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Abstract

The ability of a transcription factor to regulate its targets is modulated by a variety of genetic and 

epigenetic mechanisms, resulting in highly context-dependent regulatory networks. However, 

high-throughput methods for the identification of proteins that affect transcription factor activity 

are still largely unavailable. Here we introduce a systems biology framework, MINDy (Modulator 

Inference by Network Dynamics), for the genome-wide identification of post-translational 

modulators of transcription factor activity within a specific cellular context. When used to dissect 

the regulation of MYC activity in human B lymphocytes, the approach inferred novel modulators 

of MYC function, which act by distinct mechanisms, including protein turn-over, transcriptional 

complex formation, and selective enzyme recruitment. MINDy is generally applicable to study the 

post-translational modulation of mammalian transcription factors in any cellular context. As such 

it provides a useful resource to dissect context-specific signaling pathways and combinatorial 

transcriptional regulation.
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INTRODUCTION

Reverse engineering of cellular networks in prokaryotes and lower eukaryotes1–3, as well as 

in mammals4–6, has started to unravel the remarkable complexity of transcriptional 

programs. These programs, however, may change substantially as a function of the 

availability of proteins affecting their post-translational modification, such as 

phosphorylation, acetylation and ubiquitination enzymes7, as well as of those participating 

in transcription complexes (co-factors), thus making cellular networks highly context 

dependent.

Although the large-scale reprogramming of the cell’s transcriptional logic was studied in 

yeast8, 9, identification of a repertoire of genes that effect these events remains elusive. 

Indeed, compared to tools such as ChIP-on-Chip or reverse engineering algorithms for the 

analysis of transcriptional networks4, 10, only one experimentally validated algorithm exists 

for the dissection of signaling networks in a mammalian context11, which inferred 

substrates of 73 kinases. Here we propose and experimentally validate MINDy (Modulator 

Inference by Network Dynamics), a gene expression profile based method for the systematic 

identification of genes that modulate a transcription factor’s (TF) transcriptional program at 

the post-translational level, i.e. those encoding proteins that affect the TF’s activity without 

changing its mRNA abundance. These proteins may post-translationally modify the TF (e.g., 

kinases), affect its cellular localization or turnover, be its cognate partners in transcriptional 

complexes, or compete for its DNA binding sites. They may also include proteins that do not 

physically interact with the TF, such as those in its upstream signaling pathways.

RESULTS

The MINDy algorithm

MINDy interrogates a large gene expression profile dataset to identify candidate modulator 

genes whose expression strongly correlates with changes in a TF’s transcriptional activity. 

As shown in Supplementary Information (SI) Section 1.1, this can be efficiently 

accomplished by computing an information theoretic measure known as the Conditional 

Mutual Information (CMI), I[T F; t| M] 12, between the expression profile of a transcription 

factor (TF) and one of its putative targets (t), given the expression of a modulator gene (M). 

Accurate estimation of the CMI requires exceedingly large datasets. Thus MINDy infers 

candidate modulators using a related, yet simpler estimator, which we denote as ΔI (see 

Methods). Briefly, the estimator assesses the statistical significance of the difference in 

Mutual Information (MI) between the TF and a target in two subsets, each including 35% of 

samples, in which the modulator is least and most expressed, respectively. The 35% 

parameter was determined empirically as the one optimizing the identification of proteins in 

the B-cell receptor signaling pathway as modulators of the MYC TF (see Methods).

A schematic representation of the MINDy algorithm is provided in Figure 1A. MINDy takes 

four inputs: a gene expression profile dataset, a TF of interest, a list of potential modulator 

genes (M1, M2,…) and a list of potential TF targets (t1,t2,…). The ΔI estimator requires that 

the expression of the modulator and of the TF be statistically independent (independence 

constraint), and that the modulator expression have sufficient range (range constraint). 
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Appropriate statistical tests for these constraints are discussed in the Methods. Candidate 

modulators may include all genes satisfying these constraints (unbiased analysis) or may be 

filtered by additional criteria, e.g., their molecular functions. Each possible triplet (TF, M, t) 

is then independently tested using the ΔI estimator. False positives are controlled using 

appropriate statistical thresholds (see Methods).

A positive or negative Mode of Action is determined, depending on whether the TF-target 

MI increases or decreases as a function of the modulator abundance (Figure 1A). The Mode 

of Action, however, is not necessarily equivalent to the modulator’s Biological Activity as a 

TF activator or antagonist. For instance, a modulator may be such a strong TF-activator that 

the TF-target kinetics becomes saturated even when the TF is slightly activated. In that case, 

TF-target MI may decrease as a function of the modulator. Details on the CMI analysis and 

on how to assess both Mode of Action and Biological Activity of a modulator are provided in 

the Methods section.

For illustrative purposes, we show a simple synthetic network (Figure 1B, see Methods), 

which explicitly models two post-translational modulation events (activation by 

phosphorylation and co-factor binding) differentially affecting a TF’s regulatory logic. 

Rather than representing a realistic case this model is only a conceptual tool to illustrate two 

alternative regulatory programs of a TF depending on its modulators (Figure 1C).

MINDy-based identification of MYC modulators

We applied MINDy to the genome-wide identification of modulators of the MYC proto-

oncogene, using a previously assembled collection of 254 gene expression profiles13, 14, 

representing 17 distinct cellular phenotypes derived from normal and neoplastic human B 

lymphocytes (see Methods). MYC encodes a basic helix-loop-helix/leucine zipper (bHLH/

Zip) TF, controlling many cellular processes, including cell growth, differentiation, 

apoptosis and DNA replication15, 16. It is implicated in the pathogenesis of several human 

cancers17 and can either activate or repress a large number of targets, depending on the 

cellular context (for a review see [18]).

