2-fold higher for years of schooling in the low-

est SES quartile compared to the highest (Mann-Whitney p ¼ 2:9 � 10�6; Figure 1C). Furthermore,

the differences across groups are again sensitive to the choice of the GWAS set: the differences are
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Figure 1. Variable prediction accuracy of polygenic scores within an ancestry group. Shown are incremental R2 values (i.e., the increment in R2 obtained

by adding a polygenic score predictor to a model with covariates alone) in different prediction sets. Each box and whiskers plot is computed based on

20 iterations of resampling GWAS and prediction sets. Thick horizontal lines denote the medians. The polygenic scores were estimated in samples of

unrelated WB individuals. Phenotypes were then predicted in distinct samples of unrelated WB individuals, stratified by sex (A), age (B) or Townsend

deprivation index, a measure of SES (C). In red and green cases, polygenic scores are based on a GWAS in a sample limited to one sex, age or SES

group (a ’stratum’). In blue, polygenic scores are based on a GWAS in a diverse sample matching the number of individuals in each stratum. GWAS

samples sizes are: 122,774 for all three diastolic blood pressure GWAS samples, 72,328 for all three BMI GWAS samples, 73,280 for years of schooling

GWAS in the diverse sample and 73,283 for GWAS in the low SES and high SES samples.
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marked when GWAS is restricted to the youngest quartile for BMI and the lowest SES quartile for

years of schooling, but diminished when the GWAS is performed in the oldest and the highest SES

quartiles for BMI and years of schooling, respectively (Figure 1B, C). These results remained qualita-

tively unchanged when we used R2 instead of incremental R2 to measure prediction accuracy

(Appendix 1—figure 2).

In these analyses, we used a p-value threshold of 10-4 for inclusion of a SNP in the PGS.

The choice of how stringent to make the GWAS p-value threshold is important but somewhat arbi-

trary, with approaches ranging from requiring genome-wide significance to including all SNPs

(Weedon et al., 2008; Pharoah et al., 2008; Euesden et al., 2015; Vilhjálmsson et al., 2015;

Ware et al., 2017; Mostafavi et al., 2017; Speidel et al., 2019). Often, this threshold is chosen to

maximize prediction accuracy in an independent validation set. When the goal is to compare predic-

tion performance across different groups, there is no obvious optimal choice of the p-value

threshold. [The optimal p-value in this context will differ across studies, as it depends not only on

the genetic architecture and heritability of the trait, but also on the GWAS sample size, that is power

(Dudbridge, 2013).] As we show, however, the qualitative trends reported in Figure 1 do not

depend on the p-value threshold choice (Appendix 1—figure 3); moreover, the qualitative trends

remain when LDpred is used (with a prior probability of 1 on loci being causal; Vilhjálmsson et al.,

2015) instead of pruning approaches (Appendix 1—figure 3).

These results pertain to three exemplar traits and do not speak to the prevalence of this phenom-

enon. Nonetheless, they demonstrate that the prediction accuracy of a polygenic score can vary

markedly depending on sample characteristics of both the original GWAS and the prediction set,

even within a single ancestry, and that this variation in prediction accuracy can be substantial—on

the same order as reported for different continental ancestries within the UK Biobank (Martin et al.,

2019). As one example, the prediction accuracy in East Asian samples, averaged across a number of

traits, is about half of that in European samples when GWAS was European-based; when the GWAS

is done in the lowest SES group for years of schooling, prediction accuracy in the highest SES group

is less than half of that in the lowest SES (Figure 1C). Moreover, whereas for these traits, we had

prior information about which characteristics may be relevant, other aspects that vary across sets of

individuals are undoubtedly important as well (e.g., smoking behavior and diet may modify genetic

effects on lipid traits; Bentley et al., 2019; Telkar et al., 2019), and for other traits of interest, much

less may be known a priori.

Possible explanations for the variable prediction accuracy
Our goal in this paper is to highlight that prediction accuracies can vary across groups of highly simi-

lar ancestry, rather than to investigate the likely causes for any particular phenotype. Nonetheless,

we provide some observations that may cast light on these results. We first note that in these three

examples, the prediction accuracies track SNP heritability differences across strata (Figure 2A,B,C).

This relationship should be expected, given that the estimation noise decreases with heritability

(Appendix 1), and potentially underlies the observation that prediction accuracies using the diverse

GWAS sample are often intermediate between those obtained from stratified GWAS samples of

equal sample size (Figure 1).

Perhaps the simplest explanation for these findings would be that heritabilities, and hence predic-

tion accuracies, vary only because of differences in the extent of environmental variance across

strata, while the genetic variance is the same. We can test this hypothesis by examining whether the

heritability decreases with increasing phenotypic variance (more precisely whether it is inversely pro-

portional to it), as expected if the genetic variance is fixed across strata. What we find instead is

that the estimated SNP heritabilities for all three traits increase or remain the same with increasing

phenotypic variance (Figure 2D,E,F). Thus, for these traits at least, the variable prediction accuracy

is not simply the result of differences in the extent of environmental heterogeneity across strata.

Another possibility is that there is an interaction between genetic effects and sample characteris-

tics, for instance that different sets of genetic variants contribute to blood pressure levels in males

and females or to BMI across different stages of life. [Although such interactions could in some con-

texts be thought of as reflecting GxE, we use the term ‘sample characteristic’ rather than ‘environ-

ment’, as environment has different meaning across disciplines, referring in some contexts only to

factors that are exogenous to genetics. Viewed in this lens, SES in adulthood cannot be interpreted

as exogenous, because it is in part determined by educational achievement, which is itself influenced
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(± SE) based on LD score regression in each set. The y-axes show incremental R2 values obtained using the procedure described in Figure 1, with

GWAS performed in a pooled sample of all strata and testing in stratified prediction sets (see Materials and methods); points and bars show mean and
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by genetic factors, and similarly it is questionable whether age or sex are environments.] This expla-

nation is not supported by bivariate LD score regression, which indicates that the genetic correla-

tions across strata are close to 1 (Appendix 1—table 2; Materials and methods). Yet when we re-

estimate individual SNP effects in the prediction sets for SNPs ascertained in the original GWAS, the

estimated effects of trait-increasing alleles are larger in the groups with higher prediction accuracy

(Appendix 1—figure 4; Materials and methods).

One simple model that could reconcile these findings is if effect sizes are highly correlated across

the groups, but systematically larger in those groups with higher prediction accuracy. This explana-

tion is reminiscent of the ‘amplification’ model of genetic influences on cognition during

development (Briley and Tucker-Drob, 2013).

Other factors complicate interpretation, however, and may also contribute to our observations. In

particular, for the case of years of schooling, conditioning on adult SES induces a form of range

restriction, which could contribute to variable prediction accuracy across strata. We note, however,

that we see highly variable prediction accuracies across SES strata even when the GWAS is con-

ducted in a diverse sample (i.e., including individuals from all strata) (Figure 1C); in that regard, our

approach mimics what happens in practice when polygenic scores are used to predict phenotypes in

a sample with a smaller range of SES (e.g., Rimfeld et al., 2018). More generally, although this type

of range restriction is artificially amplified in our example, SES differences may often be a problem

for GWAS in which the sample is not representative of the population; for instance, the most recent

major GWAS of educational attainment (Lee et al., 2018) included numerous medical data sets and

the 23andMe data set, which are not representative of the national population.

Another potentially important factor is that the adjustment for PCs may not be a sufficient control

for the different ways in which population structure can confound GWAS results (Vilhjálmsson and

Nordborg, 2013), leading to variable prediction accuracy across strata if they differ in their popula-

tion structure. To examine this possibility, we repeated the analysis in Figure 1 but using a linear

mixed model (LMM) approach (including PCs among other covariates; see Materials and methods),

and obtained qualitatively similar results (Appendix 1—figure 5). Although not a perfect fix

(Listgarten et al., 2013; Mathieson and McVean, 2013), the fact that we obtain similar results using

PCs and LMM suggests that confounding due to population stratification in the UK Biobank alone

does not explain the variable prediction accuracies across strata.

Obstacles to portability explored through a comparison of standard
and family-based GWAS
Beyond sample characteristics such as age or sex, a number of other factors may shape the portabil-

ity of scores across groups of similar ancestry. Standard GWAS is done in samples of individuals that

deliberately exclude close relatives; as implemented, it detects direct effects of the genetic variants,

but also any indirect genetic effects of parents, siblings, or peers, effects of assortative mating

among parents, and potentially environmental differences associated with fine-scale population

structure (Young et al., 2018; Trejo and Benjamin, 2019; Kong et al., 2018; Lee et al., 2018;

Berg et al., 2019). Given that many of these effects are likely to be culturally mediated (Stulp et al.,

2017; Selzam et al., 2019), it seems plausible that they may vary within as well as across groups of

individuals with different ancestries. If culturally-contingent effects contribute to GWAS estimates

(and hence to PGS), they may lead to differences in the prediction accuracy in samples unlike the

original GWAS.

To demonstrate that these considerations are not just hypothetical, we compared the prediction

accuracy when the PGS is trained on ‘unrelated’ individuals such as those used in a standard GWAS

to one obtained from a sibling-based (or ‘sib-based’) GWAS (Materials and methods). In the latter,

genotype differences between sibs, a result of random Mendelian segregation in the parents, are

tested for association with the phenotypic differences between them. Because the tests depend on

phenotypic differences between siblings who, of course, have the same parents, these tests are con-

ditioned on the parental genotypes and hence exclude many of the indirect effects signals that may

be picked up in standard GWAS (Appendix 1). Differences between standard and sib-based GWAS

are thus informative about the presence of factors other than direct genetic effects (Wood et al.,

2014; Trejo and Benjamin, 2019; Lee et al., 2018; Berg et al., 2019; Selzam et al., 2019).

A challenge in this comparison is that the UKB contains only ~22K sibling pairs, ~19K of whom are

labeled as ‘White British’ (WB). The siblings are similar to the unrelated individuals in terms of ages,
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SES distributions and genetic ancestries (Appendix 1—figures 6 and 7) but include a higher propor-

tion of females; this difference is unlikely to influence our analyses (see below). While a large num-

ber, 19K pairs is still too few to have adequate power to discover trait-associated SNPs, when

compared to a standard GWAS using the much larger sample of unrelated WB individuals (~340K).

To increase power and enable a direct comparison between the two designs, we split the SNP

ascertainment and effect estimation steps as follows (Figure 3A): we identified SNPs using a stan-

dard GWAS with a large sample size (median ~270K across the traits considered) (see Materials and

methods). We then estimated the effect of each significant SNP using (i) a sib-based association test

and (ii) a standard association test. We chose the size of the estimation set in (ii) such that the

median standard error of effect estimates in (i) and (ii) is approximately equal. We then compared

the prediction accuracy of the two PGS obtained in this way (‘standard PGS’ and ‘sib-based PGS’) in

an independent prediction set of unrelated individuals; as we show in Appendix 1, our approach

leads to highly similar prediction accuracies of the two approaches under a model with direct effects

only (see Materials and methods for details). A further advantage is that the two scores are com-

pared for the same set of SNPs, such that LD patterns and allele frequency differences do not come

into play.

We applied the approach to 20 traits, focusing on traits with relatively high heritability estimates

as well as social and behavioral traits that have been the focus of recent attention in social sciences.