To study MINDy’s robustness and generality, we tested its performance using different 

MYC-target selections. First, we used 340 literature-validated targets from the MYC 

database19 (DB-targets). Then, to also test whether the algorithm may generalize to TFs 

whose targets are not characterized in the literature, we used 197 MYC targets inferred by 

ARACNe4 (AR-targets). Finally, see SI section 1.9, we considered all genes in the gene 

expression profile data as candidate targets (ALL-targets), representing cases when literature 

or computationally-inferred TF targets are not available.

MINDy identifies known MYC modulators—From a pool of 3,131 genes satisfying 

both independence and range constraints and using DB-targets, MINDy inferred 662 MYC 

modulators (Table S1) at a False Discovery Rate (FDR) of 4.5×10−3 (see Methods). Gene 

Ontology (GO) molecular function enrichment analysis revealed that the 20 most enriched 

categories by Fisher’s exact test (FET) include protein kinase activity (p = 0.002), 

transcription factor binding (p = 0.003), acetyltransferase activity (p = 0.004) and 

phosphoprotein phosphatase activity (p = 0.016). Thus, inferred modulators were enriched in 
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categories known to include effectors of MYC activity20–22 (see Methods and Table S2 for 

details on the GO enrichment analysis).

To test whether MINDy could recapitulate literature-based MYC modulators, we assembled 

an unbiased set of 233 MYC modulators, including both proteins physically interacting with 

MYC and indirect modulators (Table S3), using the Ingenuity software (Ingenuity® 

Systems, www.ingenuity.com). The assumption is that physical interactors are likely to 

affect MYC protein function, although there may be false positives. While not exhaustive, 

this provides an independently-established, literature-based dataset to assess algorithm 

performance (see SI Section 1.8 for details on inclusion criteria).

From this set, 150 genes were excluded as not represented on the chip, not expressed in B 

cells or not satisfying the range or independence constraints. Of the remaining 83, 29 (35%) 

were inferred as MYC modulators by the algorithm (p = 0.0078 by FET). This suggests that 

the algorithm is effective in recapitulating known MYC modulators (especially since 

Ingenuity modulators may not be B cell specific) with recall comparable to high-throughput 

assays for protein-protein interactions, which on average detect 20% of known 

interactions23. We note that 54/83 proteins were reported by Ingenuity as MYC-modulators 

not supported by a direct physical interaction. Of these, MINDy identified 18 (33.3%, p = 

0.041 by FET), suggesting that MINDy is useful in identifying both physically interacting 

and indirect TF-modulators. Indeed, almost twice as many modulators (18 vs. 11) were 

found by MINDy among proteins not known to interact directly with MYC.

To focus our analysis on specific molecular functions, we restricted candidate modulators to 

542 signaling proteins – including protein kinases, phosphatases, acetyltransferases and 

deacetylases – and to 598 TFs (see Methods). Among these, MINDy identified 91 signaling 

proteins (Table S4) and 99 TFs (Table S5), respectively, as MYC modulators (FDR = 

0.0053). For each modulator, virtually 100% of the ΔI tests inferred the same Mode of 

Action (see columns “T+” and “T−” in Table S4 and S5) and fewer than 15% of the 

modulators had an ambiguous Biological Activity.

To assess a lower bound on the fraction of true positives among inferred modulators (i.e. 

precision), we performed manual literature curation. Given the labor-intensive nature of this 

step, only 29 signaling proteins and 35 TFs affecting more than 30 MYC targets were 

considered. Among the former (Table 1), 11 appear as MYC modulators in published reports 

(precision = 37.9%). Similarly, among the latter (Table 1), 6 appear in published reports as 

MYC co-factors or antagonists (precision = 17.1%). For TFs with informative binding 

profiles in TRANSFAC24, we tested whether their binding sites were enriched in promoters 

of the modulated targets (see Methods). 14 of 35 TFs had appropriate binding profiles. Of 

these, 11 were highly enriched. Overall, 17 of 35 TFs (precision = 48.6%) were either 

literature-validated or had enriched binding sites (see Table 1 and Table S6). This suggests 

that MINDy’s precision may approach experimental assays23 when all modulators will be 

experimentally tested.

We then compared the performance of MINDy using literature-based targets (DB-targets) to 

that with targets computationally-inferred by ARACNe (AR-targets). Overlap between the 
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two target sets was highly significant (p = 2.89×10−18) but relatively small (17%). 

Nonetheless, overlap between MINDy inferred modulators, using the two target sets, was 

almost complete: 93.8% (p = 3.10×10−27) among signaling proteins and 95.3% (p = 

4.56×10−288) among TFs, respectively (See SI Section 1.9 for more details). This suggests 

that the method is highly robust to target selection and can be effectively generalized to TFs 

whose targets are not known from the literature but can be inferred computationally.

Experimental Validation

We selected four candidates among signaling genes and co-TFs for experimental validation, 

including a kinase (STK38), two TFs (BHLHB2 and MEF2B) and a de-acetylating enzyme 

(HDAC1). These genes were selected based on the availability of reagents allowing the 

thorough validation of their activity, and the diversity of the possible mechanisms by which 

they may modulate MYC activity. Since no single B-cell line expressed more than two of 

the four tested modulators, appropriate lines were selected for the silencing experiments 

among those with the highest modulator expression.

STK38—As a first candidate, we validated STK38, a Serine/Threonine kinase25 inferred by 

MINDy as a strong positive modulator of MYC activity, affecting 60 targets (Figure 2A, 

Table S4). We silenced STK38 by lentiviral vector-mediated shRNA expression in ST486 

cells. While qRT-PCR analysis showed that MYC mRNA concentration was unchanged 

following STK38 silencing, MYC protein levels were significantly affected (Figure 2B), 

suggesting a post-translational modulation effect. We proceeded to test two MYC targets in 

MINDy predictions, BCL2 and NME1, which are normally repressed by MYC26, 27. 

Consistently with what MINDy predicted, both genes were up-regulated following STK38 

silencing (Figure 2C). Additionally, to test whether STK38-mediated MYC modulation is 

target specific, we tested three additional MYC targets not inferred by MINDy. The first 

two, TERT and EBNA1BP2, which are known to be activated by MYC4, 28, were down-

regulated following STK38 silencing, while the third one, p21CIP1, which is known to be 

repressed by MYC29, was up-regulated (Figure 2C). These results confirm the observed 

target-independent down-regulation of MYC at the protein level. Furthermore, STK38-

mediated modulation of MYC affected its phosphorylation. Immunoblot analysis of MYC 

protein in ST486 cells, in the presence of inhibitor of proteasomal degradation (MG132), 

showed accumulation of phosphorylated MYC in cells following STK38 silencing compared 

to cells treated with control shRNA, suggesting that STK38 mediates MYC phosphorylation 

(Figure 2D). Finally, co-immunoprecipitation (co-IP) of epitope-tagged STK38 (HA-

STK38) and MYC (FLAG-MYC), in 293T cells transfected with vectors expressing both 

proteins, showed that STK38 and MYC interacts at the protein level (Figure 2E). 

Immunoprecipitation of endogenous MYC using specific antibodies in Ramos cells 

confirmed that the two proteins can interact physiologically in native cells (Figure 2F). 

These results suggest that STK38 modulates MYC activity by directly affecting MYC 

protein stability.

BHLHB2—MINDy infers this TF as a negative modulator of MYC activity, affecting the 

regulation of 80 targets (Figure 3A, Table S5). Indeed, BHLHB2 is a TF able to bind to E-

boxes through its bHLH domain, and it has been proposed to act as a transcriptional 
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repressor30, but not validated as a MYC antagonist. Thus, we tested whether BHLHB2 

could antagonize MYC-mediated transcriptional activation of its target genes, by first 

investigating whether BHLHB2 could affect the transcriptional activation of TERT, a well 

characterized MYC target28. Transient co-transfection of a reporter gene driven by a 

segment of the human TERT promoter region, carrying two E-boxes [TERT-Luc80028], and 

vectors encoding MYC or BHLHB2 in 293T cells showed that BHLHB2 represses MYC-

mediated transcriptional activation on TERT in a dose-dependent manner. This effect is 

MYC-dependent since the basal transcriptional activity of the reporter gene is actually 

mildly increased by BHLHB2 (1.2 fold, Figure 3B). Thus BHLHB2 represses MYC-

mediated regulation but is not a direct repressor of the TERT promoter. We next analyzed 

whether endogenous BHLHB2 molecules are physiologically bound to E-boxes within the 

promoter region of MYC target genes in vivo by quantitative chromatin 

immunoprecipitation (qChIP) assays in B-cells (ODH-III) using antibodies against MYC 

and BHLHB2. The results showed that the promoters of BOP1, ATIC, MRPL12, 

EBNA1BP2 and TERT were bound by both MYC and BHLHB2 (Figure 3C). In order to 

establish the functional significance of BHLHB2-mediated modulation of MYC 

transcriptional activity, we examined whether shRNA-mediated inhibition of BHLHB2 

could affect the response of the 340 canonical MYC-target genes used in the MINDy 

analysis or, more specifically, of the MYC-target genes modulated by BHLHB2 as inferred 

by MINDy. The latter signature was used in case the effect may be highly target specific and 

thus only a subset of MYC-target may be affected by BHLHB2 silencing. To this end, 

ODH-III cells were transduced with lentiviral vectors expressing BHLHB2-specific or 

control shRNAs. Western blot analysis showed that BHLHB2 was effectively silenced, 

while MYC levels were not affected (Figure S5). We then performed gene expression 

profile analysis to assess the effect of BHLHB2 silencing on the expression of MYC targets. 

MYC is known to both positively and negatively regulate its targets31. Thus, without prior 

knowledge of MYC specific activity on each target, we used Gene Set Enrichment Analysis 

(GSEA)32 to assess whether MYC target signature genes are more differentially expressed 

than non-MYC target genes following BHLHB2 silencing (see Methods). The analysis 

confirmed a highly significant enrichment of canonical MYC targets within differentially 

expressed genes (p< 0.001) (Figure 3D). Among the 80 MINDy inferred BHLHB2-

modulated MYC-targets, 30 were among the most differentially expressed genes. This 

constitutes approximately a 2-fold increase over their enrichment in non-differentially 

expressed genes (FET p= 8×10−5). MYC mRNA and protein levels were not affected (data 

not shown and Figure S5) indicating a post-translational effect. These results validate 

BHLHB2 as an antagonist of MYC activity.

MEF2B: this TF was inferred as a positive modulator of MYC activity, affecting 14 MYC 

targets (Figure 4A, Table S5). MEF2B is a member of the MEF TF family, which interacts 

with the myogenic bHLH proteins MyoD and E12 to activate gene transcription through 

direct binding to E-boxes on target promoters33. Details on the validation assays are 

provided in SI Section 1.11. Briefly, similar to BHLHB2, we showed (a) that MEF2B 

physically interacts with MYC both exogenously in 293T cells (Figure 4B), and 

endogenously in P3HR1 and Ramos cells (Figure 4C), (b) that MYC and MEF2B can 

synergistically activate a TERT reporter gene (Figure 4D), and (c) that genes differentially 

Wang et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expressed following shRNA-mediated silencing of MEF2B were highly enriched in MYC 

targets by GSEA (p< 0.001, Figure 4E), while MYC expression was not affected (Figure 

S6B).