For the majority of the traits, such as diastolic blood pressure, BMI, and hair color, the prediction

accuracies of standard and sib-based PGS were similar (Figure 3B), as expected under standard

GWAS assumptions and as observed for traits simulated under these assumptions (Appendix 1—fig-

ure 8). However, for height and for a range of social and behavioral traits, such as years of schooling,

pack years of smoking and household income, the prediction accuracy of the sib-based PGS was

substantially lower than that of the standard PGS (Figure 3B). [We caution that, because the first

step of our study design is to identify SNPs that are associated with the trait in a large set of unre-

lated individuals and we subsequently match the sampling variances of sib- and standard GWAS,

rather than identify distinct sets of SNPs separately in the two designs, the ratio of prediction accura-

cies that we obtain cannot be directly compared to those reported in other studies.]

A number of factors could contribute to the differences between prediction accuracies for PGS

based on sibs versus unrelated individuals, including confounding effects of population stratification,

indirect genetic effects from parents and assortative mating. The relative importance of each factor

will vary across traits (Rosenberg et al., 2019; Kong et al., 2018; Haworth et al., 2019;

Ruby et al., 2018; Selzam et al., 2019). For educational attainment, this gap is likely to reflect at

least in part the documented contribution of indirect genetic effects to the standard PGS (Lee et al.,

2018; Kong et al., 2018; Young et al., 2018). We show in Appendix 1 that in the presence of indi-

rect genetic effects mediated through parents, standard PGS outperforms sib-based PGS unless

direct and indirect effects are strongly anticorrelated (Appendix 1—figure 9), which seems unlikely

to be the case for years of schooling. The difference in the performance of sib-based and standard

PGS observed for other social and behavioral outcomes, such as household income and age at first

sexual intercourse (Figure 3B), may reflect a similar phenomenon. An additional contribution to

divergent prediction accuracies could come from indirect effects among siblings, which would also

contribute differentially to standard and sibling-based PGS. For height, there may be an important

contribution of assortative mating to the difference in prediction accuracies (Wood et al., 2014;

Robinson et al., 2017; Lee et al., 2018). In Appendix 1, we show that under a simple model of posi-

tive assortative mating, the prediction accuracy based on a standard PGS is higher than that of a sib-

based PGS (Appendix 1—figure 10). We further confirmed that the difference in the sex ratio of the

siblings and unrelated individuals, mentioned earlier, has a negligible effect on these differences,

though it may underlie the slightly lower prediction accuracy of the standard PGS for pulse rate

(Appendix 1—figure 11).

The lower prediction accuracies for PGS based on sib-based GWAS indicate that complications

such as assortative mating or indirect effects contribute to the standard GWAS estimates. In the

absence of these complications, we ensure that prediction accuracies are comparable by matching

the sampling errors of the two approaches (Figure 3A). In the presence of these complications,

the magnitude of the ratio of prediction accuracies should reflect the strength of assortative mating,

the relative contribution of indirect genetic effects compared to direct effects, and so forth. How-

ever, interpreting the magnitude of the deviation from 1 is far from straightforward: as we show in
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Figure 3. Comparison of prediction accuracy of standard and sib-based polygenic scores. (A) After ascertaining SNPs in a large sample of unrelated

individuals, we estimated the effects of these SNPs with a standard regression using unrelated individuals and, independently, using sib-regression. We

then used the polygenic scores for prediction in a third sample of unrelated individuals. We chose the sample size of the standard PGS estimation set

such that median effect estimate SEs are equal in the two designs, thereby ensuring equal prediction accuracy under a vanilla model with no indirect

effects or assortative mating. Numbers in parentheses are median sample size in each set across 20 traits (see Materials and methods

and Appendix 1—table 1 for the definition of each trait, and Appendix 1—table 3 for sample sizes for each trait). (B) Ratio of prediction accuracy in

the two designs across 20 traits. For each trait, we performed 10 resampling iterations of unrelated individuals into three sets for discovery, estimation

and prediction (small points). Large points show median values. (C-F) We repeated this procedure with different discovery-set p-value thresholds for

including a SNP in the polygenic score. The higher the p-value threshold is, the more SNPs are included. For each p-value threshold, points show 10

iterations as described and large points show median values. Shown are a subset of traits, with traits appearing in (B) but not shown here presented in

Appendix 1—figure 12.
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Appendix 1, the relative difference in prediction accuracies between the two approaches stems in

part from the noise-to-signal ratio for the effect estimates in sib-based versus standard GWAS

(Appendix 1, Appendix 1—figures 9 and 10), and as a result also depends on features of the com-

parison like the sample sizes used and the PGS model.

Motivated by these considerations, we examined how the prediction accuracy varies when pro-

gressively relaxing the GWAS p-value threshold for inclusion of SNPs, that is when including more

weakly associated SNPs in the PGS. [In Figure 3B, results are shown for the p-value threshold that

maximizes the prediction accuracy of the standard PGS, replicating the practice when comparing

populations of different ancestry; Martin et al., 2019.] For hair color and diastolic blood pressure,

there is little to no difference in prediction accuracy between the two estimation methods, regard-

less of the number of SNPs included in the score (Figure 3C,D). In contrast, for height, standard and

sib-based PGS perform similarly when based on the most significantly associated SNPs, but standard

PGS progressively outperforms sib-based PGS when more SNPs are included (Figure 3E). Similarly,

the difference in prediction accuracy between sib-based and standard PGS changes markedly for

years of schooling, household income and other social and behavioral traits (Figure 3F and Appen-

dix 1—figure 12). The growing gap in performance with increasing p-value threshold likely reflects a

combination of an increasing noise-to-signal ratio for the effect estimates in sib-based versus stan-

dard GWAS (see Appendix 1) and changes in the relative importance of direct effects versus other

factors such as indirect parental effects and assortative mating.

In summary, the differences between the prediction accuracies of standard and sib-based PGS

seen for a number of traits (Figure 3B), notably social and behavioral ones, demonstrate

that standard GWAS estimates often include a substantial contribution of factors other than direct

effects. In these cases, even if the power to detect direct effects were comparable, standard

GWAS would lead to higher prediction accuracy than sib-GWAS. In some contexts that may be a suf-

ficient reason to rely on PGS derived from standard GWAS. However, that gain stems from the inclu-

sion of factors such as indirect effects and assortative mating that are likely to be modulated by SES,

environment and culture (e.g., Selzam et al., 2019; Stulp et al., 2017). Thus, the increased predic-

tion accuracy likely comes at a cost of not always porting well across groups, even of the same

ancestry, in ways that may be difficult to anticipate.

Discussion
Although the conversation around the portability of PGS has largely focused on genetic ancestries,

our results show that prediction accuracy can also differ, in some cases substantially, across groups

of similar ancestry—even due to basic study design differences such as age, sex or SES composition.

When due only to increased environmental variance, such decreased accuracy may not pose a prob-

lem, at least for certain applications. But as we have shown, differences in the degree of environ-

mental variance are not the primary explanation for the patterns we report (Figure 2), and other

factors, including differences in the magnitude of genetic effects among groups, indirect effects and

assortative mating, also lead to differences in the prediction accuracy of PGS, in ways that may make

applications of phenotypic prediction less reliable, even within a single ancestry group. For some

traits, there is prior information about which factors are likely to be important, but not always, and

even for well-studied traits, it may be difficult to enumerate all the influential factors. As an example,

we considered the accuracy of the polygenic score for years of schooling and found that it also varies

somewhat depending on whether individuals have no sibling or one sibling in the prediction sets

(Materials and methods; Appendix 1—figure 13).

Following the discussion of portability across ancestries, we have focused on incremental R2 as a

measure of portability. This measure is less directly informative when the goal is to use PGS to reli-

ably identify individuals in the tails of the distribution, that is those at elevated risk of developing a

disease—the main application of PGS in human genetics, as distinct from social science or evolution-

ary biology. Nonetheless, the same concerns raised here are likely to apply. To illustrate that point,

we considered binary outcomes of the traits considered in Figure 1, ’hypertension’ (defined as dia-

stolic blood pressure > 110 mmHG), ’obesity’ (defined as BMI > 35 kg/m2), and ’college comple-

tion’, and evaluated the prediction accuracy as measured by incremental AUC (Appendix 1—figure

14).The qualitative results are the same as in Figure 1. We also examined how incremental AUC

varies by sex for five binary disease traits that we chose because they have relatively high heritability.
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For three of them, hypothyroidism and two cardiovascular outcomes, prediction accuracy varies

depending on both the GWAS and prediction sets (Appendix 1—figure 15).

Thus, for both quantitative and binary traits, the question of the domain over which a PGS applies

is not just about LD patterns, allele frequencies or GxG effects but also about the extent of environ-

mental and genetic variance, GxE, as well as the contribution of direct effects versus indirect effects,

assortative mating and environmental confounding. An important implication is that differences in

prediction accuracies among groups with distinct ancestries cannot be interpreted exclusively or

even primarily in terms of population genetic parameters when these groups differ dramatically in

their SES (Chetty and Hendren, 2018; Conley, 2010; Nuru-Jeter et al., 2018; Reich, 2017) and

other factors that may affect portability—especially when the relative contribution of these factors to

GWAS signals remains unknown (Young et al., 2019; Mills and Rahal, 2019). Thus, efforts to con-

duct GWAS in groups that vary in ancestry and geographic locations will need to be accompanied

by a careful examination of variation in portability along other dimensions.

While these results raise the question of how to best construct a PGS, the answer is not obvious,

and likely depends on the specific trait and samples. For example, for the three cases shown in Fig-

ure 1, considering a fixed GWAS sample size, the highest prediction accuracy is attained with a

GWAS sample limited to some stratum (e.g., women for diastolic blood pressure). Yet a much larger

merged data set containing the union of strata generates the most predictive PGS (Appendix 1—

figure 1). Together, these observations suggest a trade-off between the factors that are shared

among strata and lead to increased power with sample size and those that differ across strata and

underlie the variable prediction accuracy. In principle then, if influential factors were known, the

composition of the GWAS sample could be optimized to yield the highest accuracy in a given pre-

diction set, but how much each stratum should be weighted will depend on a number of factors

such as the genetic and environmental variance in each stratum, genetic correlation across strata,

and sample sizes. Moreover, factors such as assortative mating and indirect effects are soaked up

into the GWAS estimates—and critically also into the SNP heritability estimates. Thus, the choice of

a GWAS sample is about more than power; it is implicitly making a choice about all sorts of sample

characteristics that may or may not hold true of the prediction set.

In that regard, it is worth noting that while classical twin studies were often constituted to be rep-

resentative of a reference population (often national in nature) (Polderman et al., 2015;

Branigan et al., 2013), the same is not true of most contemporary human genetic datasets, which

are skewed towards medical case-control studies, biobanks that are opt-in (and thus tend to include

individuals who are wealthier and better educated than the population average) or direct-to-con-

sumer proprietary genetic databases (which are even more skewed along these dimensions)

(Lee et al., 2018). For instance, individuals in UK Biobank have higher SES than the rest of the British

population (Fry et al., 2017) and are presumably self-selected for a certain level of interest in bio-

medical research. These factors alone raise challenges as to the broad portability of PGS derived

from them. More generally, it seems plausible that individuals included in a GWAS differ from those

that, for myriad reasons, do not end up participating (Taylor et al., 2018), in ways that make it diffi-

cult to predict the domain over which GWAS-based estimates can be reliably generalized.