HDAC1—Finally, MINDy identified the histone deacetylase and well-known 

transcriptional co-repressor HDAC134, 35 as a modulator of MYC transcriptional activity 

on 8 MYC targets (Figure 5A, Table S4). Experiments (see SI Section 1.12 for more details) 

confirmed (a) that HDAC1 and MYC can interact in vivo, both exogenously in 293T cells 

(Figure 5B) as also reported in [36], and endogenously in Ramos and P3HR1 cells (Figure 

5C), (b) that genes differentially expressed following shRNA-mediated silencing of HDAC1 

were highly enriched in MYC targets by GSEA (p < 0.001, Figure 5D), while MYC 

expression was not affected (Figure S7A), (c) that HDAC1 can deacetylate MYC in vitro, 

following its CBP-mediated acetylation (Figure 5E) which has been shown to increase 

MYC’s activity as a transcriptional activator, and (d) that, based on qChIP assays with anti-

MYC and anti-HDAC1 specific antibodies, both MYC and HDAC1 bind to the promoters of 

p21CIP1 and CR2, which are repressed by MYC in B-cells (Figure 5F). These results 

suggested that MYC could recruit HDAC1 to repress transcription on selected target genes. 

Taken together, we have demonstrated that HDAC1 may modulate MYC activity both by 

de-acetylation of the MYC protein and by transcriptional repression of selected targets.

Extension to other Transcription Factors: to validate MINDy on a broader range of TFs, 

we used the algorithm to infer all TFs modulated by BHLHB2, MEF2B, HDAC1 and 

STK38, for which we had already collected gene expression profile data following shRNA-

mediated silencing. Specifically, we tested whether their MINDy-inferred targets were 

enriched in differentially expressed genes (by GSEA), following lentivirus mediated shRNA 

silencing of the corresponding modulators. As shown in Table S13, 75% of the TFs inferred 

by MINDy as modulated by any of the four modulators with support greater than 100 targets 

(33 out of 44, p ≤ 5.1×10−34) could be experimentally validated by the analysis. 

Furthermore, as one may expect, validation rates increased – from 51% (87 out of 171), to 

61% (59 out of 96), to 75% (33 out of 44) – when the minimum number of MINDy-inferred 

targets supporting the TF was increased from 25, to 50, to 100, respectively. In general, 

these results are consistent with the MYC analysis and suggest that MINDy is broadly 

applicable to the analysis of TFs other than MYC. (See SI Section 1.13 for further details).

DISCUSSION

We have introduced MINDy, a novel method for the identification of context-specific, post-

translational modulators of TF activity. Literature-based and experimental validation 

suggests that MINDy can recapitulate a large fraction of known MYC modulators and infer 

novel, context-specific modulators, both of MYC and of other TF.

For well studied TFs, targets for the analysis may be selected from the literature or by 

performing genome-wide ChIP assays37, 38. However, computationally-inferred targets 

performed as well or better than literature-based ones, likely due to their context-specific 

nature. About 269 TFs have more than 50 ARACNe-inferred targets using the B-cell 

profiles, and may thus be effectively analyzed by MINDy.

Wang et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm performance was remarkably robust to candidate target selection (DB-targets vs. 

AR-targets). Additionally, MINDy’s formulation is relatively simple, requiring only the 

availability of a large gene expression profile dataset (n ≥ 200 profiles) characterizing a 

sufficient variety of naturally occurring or experimentally perturbed cellular phenotypes. 

This suggests that MINDy can be used to analyze most TFs in a variety of cellular contexts.

Several limitations should be noted. First, candidate modulators that do not satisfy the range 

constraint cannot be tested by the method. These, however, include mostly either genes that 

are not expressed or genes whose availability is so tightly regulated (e.g. housekeeping 

genes) that variability in the gene expression profiles is too limited to establish a low and a 

high range of expression. Second, candidate modulators that do not satisfy the independence 

constraint may not be tested using this approach. In practice, less than half (100/233 = 

42.9%) of the Ingenuity modulators were in this category. This is not a theoretical limitation 

of the method but rather an assumption we use to increase its sensitivity. If desired, the more 

general test may be used without relying on the assumption I[TF; M] = 0 (see SI Section 

1.1). Additionally, transcriptional modulators of MYC can be directly inferred by ARACNe 

and do not require MINDy. Third, in the rare event that the regulatory program of a TF 

changes from activation to repression for specific targets, as a function of a modulator, this 

may not be detected by the algorithm because the MI may not change substantially. In this 

case the multi-information could be used instead of the conditional.

Comparison with existing methods reveals that MINDy is unique in its ability to discover 

large numbers of modulators of the same TF. Finding the optimal Bayesian Network 

structure, assuming arbitrary interactions among genes’ parents, for instance, is hyper-

exponential in the number of parents. As a result, dissecting network topologies with large 

numbers (tens to hundreds) of upstream modulators, as is the case for MYC, may be 

difficult. Other methods39, while promising in a yeast context, have not yet been extended 

to mammalian networks. Finally, comparison with a recently introduced algorithm, 

NetworKIN11, shows that the latter is restricted to substrates of only 73 kinases, from 20 

families, while MINDy can be used to dissect post-translational interactions of a much wider 

nature, including phosphorylation, acetylation, chromatin modification, formation of 

transcriptional complexes, and binding site antagonism, as shown for STK38, HDAC1, 

MEF2B and BHLHB2, just to mention those experimentally validated in this manuscript.

The ability to infer direct and upstream modulators of a desired TF’s activity suggests that 

MINDy may provide highly specific pharmacological targets for the activation or repression 

of specific transcriptional programs, when modulators are restricted to druggable genes40. 

This could be valuable because TFs are generally considered difficult pharmacological 

target.