One fruitful way forward may be to study data from related individuals, in which it should be pos-

sible to decompose the components of the signals identified in GWAS into direct and indirect

effects, the degree of assortative mating and the contribution of residual stratification (Zhang et al.,

2015; Young et al., 2018; Kong et al., 2018). Not only will this decomposition help us to better

interpret the results of GWAS and the resulting PGS, it will make it possible to examine under which

circumstances, and for which phenotypes, components port more reliably to other sets of individu-

als, both unrelated and related. Ultimately, we envisage that in order to be broadly applicable,

GWAS-based phenotypic prediction models will need to include not only a PGS but some study

characteristics, other social and environmental measures and, perhaps crucially, their interactions.

Materials and methods

UK biobank
The UK Biobank (UKB) is a large study of about half a million United Kingdom residents, recruited

between years 2006 to 2010 (Bycroft et al., 2018). In addition to genetic data, hundreds of
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phenotypes were collected through measurements and questionnaires at assessment centers, and

by accessing medical records of the participants.

Inclusion criteria
In this study, we focused on 408,434 participants who passed quality control (QC) measures pro-

vided by UKB; specifically, for whom the reported sex (QC parameter ‘Submitted.Gender’) matched

their inferred sex from genotype data (QC parameter ‘Inferred.Gender’); who were not identified as

outliers based on heterozygosity and missing rate (QC parameter ‘het.missing.outliers’==0); and did

not have an excessive number of relatives in the database (QC parameter ‘excess.relatives’==0). We

further selected individuals identified by UKB to be of ‘White British’ (WB) ancestry (QC parameter

‘in.white.British.ancestry.subset’==1), which is a label that refers to those who, when given a set of

choices, self-reported to be of ‘White’ and ‘British’ ethnic backgrounds and, in addition, were tightly

clustered in a principal component analysis of the genotype data, as detailed in Bycroft et al.

(2018). We excluded individuals that had withdrawn from the UK Biobank by the time of the analy-

ses here. For a given trait, we further conditioned on individuals for whom the trait value was

reported.

Phenotype data
We focused on 25 traits, including traits with relatively high heritability estimates as well as social

and behavioral traits that have been the focus of recent attention in social sciences (see Appen-

dix 1—table 1 for a complete list of phenotype data used in this work, and their corresponding

numeric field codes in the UKB data showcase). We calculated the phenotype ‘years of schooling’ by

converting the maximal educational qualification of the participants to years following Okbay et al.

(2016) (Appendix 1—table 4). For diastolic blood pressure, pulse rate, and forced vital capacity, we

took the average of the first two rounds of measurement taken during the same examination at UKB

assessment centers. We adjusted the diastolic blood pressure levels for blood pressure lowering

medication following Evangelou et al. (2018) by shifting the values upward by 10 mmHg for individ-

uals taking medication. For hand grip strength, we took the average of the measurements for the

two hands. For categorical phenotypes, we assigned integer values to each category (Appendix 1—

table 1). For hair color, individuals who reported hair color variable ‘Other’ were excluded from the

analyses. We considered binary traits, ‘hypertension’ defined as diastolic blood pressure >110

mmHG, ‘obesity’ defined as BMI >35 kg/m2, and ‘college completion’ defined based on attainment

of a college or a university degree. Disease outcomes were ascertained using self-reported informa-

tion and/or using the hospital inpatient main and secondary diagnoses coded according to the Inter-

national Classification of Diseases (ICD-9 and ICD-10). Hypothyroidism, type 2 diabetes, and

rheumatoid arthritis were ascertained based on ICD-10 codes of E03.X, E11.X and M06.X, respec-

tively. Myocardial infarction was ascertained based on ICD-9 codes of 410.9, 411.9, 412.9, or ICD-10

codes of I21.X, I22.X, I23.X, I24.1, I25.2 following Khera et al. (2018), or participants with myocar-

dial infarction outcome data among the UK Biobank’s algorithmically-defined outcomes. We also

considered the binary outcome of ever being diagnosed to have had a heart attack, angina or

stroke. For a subset of individuals, multiple measurements of a phenotype were provided, corre-

sponding to multiple visits to UKB assessment centers; in those cases, we used the measurements

during the first visit.

Genotype data
UKB participants were genotyped on either of two similar genotyping arrays, UK Biobank Axiom and

UK BiLEVE arrays, at a total of ~850K markers. We focused on autosomal bi-allelic SNPs shared

between both arrays, and used plink v. 1.90b5 (Chang et al., 2015) to filter SNPs with calling

rate >0.95, minor allele frequency >10�3, and Hardy-Weinberg equilibrium test p-val >10�10 among

the WB samples, resulting in 616,323 SNPs.

GWAS and trait prediction methods
GWAS by sample characteristics
We focused on a set of 337,488 WB samples that were identified by the UKB to be ‘unrelated’ (sam-

ple QC parameter ‘used.in.pca.calculation’==1 as provided by UKB), defined such that no pairs of
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individuals are inferred to be 3rd degree relatives or closer. We split the sample into non-overlapping

sets of individuals by one of the following factors: age at recruitment (in years), sex, and Townsend

deprivation index at recruitment (used as a proxy for socio-economic status or SES, specifically we

take the negative of the Townsend deprivation index as a measure of SES). For SES and age, we

divided the sample into four sets: Q1 [minimum value, first quartile], Q2 (first quartile, second quar-

tile], Q3 (second quartile, third quartile], and Q4 (third quartile, maximum value]. We randomly

selected 10K samples in each SES and age group, and 20K of males and 20K of females as held-out

prediction sets, and performed GWAS using the remaining samples, matching sample sizes across

groups in the GWAS set. We performed nine GWASs: for years of schooling in SES Q1 and SES Q4

(sample size 73,283 for each), and in a diverse sample with equal number of individuals from all four

groups (sample size 73,280); for body mass index (BMI) in Q1, Q4, and in a diverse sample with

equal number of individuals from all four groups (sample size 72,328 for each); and for diastolic

blood pressure in males, females, and in a diverse sample with equal number of males and females

(sample size 122,774 for each). We performed all GWASs using plink v. 2.0 (with the flag --

linear), adjusting for sex, age (at recruitment) and first 20 PCs as covariates. PCs are principal com-

ponents of the genotype data, as provided by UKB, calculated using the entire cohort (not just WB

individuals). For a subset of cases (where GWAS was performed in samples restricted by characteris-

tics described above), we additionally performed association tests using a linear mixed model (LMM)

as implemented in BOLT-LMM v. 2.3.2 (Loh et al., 2015), using LD scores computed from 1000

Genomes European-ancestry samples, with sex, age and first 20 PCs as covariates. The GWAS sum-

mary statistics were used to construct PGS for the samples in the prediction sets.

To better understand the performance of PGS across the strata (see ‘Possible explanations for

the variable prediction accuracy’), we estimated the mean effect sizes of significant SNPs in each of

the strata. To avoid overfitting, we first performed an association test in the pooled sample of all

strata excluding individuals in the prediction sets and matching the number of individuals per

stratum; sample size 293,132 for years of schooling, 272,456 for BMI, and 245,548 for diastolic blood

pressure. Then for significantly associated SNPs (LD pruned as described in ‘Polygenic score con-

struction and trait prediction’), we re-estimated the effect sizes in each of the strata in the prediction

sets (see Appendix 1—figure 4). We also used these pooled GWASs to explore the relationship

between prediction accuracy and SNP heritability (as shown in Figure 2) and with GWAS sample size

(Appendix 1—figure 1). We performed 20 iterations of all above steps.

In addition to above examples, we explored the prediction accuracy for years of schooling when

GWAS and prediction sets are stratified based the participants’ number of full siblings.

Specifically, we performed GWAS using individuals who had exactly one sibling (sample size 90,417),

and evaluated prediction in two independent samples of individuals who reported having no siblings

or having one sibling (sample size 20K for each) (see Appendix 1—figure 13).

We also considered five binary disease outcomes stratified by sex. Specifically, we performed

GWAS in equally sized samples of males and females for hypothyroidism (sample size 135,526), type

2 diabetes (sample size 136,061), rheumatoid arthritis (sample size 136,039), myocardial infarction

(sample size 136,061) and having been diagnosed with a heart attack or angina or stroke (sample

size 135,833), leaving out 20K samples of males and females for prediction (see Appendix 1—fig-

ures 14 and 15). For these traits we used a logistic regression model for GWAS (using plink v.

2.0 with the flag --logistic). An important caveat to analyses of disease outcomes recorded during

multiple follow-ups is that for ‘age’, we could only consider the age at recruitment in the GWAS;

that approach is not ideal, considering that a fraction of individuals died during the course of the

study (about 20K individuals in the full cohort).

Standard versus sibling-based polygenic score
We used the genetic relatedness information provided by UKB to infer sibling pairs among the WB

samples. Following Bycroft et al. (2018), we marked pairs with 1

25=2
<f< 1

23=2
and IBS0 > 0.0012 as sib-

lings, where f is the estimated kinship coefficient and IBS0 is the fraction of loci at which individuals

share no alleles. By this approach, we identified 19,329 sibling pairs including 35,634 individuals

across 17,328 families. For a given trait, we included pairs with the property that trait values for both

individuals were reported. We then formed two sets of individuals: ’Siblings’ set, including the sib-

ling pairs randomly sampled to include only one pair per family, and an ’Unrelateds’ set, including
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the unrelated individuals identified by the UKB (see section ’GWAS by sample

characteristics’ above), but excluding the Siblings and 6,911 individuals that were related to the Sib-

lings (3rd degree or closer).

We focused on 20 quantitative traits (see Figure 3B for the list of traits considered in this analysis)

and a number of simulated traits (see below). For each trait, we first downsampled the Unrelateds

set to a sample size n� such that the median standard error of effect estimates roughly matched the

median standard error in the sibling-based regression (see ’Estimating n�’ below). We then divided

the Unrelateds set into three non-overlapping sets: after sampling n� individuals (Unrelateds-n� set),

we randomly split the rest of the Unrelateds set into an Unrelateds-prediction set (10% of the sam-

ples) to be used as a sample for trait prediction (’prediction set’), and an Unrelateds-discovery set

(90% of the samples) to be used for the discovery of trait associated variants (see Appendix 1—fig-

ure 3 for sample sizes in each set). For each trait, we performed standard GWAS in the Unrelateds-

discovery set, and ascertained SNPs by thresholding on association p-values. We then estimated the

effect sizes for these ascertained SNPs in two ways: by a sibling-based association test in the Siblings

set (using plink v. 1.90b5’s QFAM procedure with the flag --qfam), and by a standard association

test in the Unrelateds-n� set (using plink v. 2.0). Subsequently, for each set of ascertained SNPs in

the Unrelateds-discovery set, two PGS were constructed for the samples in the Unrelateds-predic-

tion set (see Figure 3A for overview of the pipeline). We performed 10 iterations of the above sam-

pling, ascertainment and estimation steps, except for simulated traits where we performed 30

iterations.

Estimating n�

In order to compare the performance of sibling-based and standard GWAS designs, we wanted to

match both analyses to have similar prediction accuracy under a vanilla model of no assortative mat-

ing, population structure stratification or indirect effects. In Appendix 1, we show that this could be

achieved by matching median effect estimate standard errors. For each trait, we therefore calculated

n�, the sample size of a standard GWAS that yields roughly equal standard errors in the standard

and sibling-based regressions. Specifically, for each trait, we first performed sibling-based GWAS in

the Siblings using plink’s QFAM procedure (with the flag --qfam mperm=100000 emp-se). We then

randomly sampled a range of sample sizes from the set of Unrelateds, from 5K to 20K in 1K incre-

ments. Following Wood et al. (2014), for each sample size, we performed a standard GWAS, and

investigated the linear relationship between the square root of the sample size and the inverse of

the median standard error of the effect size estimates. We then used this linear relationship to esti-

mate the sample size of a standard GWAS that corresponds to the inverse of the median standard

error of the effect sizes estimate in the sibling-based GWAS.

All standard association tests were performed using plink v. 2.0 (with the flag --linear), adjusting

for sex, age and first 20 PCs as covariates. For sibling-based association tests we first residualized

the phenotypic values on age and sex, and then regressed the sibling differences in residuals on sib-

ling genotypic differences using plink’s QFAM procedure as described above.

We also considered a version of the analysis described above, in which we first residualized the

phenotypes on covariates in the pooled sample of all WB individuals, and then ran the pipeline on

the residuals without further adjustment for covariates in the GWAS or prediction evaluation. As

shown in Appendix 1—figure 16, this approach produced results that are qualitatively the same to

what we present in Figure 3.

Simulated traits
We wanted to check that given the study design described above, sibling-based and standard PGS

perform similarly with respect to trait prediction, under the vanilla model of no population stratifica-

tion, assortative mating or indirect genetic effects (Figure 3). To this end, we simulated traits with

heritability h2 ¼ 0.1 or 0.5 and either 10K or 100K causal SNPs. For each set of parameters, we simu-

lated three replicates giving a total of 12 simulated traits.

We randomly selected the causal SNPs from a set of 10,879,183 imputed SNPs, considering that

most causal variants are plausibly not directly genotyped on SNP arrays. We used a set of SNPs that

passed quality control procedures by the Neale lab (http://www.nealelab.is/uk-biobank), namely

autosomal SNPs, imputed using the haplotype reference consortium (HRC) panel, which have INFO

score > 0.8 and have minor allele frequency > 10�4; we further limited the SNP set to ones that
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were bi-allelic in the WB sample. As in Martin et al. (2017), we randomly assigned effect sizes to

these causal SNPs as b~N 0; h
2

m

� �

, and zero for non-causal SNPs. We then calculated genetic compo-

nent of the trait, g, for all WB samples under an additive model by summing the allelic counts

weighted by their effect sizes using plink (with the flag --score). Allelic counts were determined by

converting imputation dosages to genotype calls with no hard calling threshold. We also assigned

environmental contributions as "~N 0; 1� h2ð Þ, and then constructed the PGS for each individual,

g¼
X

m

i¼1

biXi;

where Xi is the number of minor alleles at SNP i carried by the individual, and the trait value for the

individual is calculated as the sum of genetic and environmental contributions:

y¼
ffiffiffiffiffi

h2
p g� g

�

sg

 !

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p "� "

�

s"

 !

where bars represent averages, sg is the standard deviation of PGS across individuals and s" is the

standard deviation of environmental contributions across individuals. These simulated traits were

then analyzed using the same pipelines as the other traits (e.g., adjusting for covariates etc.). Impor-

tantly, SNP discovery and effect size estimations in GWAS were performed without knowledge of

the causal SNPs.

Polygenic score construction and trait prediction
For all GWAS designs described above, we used p-value thresholding followed by clumping to

choose sets of roughly independent SNPs to build PGS. We considered a logarithmically-spaced

range of p-values: 10�8, 10�7, 10�6, 10�5, 10�4, 10�3, and 10�2 (or a subset if no SNP reached that

significance level). We then used plink’s clumping procedure (with the flag --clump) with LD thresh-

old r2< 0.1 (using 10,000 randomly selected unrelated WB samples as a reference for LD structure)

and physical distance threshold of >1MB. The selected SNPs were then used to calculate PGS for

individuals in the prediction sets, by summing the allelic counts weighted by their estimated effect

sizes (log of the odds ratios in the case of binary traits) using plink (with the flag --score). In a subset

of cases, we also calculated polygenic scores using LDpred assuming all loci are

causal (Vilhjálmsson et al., 2015). To evaluate prediction accuracy, we calculated the incremental

R2: we first determined R2 in a regression of the phenotype to the covariates, and then calculated

the change in R2 when including the PGS as a predictor. For binary traits, we calculated the incre-

mental area under the receiver operator curve (AUC).

Estimating heritability and genetic correlation
We calculated SNP heritability across sex, age and SES groups for diastolic blood pressure, BMI and

years of schooling, respectively (as described in the section ‘GWAS by sample characteristics’) as

well as genetic correlations across pairs of groups: we first performed GWAS using all unrelated WB

individuals in each group. We then used the GWAS summary statistics to perform LD score regres-

sion with LD scores computed from the 1000 Genomes European-ancestry samples (Bulik-

Sullivan et al., 2015).
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Appendix 1

1 Prediction accuracies of polygenic scores based on
standard and sib-GWAS

1.1 Overview of derived results
In the main text, we compare the prediction accuracies of polygenic scores (PGS) based on a

standard GWAS of unrelated individuals and a GWAS based on sibling differences, for a

number of traits. Here, we describe how this comparison is implemented, and how indirect

effects and assortative mating manifest in this comparison.

Matching standard and sib-based prediction accuracies
Current standard GWAS are based on huge sample sizes, leading to less noisy estimates than

are afforded by family association studies such as those based on sib-differences, which are

typically much smaller. This difference in precision needs to be taken into account in making

comparisons between the prediction accuracy of scores derived from the two approaches. We

show that under a vanilla additive model with no assortative mating, indirect effects,

population structure (or other complications), and if the standard GWAS is subsampled to a

sample size

n� »
1

1þð1� h2Þð1� 2�sibÞ
npairs;

where npairs is the number of sib pairs, h2 is the heritability and �sib is the correlation in

environmental effects experienced by siblings, the two study designs are expected to have the

same (out-of-sample) prediction accuracy (see Section 1.2). This analytic result is not that

useful in practice, however; in particular, it requires prior knowledge about the extent to which

environmental effects correlate among siblings. Instead, we took an empirical approach to

match the prediction accuracies in the two approaches: following Wood et al. (2014), we

subsampled the regular GWAS to match the median standard errors of the sib-GWAS. As we

show in Section 1.2.3, under our vanilla model, we then expect equal out-of-sample prediction

accuracies for polygenic scores derived from the two study designs.

Indirect parental effects
In the presence of indirect parental effects, the out-of-sample prediction accuracy takes a

simple form. For a polygenic score based on a standard GWAS, we obtain

E½R2

ur� ¼ t

2
1

1þ c
;

where t

2 is the ratio of the variance in the trait due to both direct effects and indirect effects

of transmitted parental alleles over the total phenotypic variance; and c is a term representing

the noise-to-signal ratio in a standard GWAS. For the polygenic score based on sib-GWAS, we

obtain

E½R2

sib� ¼ ð1þ �
sh

sb

Þ2h2b
1

1þ ct2=h2b
:

where s2

b and s2

h are the variances of random direct and indirect effects, respectively, � is the

correlation between direct and indirect effects, and h2b is the proportion of the phenotypic

variance explained by direct effects. Our results suggest that under plausible conditions, the

presence of indirect effects would lead to higher prediction accuracy in a standard GWAS.

This result holds whether direct and indirect effects are positively correlated, uncorrelated or

even somewhat negatively correlated (Appendix 1—figure 9).
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Assortative mating
We investigated several models of assortative mating by simulation. Standard GWAS-based

polygenic scores have greater prediction accuracies than those based on sib-GWAS when the

parental phenotypes are positively correlated, and the reverse is true if they are negatively

correlated (Appendix 1—figure 10 A,B). The relative difference in prediction accuracies of the

two study designs grows with the inclusion of more SNPs in the polygenic score model

(Appendix 1—figure 10 D,F).

In our analytic model, we ignored the ascertainment step of our study design, in which it is

decided which SNPs to include in the polygenic score. We assumed that SNPs are pre-

ascertained and that the set of ascertained SNPs includes all causal ones. In a subset of

simulations, we implemented the ascertainment step based on an independent simulated

GWAS (see below). In both settings, we refer (somewhat loosely therefore) to the regression

on ascertained SNPs in a sample of unrelated individuals as ‘standard GWAS’ and the

regression of the difference in phenotypes on the difference in sib genotypes as ‘sib-GWAS.’

1.2 Picking the sample size of the standard GWAS to match the
prediction accuracy of the score based on the sib-GWAS
We look for the sample size n� of a standard GWAS performed on sample of unrelated

individuals such that, under our vanilla model, the resulting polygenic score has the same (out-

of-sample) prediction accuracy as the polygenic score obtained from a sib-GWAS with sample

size npairs. We begin by assuming that all causal sites i are known; that they are unlinked; that

they have only additive, direct effects on the phenotype; and that there is no population

stratification or assortative mating. We first find the sampling variance of the effect size

estimate for a single site obtained from each of the two study designs. We then examine (and

ultimately match) the prediction accuracy of the polygenic scores obtained from effect sizes

estimated in the estimation sets, b̂ur; b̂sib, on a new, independent prediction sample of

unrelated individuals fðx0; y0Þg.

1.2.1 Sampling error of the estimated effect size at a single site
Our model for the phenotypic value y is

y¼ gþ e

where e is a Normally distributed environmental effect (which includes all sources of random

noise) and

g¼ bur
0
þ
X

i

bixi

where xi 2 f0;1;2g are random genotypes. The genotype is coded as the the number of alleles

with effect bi carried by the individual at site i. Effect sizes b¼ fbig are treated as fixed

parameters throughout (except when noted otherwise in the very last step leading to

Equation 23). We can rewrite our model to focus on the effect size at a single site i:

y¼ b0þbixiþ �i; (1)

where

�i ¼ g�bixiþ e;

with variance

Var½�i� ¼ Var½g�bixi�þVar½e� ¼ Var½y��b2

i Var½xi�

In an OLS regression, the standard error for the effect of an allele at site i is

Mostafavi et al. eLife 2020;9:e48376. DOI: https://doi.org/10.7554/eLife.48376 24 of 52

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.48376


Var½b̂ur
i � ¼

Var½�i�
ðn� 1ÞVar½xi�

¼ Var½y��b2

i Var½xi�
ðn� 1ÞVar½xi�

; (2)

where n is the sample size and b̂ur denotes that the estimate was obtained using a sample of

unrelated individuals. In sib-GWAS, our model for site i is

Dy¼ bsib
0

þbiDxiþD�i;

with variance

Var½D�i� ¼ Var½Dg�biDxi� þVar½De� ¼

Var½Dg�þb2

i Var½Dxi�� 2b2

i Var½Dxi� þVar½De�:

Recall that for siblings (denoted with subscripts A and B), we expect

Cov½xi;A;xi;B� ¼
1

2
Var½xi�;

Cov½gA;gB� ¼
1

2
Var½g�:

Plugging these back in, we obtain

Var½D�i� ¼ Var½g��b2

i Var½xi� þ 2Var½e�ð1� �sibÞ

where �sib ¼Cor½eA;eB� is the correlation in environmental effects between sibs. The variance of

the estimated effect size in sib-GWAS is therefore

Var½b̂sib
i � ¼ Var½D�i�

ðnpairs� 1ÞVar½Dxi�
¼ Var½y� �b2

i Var½xi�þVar½e�ð1� 2�sibÞ
ðnpairs � 1ÞVar½xi�

: (3)

1.2.2 Sample size required for equal prediction accuracy
We measure prediction accuracy as the expected squared correlation between polygenic

scores ĝ and phenotypic values in an independent prediction set of unrelated individuals,

denoted fðx0; y0Þg,

Efðx0;y0Þg½R2� ¼ Cov2½ĝðx0Þ;y0�
Var½y0�Var½ĝðx0Þ� ;