Although preliminarily applied to the identification of modulators of MYC for experimental 

validation purposes, MINDy has already provided novel biological insights of general 

significance. First, the results indicate that not all modulators can influence the program of a 

TF in a global fashion, but may rather influence specific subsets of the target genes. This 

observation suggests that additional levels of regulation can influence the relationships 

between modulators and the TF they control in different cellular contexts or depending on 
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different signals. Second, MINDy provided novel information about molecules that regulate 

the activity of the MYC protein. These mechanisms may be critically altered in tumors, thus 

modulating MYC’s established oncogenic activity. Finally, MINDy is not limited to 

dissecting post-translational interactions and may be applied without modification to 

identify TFs that are directly modulated by microRNAs or indirectly by genetic and 

epigenetic alterations.

Algorithm availability

At manuscript publication, the source code and executables for MINDy will be made 

available under the Open Source licensing agreement. Additionally, MINDy will be 

incorporated into the geWorkbench package which is distributed both by the NCI and by the 

National Center for Biomedical Computing at Columbia University (http://

wiki.c2b2.columbia.edu/workbench/index.php/Home).

METHODS

Gene expression profile dataset

We used 254 gene expression profiles previously generated by our labs for several studies of 

normal and tumor related B-cell phenotypes using the Affymetrix HG-U95Av2 GeneChip® 

System (approximately 12,600 probes)13, 14. The gene expression profiles are available in 

GEO (series GSE2350, including samples GSM44075-44095, GSM44113-44302 and 

GSM65674-65716). Probe sets with expression mean μ < 50 and standard deviation σ< 0.3μ, 

were considered uninformative and were thus excluded, leaving 7907 probe sets for the 

analysis. Table S9 summarizes the 17 B-cell phenotypes included in this study.

Synthetic network

The synthetic network models two post-transcriptional modifications of a TF, affecting its 

regulatory behavior (Figure 1B). It includes the transcription factor (TF), an activating 

protein kinase (K), a co-factor (cTF) forming a transcriptionally active complex with the TF, 

and three downstream TF targets. The full kinetic model is described in Table S10. 250 

synthetic expression profiles were generated from this model by: (a) randomly sampling the 

TF, K, and cTF mRNA concentration from independent Normal distributions (μ = 4 and σ 

=1), (b) simulating network dynamics until a steady state was reached, and (c) measuring the 

mRNA concentration of the represented species with a multiplicative Gaussian noise (μ = 0 

and σ = 0.1μ).

Candidate modulators

The statistical test for the range constraint is defined in SI Section 1.3. The statistical 

significance test for the independence constraint is based on the Mutual Information, as 

described in [59] (see also SI Sections 1.5 and 1.6).

For the category-specific analysis, we further selected 542 signaling proteins (GO molecular 

function: “protein kinase activity”, “phosphoprotein phosphatase activity”, 

“acetyltransferase activity” and “deacetylase activity”) and 598 TFs (GO molecular 

category: “transcription factor activity”) as candidate modulators.
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MINDy inference

Given a triplet (TF, M, t), with t ≠ TF and t ≠ M, MINDy assesses whether the CMI, I[T F; t| 

M], is constant as a function of M. Assuming that the CMI is a monotonic function of M (see 

SI Section 1.10), this can be efficiently tested by measuring 

, where  and  represent two subsets 

of the samples where M is respectively most and least expressed. For this dataset  is 

chosen to be 35% of the samples by optimizing the effect of B-cell receptor pathway genes 

(which is known to modulate MYC activity42) on regulating canonical MYC target genes 

(see SI Section 1.2). MI was computed using the Gaussian Kernel estimator of [59] (see also 

SI Section 1.5). The p-value corresponding to a specific ΔI is obtained by permutation tests 

(see SI Section 1.1), Bonferroni corrected for the total number of tested target-modulator 

pairs. If a candidate target list is not provided, triplets are further pruned if there exists a 

third gene, x, such that I[T F; x] ≥ I [T F; t] and I[t; x] ≥ I[T F; t] in both , showing an 

indirect relationship between TF and t mediated by x, as suggested by the Data Processing 

Inequality59 (see SI Section 1.7 and Figure S8 for details).

Modulator minimum support

Once MINDy inference is made on individual (TF, M, t), modulators are selected based on 

its support, i.e. the number of TF targets it modulates. The minimum support is determined 

using a permutation test procedure where an identical MINDy run is performed on the same 

set of candidate modulators and candidate targets except that  and  are chosen at 

random. This produces a permutated set of MINDy inferences, based on which we can 

compute the modulator support under the null. The minimum support is then selected as the 

support that gives the smallest FDR (i.e. the ratio between the numbers of selected 

modulators in the permutated run vs. real run). For MINDy analysis based on DB-targets, 

fifteen was determined as the minimum support searching for modulators among all genes, 

and 7 if candidate modulators are restricted to only signaling proteins and TFs. For MINDy 

analysis based on AR-targets, the minimum support is determined to be 8 when candidate 

modulators are selected among signaling proteins and TFs,

Modulator Mode of Action and Biological Activity

For each significant triplet, we define M as a positive (negative) modulator of the T F→ t 

interaction if ΔI> 0 (ΔI< 0). This indicates only whether M increases or decreases the mutual 

information between TF and t, and does not necessarily correspond to the biological activity 

of the modulator (i.e. TF activator or repressor). The latter can be assessed for each tested 

triplet as:
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where ρ is the Pearson correlation between the TF and the candidate target t, and  is the 

mean expression of t in . We assess these differences using a two-sample Student t-test 

with 10% type-I error rate (two sided). For modulators affecting more than one MYC target, 

the biological mode is labeled as undetermined if the undetermined triplets are the majority 

(>50%) or if neither mode dominates the other by more than 30%. Otherwise it is assigned 

the dominant mode (See SI Section 1.4 and Table S11 for more description).

GO enrichment analysis

GO molecular function categories with fewer than 20 and more than 500 genes were 

excluded. The enrichment of each category was computed using the Fisher’s exact test And 

corrected for multiple testing using the method of Storey and Tibshirani60.

Promoter analysis

For TFs with an appropriate DNA binding profile in the TRANSFAC professional database 

(version 6.0)24, we determined the binding-site enrichment in the promoter regions (defined 

as 2Kb upstream and 2Kb downstream of the transcription initiation site, masked for 

repetitive elements) of the targets they modulate. Sequences were retrieved from the UCSC 

Golden Path database (build35, May 2004)61. The binding profile match threshold was 

calibrated for a FDR ≤ 5% per 1 Kb (in both directions). The binding-site enrichment, 

compared to a 13,000 random human promoter5 background, was computed by Fisher’s 

exact test.

Cell lines and cell culture

The human embryonic kidney 293T cells were maintained in DMEM supplemented with 

10% FBS and antibiotics. The Burkitt lymphoma cell lines, Ramos, P3HR1, ST486, and 

ODH-III were maintained in IMDM supplemented with 10% FBS and antibiotics.

Plasmids

The mammalian expression vectors encoding MYC and TERT-800Luc have been 

previously described28. The mammalian expression vectors encoding BHLHB2/Stra13-

FLAG, HDAC1-FLAG, and HA-MEF2B were kindly provided by Dr R. Taneja (Mount 

Sinai School of Medicine, New York, NY), Dr S.L. Schreiber (Harvard University, 

Cambridge, MA), and Dr R. Prywes (Columbia University, New York, NY), respectively. 

HA-STK38 (pcDNA3.1-NDR1-wt) expression vector was provided by Dr. B. Hemmings 

(FMI, Basel, Switzerland). MYC-HA and FLAG-MYC plasmids were constructed by 

subcloning the corresponding human cDNA amplified by PCR into the pcDNA3 

(Invitrogen) and pCMV-Tag2A (STRATAGENE) vectors, respectively.

Transient transfection and reporter assays

293T cells were transiently transfected by using the calcium-phosphate precipitation method 

and luciferase reporter assays were performed as previously described62, 63. Each 

transfection was done in duplicate and luciferase activities were measured 48h post-

transfection using dual-luciferase reporter assay kit (Promega) according to the 

manufacturer’s protocol.
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Co-immunoprecipitation assay and Western blot analysis

Nuclear cell extracts and whole cell lysates were prepared as previously described64. 

Proteins were analyzed by SDS-PAGE and subsequently by Western blot using the 

following antibodies: anti-MYC (C33 and N262), anti-HDAC1 (N-19), and anti-NDR1 

(STK38) (G15) (Santa Cruz Biotechnology); anti-BHLHB2/DEC1 (BL2928) (BETHYL); 

anti-MEF2B (ab33540) (Abcam); anti-STK38 (2G8-1F3) (Novus Biologicals); Flag M2 and 

anti-HA beads (Sigma); and hemagglutinin (Roche).

Quantitative Chromatin immunoprecipitation (qChIP)

ChIP assays were performed as previously described65, 66. Antibodies used were anti-MYC 

(N-262, Santa Cruz), anti-BHLHB2/DEC1 (BL2928, Bethyl) and anti-HDAC1 (AB7028, 

Abcam). The immunoprecipitated chromatin fragments from two independent experiments 

were pooled together and the amounts of sample immunoprecipitated by individual antibody 

were assessed by quantitative real-time PCR. The oligonucleotide pairs are listed in Table 

S12.

In vitro de-acetylation assay

FLAG-MYC and CBP-HA expression vectors were transiently transfected into 293T cells. 

Acetylated-FLAG-MYC was purified with FLAG-beads. FLAG-HDAC1 was purified by 

FLAG-beads from 293T cells transiently transfected with FLAG-HDAC1 expression vector. 

Acetylated-FLAG-MYC and FLAG-HDAC1 were incubated at 30°C for 2hrs in a buffer 

containing 50mM Tris-HCl, 50mM NaCl, 4mM MgCl2, 0.5mM DTT, 0.2mM PMSF, 0.02% 

NP-40 and 5% Glycerol with or without 2μM TSA for inhibition of HDAC1 activity.

shRNA and lentiviral infections

Lentiviral vectors for BHLHB2 shRNA (TRCN0000013249), MEF2B shRNA 

(TRCN0000015739), HDAC1 shRNA (TRCN0000004818), STK38 shRNA 

(TRCN0000010216) and Non-Target control shRNA (SHC002) were purchased from 

Sigma. Lentiviral supernatants were produced by transiently co-transfecting the lentiviral 

vectors, the packaging vector delta 8.9, and the VSV-G envelope glycoprotein vector as 

previously described67, 68. For infection, ODH-III, P3HR1 and ST486 cells (2×106 

cells/ml) were mixed with viral supernatants, supplemented with 8μg/ml polybrene and 

centrifuged for 120 min at 450g. The ODH-III and ST486 cells were collected for analysis 

96h and 60h post-infection, respectively. The lentiviral infected P3HR1 cells were selected 

with puromycin (0.5 μg/ml) for 5 days and collected for analysis.

qRT-PCR analysis

Polymerase chain reaction with reverse transcription (RT-PCR) analysis was performed 

using FastLane Cell cDNA Kit (Qiagen) according to the manufacturer’s instructions. qRT-

PCR was performed with Quanti Tect SYBR Green PCR kit (Qiagen) using the 7300 Real 

Time PCR systems (Applied Biosystems) according to manufacturer’s instructions. The 

oligonucleotide primers are described in Table S12.
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Gene-expression profiling after lentiviral mediated silencing of the modulator gene

For each modulator of interest, 5 samples infected with the modulator-specific shRNA and 5 

with non-target control shRNA, were obtained. Total RNA was extracted with Trizol 

reagent (Invitrogen) and purified using the RNeasy kit (Qiagen). Biotinylated cRNA was 

produced according to the manufacturer instructions, starting with 6μg of total RNA and 

following the one-cycle cDNA synthesis protocol (Affymetrix, 701025 Rev.6). 15 ug of 

fragmented cRNA were hybridized to HG-U95Av2 microarrays (Affymetrix).