To incorporate randomness both in the estimation set (summarized by the Multivariate

Normal distribution of b̂) and the prediction set fðx0;y0Þg, we will require

Eb̂urðn�Þ½Efðx0;y0Þg½R2��¼! Eb̂sibðnpairsÞ½Efðx0;y0Þg½R2��

where b̂ðnÞ is a set fb̂ig estimated in a GWAS with sample size n. Equivalently,

Eb̂sib ½Cov
2½ĝsibðx0Þ;y0�

Var½ĝsibðx0Þ�
�¼! Eb̂ur ½Cov

2½ĝurðx0Þ;y0�
Var½ĝurðx0Þ�

�; (4)

where we left out the sample sizes for brevity, and Var½y0� was cancelled out. Finally, we can

replace Equation 4 by its first order Taylor approximation to get the requirement

Eb̂½Covfðx0;y0Þg½ĝsibðx0Þ;y0��
2

Eb̂½Varfðx0;y0Þg½ĝsibðx0Þ��
¼!
Eb̂½Covfðx0;y0Þg½ĝurðx0Þ;y0��

2

Eb̂½Varfðx0;y0Þg½ĝurðx0Þ��
: (5)

We solve Equation 4 for a sample size n� to be used for estimation of the polygenic score
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in a standard GWAS that satisfies Equation 4. We note that if the vector of estimates b̂ is

given, then

Covfðx0;y0Þg½y0; ĝðx0Þjb̂� ¼Covfðx0 ;y0Þg½gðx0Þ;gðx0Þþ
Pm

i x
0
iðb̂i�biÞjb̂� ¼

Varfðx0;y0Þg½gðx0Þjb̂�þ
Pm

i Covfðx0;y0Þg½bix
0
i; ðb̂i�biÞx0ijb̂� ¼

Pm
i Var½x0i�bib̂i:

(6)

Since for every i, we have

E½b̂ur
i � ¼ E½b̂sib

i � ¼ bi;

we obtain

Eb̂sib ½Cov½y0; ĝsibðx0Þjb̂sib�� ¼
X

m

i

Var½x0i�b2

i ¼ Eb̂ur ½Cov½y0; ĝurðx0Þjb̂ur��;

which turns the requirement of Equation 5 into

Eb̂sib ½Varfðx0;y0Þg½ĝsibðx0Þ��¼! Eb̂ur ½Varfðx0;y0Þg½ĝurðx0Þ��;

or simply

X

m

i

Var½xi�Var½b̂ur
i �¼

!
X

m

i

Var½xi�Var½b̂sib
i �: (7)

Plugging the sampling variance results from Equation 2 and Equation 3 into Equation 7

and reordering, we obtain

n� � 1

npairs� 1
¼

Pm
i Var½y��b2

i Var½xi�
Pm

i Var½y��b2

i Var½xi�þVar½e�ð1� 2�sibÞ
;

or, assuming that the trait is polygenic such that m>>1,

n�

npairs
»

1

1þð1� h2Þð1� 2�sibÞ
: (8)

Equation 8 can in principle be applied to the estimation of �sib for a given trait, under our

model assumptions, and given an independent estimate of h2:

1.2.3 Empirical matching of standard errors
The result of Equation 8 is the same as we would obtain if we required

8i Var½b̂sib
i ðxiÞ�¼! Var½b̂ur

i ðxsibi Þ� (9)

without taking into account randomness in the prediction set. In practice (and in the results

shown in the main text), we have no prior knowledge about �sib and instead we find a sample

size n� for the standard GWAS such that

medianfsites igðVar½b̂sib
i ðxÞ�Þ ¼! medianfsites igðVar½b̂ur

i ðxÞ�Þ (10)

We note that the condition in Equation 9 is approximately met because, if we assume that

y is a highly polygenic trait where

8i b2

i Var½xi�<<Var½y�;

then, if for one site j, n� satisfies

Var½b̂sib
j ðxÞ� ¼ Var½b̂ur

j ðxÞ� ¼
Dðn�Þ
Var½xj�

such that Dðn�Þ is the same for sib-GWAS and standard GWAS, then for all sites Dðn�Þ ¼ Var½y�
n��1

is

the same, namely,
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8i Var½b̂sib
i ðxÞ� ¼ Var½b̂ur

i ðxÞ� ¼
Dðn�Þ
Var½xi�

Equation 10 can therefore be thought of as using a weighted-median to estimate n� where

each site i is weighted by 1

Var½xi�. In conclusion, the requirement of Equation 10 leads to equal

prediction accuracy of standard and sib-GWAS under the vanilla model assumptions. We note

further that in the main text (Figure 3), to follow common practice, we use incremental R2

throughout rather than R2. However, as we show in Appendix 1—figure 16, using R2 instead

gives highly similar qualitative results.

1.3 Indirect parental effects

1.3.1 Distribution of the effect size estimate at a single site
We consider an additive model with direct effects as well as indirect parental effects, assuming

no interaction between the parents and the polygenic score of the children and ignoring possible

indirect effects of siblings on each other. The other assumptions from the previous section—

for example independent segregation of alleles across sites—remain.We start by considering

themodel

y¼ b0 þ gþ nþ e

where g is the sum of direct effects in an individual with genotype (effect-allele count) xi at

each site i,

g¼
X

m

i

bixi;

and

n¼
X

m

i

hiðxiþ~xmi þ~x
p
i Þ

is the sum of parental indirect effects, with overall parental effect allele count xi þ~x
p
i þ~xmi at

each site, where ~xmi is the untransmitted maternal effect allele count, and ~x
p
i the untransmitted

paternal effect allele count, with ~xmi ;~x
p
i 2 f0;1g. As we show, when we choose the standard

GWAS sample size n� such that the sampling error of the effect size estimates matches that of

the sib-GWAS, the prediction accuracies of the two polygenic scores differ in an independent

sample: unless there is a large, negative correlation between indirect and direct effects, the

polygenic score from standard GWAS is expected to outperform the one based on sib-GWAS.

We first examine the distribution of an estimated effect size of xi on the phenotype. The OLS

regression for a single site in a standard GWAS follows Equation 1 and can be rewritten as

y¼ b0 þðbi þhiÞxi þhið~xpi þ~xmi Þþ �i (11)

with

�i ¼ gþ nþ e�ðbi þhiÞxi �hið~xpi þ~xmi Þ:

By the assumption of no assortative mating or other population structure,

Cov½~xpi ;~xmi � ¼Cov½xi;~xmi � ¼Cov½xi;~xpi � ¼ 0: (12)

It directly follows that under the generative model specified by Equation 11, the OLS

regression of y to xi and ~x
p
i þ~xmi is a regression involving two independent variables.

Therefore, b̂ur
i is Normally distributed with expectation
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E½b̂ur
i � ¼ biþhi:

We next calculate the variance of b̂ur
i . From Equation 12 and

Var½~xmi þ~x
p
i � ¼ Var½xi�;

we obtain

Var½�i� ¼ Var½y� þ ðbi þhiÞ2Var½xi� þh2

i Var½xi�� 2Cov½gþ n; ðbiþhiÞxi�� 2Cov½n;hið~xmi þ~x
p
i Þ� ¼

¼ Var½y��Var½xi�ðb2

i þ 2bihi þ 2h2

i Þ:

Finally,

Var½b̂ur
i � ¼

Var½�i�
ðn� 1ÞVar½xi�

¼ Var½y��Var½xi�ðb2

i þ 2bihi þ 2h2

i Þ
ðn� 1ÞVar½xi�

: (13)

In sib regression, we have

Dy¼ DgþDe

since indirect parental effects cancel out when taking the difference between siblings (as

siblings have the same parental effect allele count). Thus, the expected estimate is the same

as it was in the absence of indirect effects. Using the same considerations as in Section 1.2 for

the variance in sib differences, we obtain

b̂sib
i ~Nðbi;

Var½g��b2

i Var½xi� þVar½e�ð1� 2�sibÞ
ðnpairs� 1ÞVar½xi�

Þ;

where �sib is again the correlation in environmental effects between siblings.

1.3.2 Polygenic score prediction accuracy
We now examine the difference in prediction accuracies of ĝur and ĝsib after matching

Var½b̂ur
i �¼

!
Var½b̂sib

i � (14)

by choosing a standard GWAS sample size n� that empirically satisfies the condition, as we do

in the main text (see also Section 1.2.3).

We canderive the expectedprediction accuracy by averaging over both the estimation set

(whichwe again shorthand as the distribution of b̂) and the prediction set fðx0; y0Þg. By the lawof

total expectation,

E½R2� ¼ Eb̂½Efðx0;y0Þg½R2�� ¼ Eb̂½
Cov2fðx0;y0Þg½ĝðx0Þ;y0jb̂�

Varfðx0;y0Þg½y0jb̂�Varfðx0;y0Þg½ĝðx0Þjb̂�
�»

»

Eb̂½Covfðx0;y0Þg½ĝðx0Þ;y0jb̂��
2

Varfðx0;y0Þg½y0jb̂�Eb̂½Varfðx0;y0Þg½ĝðx0Þjb̂��
; (15)

where the last step is an approximation of the expectation of ratio by its first-order Taylor

expansion, a ratio of expectations. The numerator of Equation 15 is

Eb̂½Covfðx0;y0Þg½ĝðx0Þ;y0jb̂��
2 ¼ Eb̂½

X

m

i

ðbi þhiÞb̂iCovfðx0;y0Þg½x0i;x0jjb̂��
2 ¼

¼ Eb̂½
X

m

i

Var½xi�ðbi þhiÞb̂i�2 ¼
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¼ ð
X

m

i

Var½xi�ðbi þhiÞE½b̂i�Þ2: (16)

The terms in the denominator of Equation 15 are

Varfðx0;y0Þg½y0jb̂� ¼ Var½y� (17)

and

Eb̂½Varfðx0;y0Þg½ĝðx0Þjb̂� ¼ Eb̂½
X

m

i

Var½xi�b̂2

i � ¼
X

m

i

Var½xi�ðE½b̂i�2 þVar½b̂i�Þ: (18)

Plugging Equations 16,17,18 back into Equation 15, we obtain

E½R2�» ð
Pm

i Var½xi�ðbiþhiÞE½b̂i�Þ2

Var½y�ð
Pm

i Var½xi�Var½b̂i�þ
Pm

i Var½xi�E½b̂i�2Þ
: (19)

We note that

~C :¼ Var½y�
X

m

i

Var½xi�Var½b̂i�

is the same for sib-GWAS and standard GWAS under the requirement of Equation 14. We

therefore have

E½R2

ur �»
ðPm

i Var½xi�ðbi þhiÞ2Þ2
~CþVar½y�Pm

i Var½xi�ðbiþhiÞ2
; (20)

and

E½R2

sib�»
ðPm

i Var½xi�ðbiþhiÞbiÞ2
~CþVar½y�Pm

i Var½xi�b2

i

: (21)

If we denote the proportion of the phenotypic variance explained by direct effects by

h2b :¼
Pm

i Var½xi�b2

i

Var½y� ;

the proportion of the phenotypic variance explained by indirect effects of transmitted parental

alleles by

t

2

h :¼
Pm

i Var½xi�h2

i

Var½y� ;

and the proportion of phenotypic variance explained by both direct and indirect effects of

transmitted alleles by

t

2
:¼
Pm

i Var½xi�ðbiþhiÞ2
Var½y�

then Equation 20 can be written as

E½R2

ur �»t2
1

1þ c
; (22)

where we defined

c :¼
Pm

i Var½xi�Var½b̂i�
Pm

i Var½xi�ðbiþhiÞ2
:

Mostafavi et al. eLife 2020;9:e48376. DOI: https://doi.org/10.7554/eLife.48376 29 of 52

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.48376


Here, c can be thought of as a summary of the noise-to-signal ratio, with respect to the

signal coming from both direct and indirect effects of transmitted alleles. If we consider

effects b and h as random, treating results obtained thus far as conditional on b and h, and

further assume that effects are i.i.d. across sites (implying, in particular, that effect sizes and

allele frequencies are independent),

bi

hi

� �

~

0

0

� �

;
s2

b �sbsh

�sbsh s2

h

 ! !