Expression profile data analysis

We determined the gene expression values by MAS5.0 normalization method provided in 

Affymetrix’s GeneChip Operating Software (GCOS). Differential expression between 

modulator shRNA and control shRNA samples was analyzed using two-sample t-test. For 

the GSEA analysis probe sets were sorted in decreasing order by the −log10 of their t-test p-

values. Readers are referred to [32] for details on the GSEA algorithm. In the GSEA plot 

specific targets (MYC- or MINDy-signatures) are shown as vertical bars against the 

background of all B cell expressed genes in the expression profiles, sorted from the most to 

the least differentially expressed following silencing of the candidate modulator. The curve 

represents a random walk where the value on the y-axis is increased proportionally each 

time the gene on the x-axis is one of the selected targets and decreased if it is part of the 

background. Weights are chosen proportionally to the statistical significance of the 

differential expression and to the relative number of targets in the signatures vs. the 

background list, such that the curve starts and ends at y = 0. The statistical significance of 

the GSEA statistics (i.e., the maximum height of the curve, called Enrichment Score, ES) 

was determined by permutation test where the ranks of the probe sets were randomly 

shuffled 1000 times. To determine the enrichment of MINDy predicted modulator-specific 

targets of MYC among the differentially expressed genes, probe sets that rank before the 

GSEA leading edge (i.e. the increasing phase of GSEA profile) were determined to be 

significantly differentially expressed, and the enrichment was calculated using the Fisher’s 

exact test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MINDy algorithm
(A) A gene expression profile dataset is represented as a matrix, where columns indicate 

different samples and rows indicate different genes. Given a transcription factor of interest, 

TF, a modulator and a target to be tested by MINDy (M and t respectively) are chosen 

among the remaining genes. Some modulator-target combinations may be eliminated a 

priori based on functional or statistical constraints (blue rectangle). For instance, one may 

want to consider only ubiquitin ligases as candidate modulators. All the samples are then 

sorted according to the expression of the selected modulator M. The set of samples (e.g., 

35%) with the lowest and highest expression of the modulator are then selected. These 

sample sets are labeled M-low and M-high. In each of the two sample sets, samples are 

finally sorted according to the TF expression. Three cases are possible when comparing the 

TF-target correlation in M-high vs. M-low. Scenario 1 (Positive Inferred Modulator): 

Significant increase in MI (i.e. more correlation in the M-high set than in the M-low set); 

Scenario 2 (Negative Inferred Modulator): Significant decrease in MI (i.e. less correlation 

in the M-high set than in the M-low set); Scenario 3&4 (Not a Modulator): No significant 

MI change is observed.

(B) Synthetic network analysis using MINDy. TF: the transcription factor of interest; K: a 

protein kinase; cTF: a co-transcription factor; : activated TF through phosphorylation 

by K; : transcriptionally active complex formed between TF and cTF; G1, G2 and G3 

are three downstream targets of TF. More details on the synthetic network are provided in 

the Methods.

(C) Networks reconstructed by ARACNe and MINDy. ARACNe (left) is based on pairwise 

MI, thus captures only the unconditional interaction between TF and G1. MINDy, on the 
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other hand, infers three-way interactions using the CMI. When K is used as candidate 

modulator (middle), it correctly identified the conditional interaction between TF and G3; 

similarly, it also correctly inferred cTF as the modulator of TF-G2 interaction (right). 

Interactions are labeled with their respective p-values. Interactions that are statistically 

significant, after correction for multiple testing, are shown in black with red p-values.

Wang et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. STK38 regulates the stability of MYC protein
(A) Visualization of MINDy output. Gene expression profiles were displayed with genes on 

rows and samples on columns. Expression values for each gene are rank transformed, 

median centered and rescaled between [−1, 1]. Samples were partitioned based on the 

expression levels of STK38, and within each partition, sorted by the expression levels of 

MYC.

(B) ST486 cells were infected with lentivirus expressing shRNA specific to STK38 and 

collected 96 hours post-infection. Whole cell extracts were analyzed by Western blotting 

using anti-MYC, anti-STK38/NDR1, and anti-β-Actin antibodies. Representative results 

from two of five independent experiments are shown.
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(C) qRT-PCR analysis of MYC and MYC target genes expression after silencing of STK38 

in ST486 cells. Relative expression fold change between STK38 shRNA and control shRNA 

transduced cells was normalized to that of β-Actin housekeeping gene. Bars represent mean 

± standard error (SE) of three different samples.

(D) STK38 mediates MYC phosphorylation. Top graph shows accumulation of 

phosphorylated MYC in STK38 silenced cells in the presence of proteasomal degradation 

inhibitor MG132 (48 hours post-infection). ST486 cells were infected with lentivirus 

expressing STK38 shRNA or control shRNA. The cells were treated with or without MG132 

for 4 hours before harvesting. Whole cell extracts were analyzed by Western blotting using 

anti-STK38, anti-phospho-MYC (Thr58/Ser62), anti-MYC and anti-GAPDH antibodies. 

Bottom plot provides detailed densitometry histogram. Relative ph-MYC expressions (i.e. 

ratio of ph-MYC to total MYC) are normalized to that of cells transduced with control 

shRNA.