;

the expectation of the numerator of Equation 21 is

Eb;h½
X

m

i

Var½xi�biðbiþhiÞjb;h� ¼
X

m

i

Var½xi�Ebi;hi
½b2

i þbihi� ¼
X

m

i

Var½xi�ðs2

b þ �sbshÞ

and thus Equation 21, in expectation, is:

E½R2

sib�»Eb;h½E½R2

sibjb;h�� ¼ ð1þ �
sh

sb

Þ2h2b
1

1þ c=a
: (23)

where

a :¼ h2b=t
2 ¼

Pm
i Var½xi�b2

i
Pm

i Var½xi�ðbiþhiÞ2
:

We examined the fit of this prediction to simulated data. Specifically, we ran simulations to

estimate effect sizes in a sib-GWAS and in a standard GWAS, after choosing n� to match their

sampling variances. Finally, we used the polygenic scores to predict phenotypic values in a

sample of unrelated individuals (see Section 1.3.3 for further detail).

Appendix 1—figure 9 A,C,D show the analytic result alongside simulation results, for

different correlation coefficients between indirect and direct effect sizes. Even in the absence

of a correlation between indirect and direct effect sizes, the polygenic score based on

standard GWAS outperforms the polygenic score based on sib-GWAS.

To understand this behavior and dependency of the
R2

sib

R2
ur
ratio on other parameters, we

divide Equation 23 by Equation 22 and obtain

E½R
2

sib

R2
ur

�» E½R2

sib�
E½R2

ur�
» 1þ �

sh

sb

� �2

a
1þ c

1þ c=a
:

Noting further that

1þ �
sh

sb

� �2

a¼ sbþ �sh

sb

� �2 s2

b

s2

b þ 2�sbsh þs2
h

¼ 1�ð1� �2Þ
t

2

h

t

2
;

we obtain

E½R
2

sib

R2
ur

�» ½1�ð1� �2Þ
t

2

h

t

2
� 1þ c

1þ c t

2

h2
b

: (24)

A few conclusions emerge from Equation 24 and the accompanying simulations. First, the

sib-GWAS based polygenic score will outperform the standard GWAS-based polygenic score

only if direct and indirect effects are strongly negatively correlated (see Appendix 1—figure

9A-D for illustration). Second, the term

1þ c

1þ c t

2

h2
b

¼
1þ

Pm

i
Var½b̂i�Var½xi�

t

2

1þ
Pm

i
Var½b̂i�Var½xi�

h2
b

(25)

can be interpreted as the dependence on the noise-to-signal ratio (where the signals are the
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proportions of phenotypic variance explained by direct and indirect effects of transmitted

alleles). For a given sampling variance (matched across the two study designs), the extent of

the signal will differ between standard GWAS and sib-GWAS. Importantly, the sampling

variance influences the ratio of prediction accuracies. If indirect effects do not exist or make

negligible contributions to the trait in question, then the ratio of prediction accuracies is

expected to be close to one. In the presence of indirect effects, however, the magnitude of

the deviation from one depends on the relationship between direct and indirect effects (and

their covariance) as well as on the (matched) sampling variance. Simulations of several

parameter combinations suggest that the overall effect of this dependence on the noise-to-

signal ratio is a decrease in R2

sib=R
2

ur as noise increases; as more SNPs are included in the

polygenic scores, the advantage of the standard GWAS-based polygenic score over that of

the sib-GWAS grows larger (Appendix 1—figure 9 E-H). These considerations inform the

interpretation of patterns observed in Figure 3C–F of the main text.

1.3.3 Simulations of indirect effects
For each set of simulated individuals (discovery, estimation and prediction sets), we first

simulated mother-father pairs, assigning parental alleles from BernoulliðpiÞ, where pi denotes

the allele frequency at site i. We then sampled the parental alleles at random to generate

offspring (one offspring per each mother-father pair to simulate a sample of unrelated

individuals and two offspring to generate sibling pairs). Phenotypes of the offspring were

assigned under an additive model, sampling from a Normal distribution with mean

X

m

i

bixi þhiðxpi þ xmi Þ

(where xmi and x
p
i are the maternal and paternal effect allele counts, respectively) and

variance s2

e ; representing the total variance of environmental effects. When there is no

correlation between direct and indirect effects, s2

e ¼ 1� h2b � 2t
2

h. Using this approach, we

generated a set of sibling pairs and estimated SNP effect sizes from these simulated data

using a sib-GWAS. We calculated n� as follows: we simulated sets of unrelated individuals with

a range of sample sizes. In each set, we performed a simple linear regression of the

phenotypic values on the genotypes. We then estimated a linear relationship between the

inverse of the median standard error of effect size estimates (as a dependent variable) and the

square root of the sample size. Using this linear relationship, we predicted the sample size for

the unrelated set that gives a median standard error equal to the median standard error of

sib-GWAS effect size estimates (n�). Finally, we simulated a set of unrelated individuals with

sample size n� and compared the prediction accuracy (R2) of the polygenic score based on

standard GWAS on this sample with the one obtained from sib-GWAS.

We additionally investigated the effect of the number of SNPs included in the polygenic

scores. For this analysis, we sorted the SNPs based on the association p-value obtained in an

independent simulated set of unrelated individuals.

In these simulations, we used the following parameter values:
. The ratio of the phenotypic variance accounted for by direct effects versus by indirect effects

(h2b=t
2

h): 5

. The phenotypic variance explained by offspring and parental alleles, given no correlation

between direct and indirect effects (h2b þ 2t
2

h): 0.25 or 0.5

. The ratio of the variance of direct effects to the variance of indirect effects (s2

b=s
2

h): 5

. Allele frequencies, p, drawn from a truncated exponential distribution, truncated on the left
such that the minimum allele frequency is 1%.

. The number of loci, assumed independent (i.e., in linkage equilibrium): 100 (all causal), or
10,000 (all causal) or 10,000 (20% causal)

. SNP effect sizes drawn as
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bi

hi

� �

~N
0

0

� �

;
s2

b �sbsh

�sbsh s2

h

 ! !

;

where � is the correlation between direct and indirect effect sizes. Effects sizes were then

re-scaled to satisfy
Pm

i 2b2

i pið1� piÞ ¼ h2b and
Pm

i 2h2

i pið1� piÞ ¼ t

2

h. Effects were set to 0 for

non-causal loci.
. The number of sibling pairs for sib GWAS: 10,000
. The number of unrelated individuals for prediction: 10,000
. The number of unrelated individuals for discovery GWAS (i.e., to decide which SNPs to

include): 20,000
. Number of iterations used to estimate n� and R2 for a given set of parameters: 10

1.4 Assortative mating
We consider assortative mating with regard to a phenotype, whereby the parents of

individuals were more likely to mate if they were similar with respect to that phenotype. This

process generates a correlation between genetic variants that contribute to the phenotype (i.

e., linkage disequilibrium). Consequently, in a standard GWAS, the effect sizes of causal SNPs

will partially capture the effect of other causal SNPs as well. Estimated effect sizes are thus

expected to be inflated under positive assortative mating (mating of similar individuals) and

deflated under negative assortative mating (mating of dissimilar individuals). In turn, in a sib-

GWAS, the estimates are in expectation unaffected by assortative mating, because genetic

differences between siblings arise from random Mendelian segregation in the parents.

1.4.1 Simulations of assortative mating
We used simulations to examine the phenotypic prediction accuracies of polygenic scores

based on sib- and standard GWAS under a model with assortative mating (assuming no

indirect effects or population stratification beyond assortative mating); to this end, we

considered a sample of unrelated individuals, varying the degree of correlation between

parental phenotypes �a. Similar to our simulations for indirect effects (Section 1.3.3), we first

simulated the estimation procedure in a sibling-based and in a standard GWAS (with sample

size n�). We then computed the prediction accuracy R2 in an independent sample of unrelated

individuals (see ‘Further simulation details’ below).

We first considered the simple case of a single generation of assortative mating. In the

presence of positive assortative mating (�a>0), polygenic scores based on standard GWAS

outperform those based on sib-GWAS, whereas the opposite is true in the case of negative

assortative mating (�a<0) (Appendix 1—figure 10 A). In simulations of two generations of

assortative mating, the gap between the prediction accuracies of scores based on standard

and sib-GWAS (Appendix 1—figure 10 B) widens, suggesting that our qualitative findings

apply to scenarios of sustained assortative mating as well.

We further investigated prediction accuracy as a function of the number of SNPs included

in the polygenic scores, by progressively increasing the p-value threshold, using p-values

obtained from an independent GWAS in unrelated samples (similar to our analysis in

Figure 3). We considered two genetic architectures scenarios: (i) in which all SNPs are causal

and (ii) the case in which 20% of of SNPs are causal (leading polygenic scores to include non-

causal SNPs). Under both scenarios, the gap in prediction accuracies between standard and

sib-GWAS grows with the number of SNPs (Appendix 1—figure 10 C-F).

Further simulation details
We simulated parental and offspring alleles as described for indirect effects in Section

1.3.3. To mimic assortative mating between parents, we first simulated i.i.d. genotypes

(with effect allele counts xi at each SNP i) and randomly assigned ‘mother’ and ‘father’

labels to each individual. We then generated corresponding parental phenotypes under an

additive model as
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Nð
X

m

i

bixi;
ffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p

Þ

where bi is the effect size of SNP i, and h2 is the heritability. The same model was used to

generate offspring phenotypes.

To mimic the assortative mating process, we induced a given correlation between

parental phenotypes, �a, by paring mothers and fathers as follows: we first generated a

random matrix

um;i
up;i

� �

~N
�ym
�yp

� �

;
s2

ym
�asymsyp

�asymsyp s2

yp

 ! !

;

where ym and yp are the average phenotypes of mothers and fathers, respectively, sym and syp

are the standard deviation of the phenotypes of mothers and fathers, respectively. We then

sorted the mothers and fathers sets such that the ranks of values in ym and yp match the ranks

of values in um and up, respectively, to obtain corðym;ypÞ»corðum;upÞ ¼ �a. In the case of two

generations of assortative mating, we simulated the generation of the grandparents similarly.

We compared the performance of polygenic scores based on standard and sib-GWAS as

described in Section 1.3.3. In the simulations, we used the following parameter values:
. Heritability under random mating (h2): 0.5
. The number of loci, assumed independent (i.e., in linkage equilibrium) under random mating:

10,000 (all causal) or 10,000 (20% causal)
. Allele frequencies, p, drawn from a truncated exponential distribution, truncated on the left

such that the minimum allele frequency is 1%.
. SNP effect sizes set to 0 for non-causal loci and drawn as bi ~Nð0;s2Þ, choosing s2 to satisfy
Pm

i 2b2

i pið1� piÞ ¼ h2 for causal loci.
. The number of sibling pairs for sib-GWAS: 10,000
. The number of unrelated individuals for prediction: 10,000
. The number of unrelated individuals for discovery GWAS (i.e., to decide which SNPs to

include in the polygenic score): 20,000
. The number of iterations used to estimate n� and R2 for a given set of parameters: 10
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Appendix 1—figure 1. Variable prediction accuracy within an ancestry group. This figure

extends Figure 1 of the main text, showing prediction accuracies based on large-scale diverse

GWAS that are the union of all strata matching the number of individuals in each stratum. The

numbers in parentheses show GWAS sample sizes (see Materials and methods for details).