(E) HA-STK38 expression vector was transiently transfected into 293T cells with FLAG-

MYC expression vector. At 24-hour post-transfection immunoprecipitation was performed 

using the anti-HA agarose beads. Whole cell extracts and immunoprecipitated proteins were 

analyzed by Western blotting with anti-FLAG and anti-HA antibodies.

(F) Nuclear extracts from Ramos cells were immunoprecipitated with anti-MYC antibody or 

mouse IgG as a control. The precipitates were analyzed by Western blotting with anti-

STK38/NDR1, anti-MYC, and anti-MAX antibodies.
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Figure 3. BHLHB2 antagonizes MYC activity in B-cells
(A) Visualization of MINDy output. See Figure 2A for interpretation of this graph.

(B) TERT promoter-driven luciferase reporter construct, TERT-800Luc, was transiently co-

transfected into 293T cells with MYC plasmid and three different doses of BHLHB2-FLAG 

plasmids. pRL-TK plasmid was used as internal control to monitor the transfection 

efficiency. The luciferase activities were measured 48 hours post transfection and 

normalized against the Renilla activity. Each experiment was done in duplicate and data 

were shown as mean ± SE of three independent experiments.
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(C) qChIP assays on ODH-III cells were performed in parallel using equivalent number of 

cells. Chromatin was immunoprecipitated with anti-MYC and anti-BHLHB2/DEC1 

antibodies or an irrelevant antibody (rabbit IgG) as a control. The precipitated DNA 

fragments were assessed by quantitative PCR and shown as mean ± SE.

(D) GSEA enrichment analysis for BHLHB2 silencing. Gene expression profiles were 

generated for 5 samples of ODH-III cells transduced with BHLHB2-specific or control 

shRNA using a lentiviral vector. The x-axis represents all probes on the microarray, ranked 

by their absolute differential expression in the cell transduced with the BHLHB2 shRNA vs. 

the control shRNA. Most differentially expressed genes are towards the left. Sorting was 

based on the value of −log10 of their differential expression p-values. Blue vertical bars 

represent all 340 genes in the MYC target signature, while the red bars represent the 80 

MINDy-inferred, BHLHB2-modulated subset signature. Color intensity is proportional to 

the density of the bars. Rank of BHLHB2 among differentially expressed genes is shown by 

a tick mark. (See Methods for details on GSEA test and statistical significance assessment.)
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Figure 4. MEF2B enhances MYC activity via protein-protein interaction
(A) Visualization of MINDy output. See Figure 2A for interpretation of this graph.

(B) HA-MEF2B expression vector was transiently transfected into 293T cells with FLAG-

MYC expression vector. At 48-hour post-transfection, immunoprecipitation was performed 

using the anti-FLAG agarose beads (M2). Whole cell extracts and immunoprecipitation 

eluates were analyzed by Western blotting with anti-FLAG, anti-HA, and anti-MAX 

antibodies.
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(C) Nuclear extracts from P3HR1 cells were immunoprecipitated with anti-MEF2B serum 

or rabbit serum as a control. The precipitates were analyzed by Western blotting with anti-

MEF2B and anti-MYC antibodies.

(D) TERT promoter-driven luciferase reporter construct, TERT-800Luc, was transiently co-

transfected into 293T cells with MYC plasmid and three different amounts of HA-MEF2B 

plasmids. pRL-TK plasmid was used as internal control to monitor the transfection 

efficiency. The luciferase activities were measured 48 hours post-transfection and 

normalized against the Renilla activity. Each experiment was done in duplicate and data 

were shown as mean ± SE of three independent experiments.

(E) GSEA enrichment analysis for MEF2B silencing. Gene expression profiles were 

generated for 5 samples of P3HR1 cells transduced with MEF2B-specific or control shRNA 

using a lentiviral vector. See Figure 3D for further interpretation of this graph.
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Figure 5. MYC selectively recruits HDAC1 to its targets as co-repressor
(A) Visualization of MINDy output. See Figure 2A for interpretation of this graph.

(B) FLAG-HDAC1 expression vector was transiently transfected into 293T cells with HA-

MYC expression vector. At 48-hour post-transfection, immunoprecipitation was performed 

using the anti-FLAG agarose beads (M2). Whole cell extracts and immunoprecipitation 

eluates were analyzed by Western blotting with anti-FLAG and anti-HA antibodies.

(C) Nuclear extracts from Ramos and P3HR1 cells were immunoprecipitated with anti-

MYC antibody or rabbit IgG as a control. The precipitates were analyzed by Western 

blotting with anti-HDAC1, anti-MYC and anti-MAX antibodies.
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(D) GSEA enrichment analysis for HDAC1 silencing. Gene expression profiles were 

generated for 5 samples of P3HR1 cells transduced with HDAC1-specific or control shRNA 

using a lentiviral vector. See Figure 3D for further interpretation this graph.

(E) FLAG-MYC and CBP-HA expression vectors were transiently transfected into 293T 

cells to purify acetylated-MYC protein. HDAC1, which was also purified from transient 

transfected 293T cells, was incubated with acetylated-MYC protein in vitro. The signal 

intensities of acetylated-MYC and total amount of MYC were measured by the imageQuant 

5.2 software. The densitometry histogram on the right shows the percent of acetylated-MYC 

normalized by total amount of MYC.

(F) qChIP assays on P3HR1 cells were performed in parallel using equivalent number of 

cells. Chromatin was immunoprecipitated with anti-MYC and anti-HDAC1 antibodies or an 

irrelevant antibody (rabbit IgG) as a control. The precipitated DNA fragments were assessed 

by quantitative PCR with CR2 and p21CIP1 primers and are shown as mean ± SE.
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