Each box and whiskers plot was computed based on 20 iterations of resampling estimation

and prediction sets. Thick horizontal lines denote the medians. The polygenic scores were

estimated in samples of unrelated WB individuals. Phenotypes were then predicted in distinct

samples of unrelated WB individuals, stratified by sex (A), age (B) or Townsend deprivation

index, a measure of SES (C). In red and green cases, polygenic scores are based on a GWAS in

a sample limited to one sex, age or SES group (a ’stratum’). In black, polygenic scores are

based on a diverse GWAS in a pooled sample of all strata. In blue, polygenic scores are based
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on a diverse GWAS in a pooled sample of all strata but downsampled to match the size of the

stratified GWAS.

Appendix 1—figure 2. Variable prediction accuracy (measured as R2) within an ancestry group.

This figure mirrors Figure 1 of the main text, except for the y-axis showing R2 values (squared

correlation between polygenic score and phenotype residualized on covariates), rather than

incremental R2. Each box and whiskers plot was computed based on 20 iterations of

resampling estimation and prediction sets. Thick horizontal lines denote the medians. The

polygenic scores were estimated in samples of unrelated WB individuals. Phenotypes were

then predicted in distinct samples of unrelated WB individuals, stratified by sex (A), age (B) or

Townsend deprivation index, a measure of SES (C). In red and green cases, polygenic scores
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are based on a GWAS in a sample limited to one sex, age or SES group (a ’stratum’). In blue,

polygenic scores are based on a GWAS in a diverse sample of all strata downsampled to

match the size of the stratified GWAS.
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Appendix 1—figure 3. Dependence on the polygenic score model. This figure extends

Figure 1 of the main text, showing the prediction accuracies as a function of the p-value

threshold for inclusion of a SNP in the polygenic score when based on a pruning and

thresholding approach. The higher the p-value threshold is, the more SNPs are included. Last

points on the x-axis correspond to a polygenic score model based on the LDpred approach

(Vilhjálmsson et al., 2015) with a prior probability of 1 on loci being causal. Shown are

incremental R2 values in different prediction sets. Points and error bars are mean and central

80% range computed based on 20 iterations of resampling estimation and prediction sets. (A–

C) The polygenic scores were estimated in samples of unrelated WB individuals. Phenotypes

were then predicted in distinct samples of unrelated WB individuals, stratified by sex (A),

age (B) or Townsend deprivation index, a measure of SES (C). (D–I) Same as in A-C, but here

the polygenic scores are based on a GWAS in a sample limited to one sex, age or SES group.

The trends shown in Figure 1 of the main text are for p-value threshold of 10�4, and are

qualitatively similar to the trends for other choices of the polygenic score model. For each

trait, sample sizes are matched across all GWAS sets.
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Appendix 1—figure 4. Estimating mean effect size across strata. SNPs were ascertained in

large samples of unrelated WB individuals. The effects of trait-increasing alleles were then re-

estimated in an independent set of unrelated WB individuals (that were excluded from the

original GWAS) stratified by sex for diastolic blood pressure (A), by age for BMI (B) and by

Townsend deprivation index, a measure of SES for years of schooling (C). Points and error bars

are mean and central 80% range computed based on 20 iterations of resampling

ascertainment and estimation sets, plotted as a function of the p-value threshold (for p-values

obtained in the discovery GWAS).
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Appendix 1—figure 5. Variable prediction accuracy within an ancestry also seen using a linear

mixed model. This figure mirrors the last two columns in Appendix 1—figure 3, except that

here, the GWAS estimates were obtained from a linear mixed model (LMM) (Loh et al., 2015).

Shown are the prediction accuracies, measured as incremental R2, as a function of the p-value

threshold for inclusion of a SNP in the polygenic score. Points and error bars are mean and

central 80% range computed based on 20 iterations of resampling estimation and prediction

sets. The polygenic scores are based on a GWAS in a sample limited to one sex, age or SES

group. Phenotypes are then predicted in distinct samples of unrelated individuals, stratified by

sex (A,B), age (C,D) or Townsend deprivation index, as a measure of SES (E,F). The qualitative

trends are similar to those in Appendix 1—figure 3, which uses a standard linear regression

with PCs (principal components of the genotype data) as a control for population structure

when testing for an association between the phenotypes and genotypes. The similarity

suggests that the observed differences in prediction accuracies across strata are not driven to

a large degree by population structure confounding.
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Appendix 1—figure 6. Comparison of siblings and unrelated individuals in the UK Biobank with

respect to age, SES, and sex ratio. Panels show the distribution of Townsend deprivation index,

a measure of SES (A), the age distribution (B), and the proportion of males (C) for the siblings

and unrelated sets used in the analysis described for Figure 3 of the main text. For each

sibling pair, one sibling was randomly selected for these comparisons. The asterisk symbol

marks a significant difference at the 1% level between siblings and unrelated individuals, as

assessed by a Mann-Whitney test. SES and age distributions are quite similar in siblings and

unrelated sets, whereas the proportion of males is significantly smaller in the siblings.
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Appendix 1—figure 7. Comparison of siblings and unrelated individuals in the UK Biobank with

respect to population structure. Panels show the distribution of PCs (principal components of

the genotype data) for the siblings and unrelated sets used in the analysis described for

Figure 3 of the main text. For each sibling pair, one sibling was randomly selected for these

comparisons. The asterisk symbol marks a significant difference at the 1% level between

siblings and unrelated individuals, as assessed by a Mann-Whitney test. Despite slight but

significant differences, siblings and unrelated sets are broadly similar with respect to their

genetic ancestries.
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Appendix 1—figure 8. Comparison of prediction accuracies of polygenic scores based on stan-

dard and sib-GWAS for simulated traits. This figure mirrors Figure 3B of the main text, but here

plotted for 12 simulated traits. The numbers in parentheses are the heritability, the number of

causal loci considered, and the simulation replicate number, respectively. Three traits were

simulated for each pair of heritability and number of causal loci parameters (see Materials and

methods for simulation details). Small points show the ratio of the prediction accuracies in the

two designs across 30 iterations; in each iteration, we resample sets of unrelated individuals to

constitute three sets for discovery, estimation and prediction. Larger points show median

values.
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Appendix 1—figure 9. Simulation results for polygenic scores based on standard GWAS and

sib-GWAS in the presence of indirect effects. (A,B) Simulation results as a function of the

correlation between direct and indirect effects, �. Simulations were performed with h2b ¼ 0:5,

t

2

h ¼ 0:1, and s2

b=s
2

h ¼ 5. The size of the estimation set in the sib-GWAS is 10,000, and the size
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of the estimation set in the standard GWAS is chosen to match sampling variances between

the two study designs. The polygenic scores is based on 10,000 causal loci; its performance

was evaluated in an independent set of 10,000 unrelated individuals. As long as direct and

indirect effects are not strongly negatively correlated, the out of sample prediction accuracy is

higher for the polygenic scores based on standard GWAS. (C) Same as (A) but with three-fold

greater environmental noise. (D) Same as (A) but with 100 causal loci. In (A–D) points are

mean ± 2 SD in 10 simulation iterations. Solid lines are values based on analytic expressions

derived in Section 1.3.2. (E–H) Simulation results, with the same parameters as in (A) but

� ¼ 0:5, as a function of the number of SNPs included in the polygenic scores, with all loci

being causal (E,F), or with 20% of loci being causal (G,H). SNPs are added in increasing order

of their association p-value in an independent set of 20,000 unrelated individuals. In both

cases, the ratio of prediction accuracies of polygenic scores based on sib- versus standard

GWAS becomes smaller with the inclusion of more weakly associated SNPs, a behavior

qualitatively similar to observations in Figure 3 in the main text. Points are mean ± 2 SD in 10

simulations. See Section 1.3.3 for simulation details.
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Appendix 1—figure 10. Simulation results for polygenic scores based on standard GWAS and
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sib-GWAS in the presence of assortative mating. (A) Simulation results as a function of the

approximate correlation between parental phenotypes, �a. Simulations were performed with

h2 ¼ 0:5 under random mating. The size of the estimation set in the sib-GWAS is 10,000, and

the size of the estimation set in the standard GWAS is chosen to match sampling variances

between the two study designs. The polygenic score is based on 10,000 causal loci; its

performance was evaluated in an independent set of 10,000 unrelated individuals. Standard-

GWAS based polygenic scores outperforms (underperforms) sib-GWAS based polygenic

scores under positive (negative) assortative mating. (B) Ratio of prediction accuracies of the

polygenic scores based on sib- versus standard GWAS, as a function of �a, for two sets of

simulations with one or two generations of assortative mating, with same parameters as in (A).

(C–F) Simulation results, with the same parameters as in (A) but �a ¼ 0:5, as a function of the

number of SNPs included in the polygenic score, with all loci being causal (C,D), or with 20%

of loci being causal (E,F). SNPs are added in the order of their association p-value in an

independent set of 20,000 unrelated individuals. In both cases, the ratio of prediction

accuracies for scores based on sib-GWAS versus standard GWAS becomes smaller with the

inclusion of more weakly associated SNPs, a behavior that is qualitatively similar to

observations in Figure 3 in the main text. Points are mean ± 2 SD in 10 simulation

iterations. See Section 1.4.1 for simulation details.
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Appendix 1—figure 11. Comparison of prediction accuracies of polygenic scores based on

standard and sib-GWAS matched for sex ratio. This figure mirrors Figure 3B of the main text,

but here the samples of siblings and unrelated individuals used in the analysis are matched for

their sex ratios. Results are shown for diastolic blood pressure, as the prediction accuracy

differed between sexes (Figure 1); the related phenotype of pulse rate; and a subset of the

traits for which the prediction accuracy varied by GWAS design (Figure 3B). Small points show

the ratio of the prediction accuracies in the two designs across 10 iterations; in each iteration,

we resample sets of unrelated individuals to constitute three sets for discovery, estimation and

prediction. Larger points show median values. We note that pulse rate is now similarly

predicted by the two GWAS approaches, suggesting that perhaps the slightly higher
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prediction accuracy of the sib-GWAS shown in the main text Figure 3B are due to the sex

ratio difference; for other traits, results are qualitatively unchanged.
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Appendix 1—figure 12. Prediction accuracy of polygenic scores based on sib-and standard

GWAS, for a range of traits. This figure complements Figure 3C–F of the main text, showing

the results of the study design depicted in Figure 3A for all traits presented in Figure 3. As

described for Figure 3, we randomly divided unrelated individuals to constitute three non-

overlapping sets for discovery, estimation and prediction. Small points correspond to 10

iterations of resmapling these three sets. The prediction accuracy is plotted as a function of

the p-value threshold, where p-values come from the discovery GWAS. Lines show median

values.
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Appendix 1—figure 13. Prediction accuracy for years of schooling, for individuals with 0 or 1

full sibling. (A) The y-axis shows the prediction accuracy, measured as incremental R2, in

prediction sets stratified by participants’ number of siblings, using a polygenic score for years

of schooling based on a GWAS performed using individuals who reported to have exactly 1

sibling. The x-axis shows the p-value threshold for inclusion of a SNP in the polygenic score

when based on a pruning and thresholding approach. Last points on the x-axis correspond to

a polygenic score model based on the LDpred approach (Vilhjálmsson et al., 2015) with a

prior probability of 1 on loci being causal. Points are values based on 10 iterations of

resampling estimation and prediction sets. Thick horizontal lines denote the mean values. (B–

E) Comparison of the distribution of Townsend deprivation index (B) the age distribution (C),

the proportion of males (D), and mean years of schooling (± 2 SD) between individuals who

reported having no sibling and those who reported having 1 sibling. The two sets have

somewhat different distributions of ages (or possibly come from somewhat different birth

cohorts), a feature that could contribute to the patterns seen in panel A, but are otherwise

similar with respect to the other features considered.
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Appendix 1—figure 14. Variable prediction accuracy for binary traits, when measured as

incremental AUC. This figure is analogous to the one shown in Figure 1 of the main text, but

considering dichotomized versions of the traits presented in Figure 1 in the prediction sets,

and with the y-axis showing incremental AUC values rather than incremental R2. The polygenic
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scores are based on GWAS using the quantitative trait values as in Figure 1. The traits are (A)

diastolic blood pressure of over 110 mmHg, (B) BMI of over 35 Kg/m2, and (C) completing a

college or a university degree. Each box and whiskers plot was computed based on 20

iterations of resampling estimation and prediction sets. Thick horizontal lines denote the

medians.
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Appendix 1—figure 15. Variable prediction accuracy for binary disease phenotypes, measured

as incremental AUC, in men versus women. This figure is analogous to the one shown in

Figure 1 of the main text, but looking at disease traits, and with the y-axis showing

incremental AUC rather than incremental R2. Each box and whiskers plot was computed based

on 20 iterations of resampling estimation and prediction sets. Thick horizontal lines denote the

medians. The variable prediction accuracy of PGS based on GWAS in men only versus women

only could be driven in part by the differences in ratios of cases to controls (and hence by

differences in the precision of the effect size estimates). However, we also observe that the

prediction accuracy can vary depending on the sex composition of the prediction set (e.g., for

cardiovascular outcomes), an observation that cannot be attributed to differences in case:

control ratios of the GWAS.
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Appendix 1—figure 16. Comparison of prediction accuracies of polygenic scores (measured as

R2) based on standard and sib-GWAS. This figure mirrors Figure 3B of the main text, but here

we first residualized the phenotypes on covariates, and then ran the same pipeline described

as that used to generate Figure 3B on the residuals without further adjustment for covariates

in the GWAS or prediction evaluation. Thus, this figure relates more directly to the analytical

derivation in Section 1.2. However, the results in Figure 3B and here are qualitatively similar.

Small points show the ratio of the prediction accuracies in the two designs across 10

iterations; in each iteration, we resample sets of unrelated individuals to constitute three sets

for discovery, estimation and prediction. Larger points show median values.

Appendix 1—table 1. UK Biobank phenotype data used in this study and their corresponding

data fields. In parentheses are the units of measurements.

Trait Description UKB data field

Age Age when attended assess-
ment center (years)

21003

Age at first sex Self-reported age at first sex-
ual intercourse (years)

2139

Alcohol intake frequency Self-reported category, en-
coded as an integer: 1, ’Daily
or almost daily’; 2, ’Three or
four times a week’; 3, ’Once or
twice a week’; 4, ’One to three
times a month’; 5, ’Special
occasions only’; 6, ’Never’

1558

Basal metabolic rate Estimated from body compo-
sition impedance measure-
ments (KJ)

23105

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Trait Description UKB data field

Birth weight Self-reported birth weight (Kg) 20022

Body mass index Constructed from height and
weight measurements (Kg/m2)

21001

Diastolic blood pressure Measured using automated
devices (mmHg); values are
adjusted for medicine use (see
Materials and methods)

4079, 6153, 6177

Fluid intelligence Unweighted sum of the num-
ber of correct answers given
to 13 fluid intelligence ques-
tions

20016

Forced vital capacity Calculated from breath spiro-
metry (liters)

3062

Hair color Self-reported category, en-
coded as an integer: 1,
’Blonde’; 2, ’Red’; 3, ’Light
brown’; 4, ’Dark brown’; 5,
’Black’; none, ’Other’

1747

Hand grip strength Measured right and left hand
isometric grip strength (Kg)

46, 47

Height Measured standing height
(cm)

50

Hip circumference Measured hip circumference
(cm)

49

Hospital inpatient diagnoses Diagnoses made during hos-
pital inpatient admissions,
coded according to the Inter-
national Classification of
Diseases (ICD-9 and ICD-10)

41202, 41203, 41204,
41205, 41270, 41271

Household income Self-reported average total
annual household income be-
fore tax category, encoded as
an integer: 1, ’Less
than £18,000’; 2, ’£18,000 to
£30,999’; 3, ’£31,000 to
£51,999’; 4, ’£52,000 to
£100,000’; 5, ’Greater than
£100,000’

738

Myocardial infarction outcomes Algorithmically-defined myo-
cardial infarction outcomes
obtained through combina-
tions of UK Biobank’s assess-
ment data collection (e.g.,
self-reported conditions), and
data from hospital admissions

42000, 42001

Neuroticism score Derived summary score,
based on participants’
responses to 12 neurotic be-
haviour-related questions

20127

Number of full siblings Sum of self-reported number
of full brothers and full sisters

1873, 1883

Overall health rating Self-reported category, en-
coded as an integer: 1,
’Excellent’; 2, ’Good’; 3, ’Fair’;
4, ’Poor’

2178

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Trait Description UKB data field

Pack years of smoking Calculated for individuals who
have ever smoked as the
number of cigarettes smoked
per day, divided by twenty,
multiplied by the number of
years of smoking (years)

20161

Pulse rate Measured during the auto-
mated blood pressure read-
ings (bpm)

102

Qualifications Self-reported educational or
professional qualifications, se-
lected from: ’College or Uni-
versity degree’, ’NVQ or HND
or HNC or equivalent’, ’Other
professional qualifications eg:
nursing, teaching’, ’A levels/
AS levels or equivalent’, ’O
levels/GCSEs or
equivalent’, ’CSEs or equiva-
lent’, or ’None of the above’

6138

Sex Self-reported sex and as de-
termined from genotyping
analysis

31, 22001

Skin color Self-reported category, en-
coded as an integer: 1, ’Very
fair’; 2, ’Fair’; 3, ’Light olive’; 4,
’Dark olive’; 5, ’Brown’; 6,
’Black’

1717

Townsend deprivation index Townsend deprivation index
at recruitment

189

Vascular/heart problems Self-reported vascular/heart
problems diagnosed by
doctor selected from the ca-
tegories: ’Heart attack’,
’Angina’, ’Stroke’, ’High blood
pressure’, and ’None of the
above’

6150

Waist circumference Measured waist circumference
(cm)

48

Appendix 1—table 2. Genetic correlations across samples that vary by a study characteristic.

Numbers are genetic correlations estimated using LD score regression for BMI, years of

schooling and diastolic blood pressure, across samples stratified by age, Townsend deprivation

index (a measure of socioeconomic status, SES), and sex, respectively. ’Q’ denotes quartile of

age or SES.

Trait/characteristic Pair of strata Genetic correlation (s.e.)

BMI/Age (Q1,Q2) 0.93 (0.036)

(Q1,Q3) 0.95 (0.035)

(Q1,Q4) 0.95 (0.038)

(Q2,Q3) 0.89 (0.032)

(Q2,Q4) 0.91 (0.036)

(Q3,Q4) 1.00 (0.040)

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Trait/characteristic Pair of strata Genetic correlation (s.e.)

Years of schooling/SES (Q1,Q2) 0.98 (0.054)

(Q1,Q3) 1.00 (0.067)

(Q1,Q4) 0.93 (0.068)

(Q2,Q3) 0.97 (0.064)

(Q2,Q4) 1.09 (0.074)

(Q3,Q4) 1.04 (0.074)

Diastolic blood pressure/Sex (male,female) 0.93 (0.031)

Appendix 1—table 3. Sample sizes used for siblings and unrelated sets. As described in

Figure 3A, for the comparison of prediction accuracies of polygenic scores based on standard

and sib-GWAS, we first ascertain SNPs in a large sample of unrelated individuals (‘Unrelated-

discovery’) and then estimate the effect of these SNPs with a standard regression using

unrelated individuals (‘Unrelated-n*’) and, independently, using sib-regression (in the ‘Siblings’

set). Finally, we used the polygenic scores for prediction in a third sample of unrelated

individuals (‘Unrelated-prediction’). This table shows sample sizes used for each set across the

traits analyzed. For simulated traits, the numbers in parentheses are heritability, number of

causal loci, and simulation replicate, respectively (three traits were simulated for each pair of

heritability and number of causal loci parameters, see Materials and methods for simulation

details).

Trait Siblings (pairs) Unrelated-n*
Unrelated-
discovery

Unrelated-
prediction

Age at first sex 13675 8746 244988 27220

Alcohol intake frequency 17282 10923 276885 30764

Basal metabolic rate 16802 13467 269750 29972

Birth weight 6750 5766 159074 17674

BMI 17217 12359 274868 30540

Diastolic blood pressure 14791 9514 253227 28136

Fluid intelligence 3889 2979 101016 11223

Forced vital capacity 14605 10009 252576 28064

Hair color 16859 11763 272209 30245

Hand grip strength 17070 10832 275117 30568

Height 17242 18147 269973 29997

Hip circumference 17254 11648 275930 30658

Household income 13240 8704 239326 26591

Neuroticism score 11756 6909 227010 25223

Overall health rating 17189 10378 276581 30731

Pack years of smoking 2307 1682 85544 9504

Pulse rate 14791 8812 253859 28206

Skin color 16903 10334 274159 30462

Waist circumference 17257 11749 275873 30652

Years of schooling 17037 11885 273553 30394

Simulated trait (0.5,10K,1) 17299 11685 276404 30711

Simulated trait (0.5,10K,2) 17299 11505 276566 30729

Simulated trait (0.5,10K,3) 17299 11422 276641 30737

Simulated trait (0.5,100K,1) 17299 11814 276288 30698

Appendix 1—table 3 continued on next page
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Appendix 1—table 3 continued

Trait Siblings (pairs) Unrelated-n*
Unrelated-
discovery

Unrelated-
prediction

Simulated trait (0.5,100K,2) 17299 11833 276271 30696

Simulated trait (0.5,100K,3) 17299 11490 276579 30731

Simulated trait (0.1,10K,1) 17299 9072 278756 30972

Simulated trait (0.1,10K,2) 17299 9158 278678 30964

Simulated trait (0.1,10K,3) 17299 9111 278721 30968

Simulated trait (0.1,100K,1) 17299 9133 278701 30966

Simulated trait (0.1,100K,2) 17299 9069 278758 30973

Simulated trait (0.1,100K,3) 17299 9108 278723 30969

Appendix 1—table 4. Qualifications to years of schooling conversion table. Educational or

professional qualifications were converted to years of schooling following Okbay et al. (2016).

Qualifications (UKB data field 6138) Years of schooling

College or University degree 20

NVQ or HND or HNC or equivalent 19

Other professional qualifications eg: nursing, teaching 15

A levels/AS levels or equivalent 13

O levels/GCSEs or equivalent 10

CSEs or equivalent 10

None of the above 7
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